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What you might expect and what you will get 

My guess about your expectations
• you have heard about "attractors", "bifurcations", "chaos" ("ABC") 
• you have seen that ABC concepts are often applied to neural / cognitive

dynamics
• you want to learn more about ABC

ABC is powerful and beautiful and insightful.

ABC is limited. There is also DEF ... XYZ. 

What I try to give you
• a glimpse of the astonishing variety of concepts and tools available for

dynamical modeling: AB...YZ
• a compass to navigate
• and yes, a special consideration of ABC



Overview

1. So many views on „dynamics“
2. A zoo of finite-state models
3. A ménagerie of continuous-state models
4. What is a state? ... and Takens' theorem
5. State-free modeling of temporal systems
6. Qualitative theory of DS: attractors, bifurcations, chaos
7. Non-autonomous dynamical systems

Slides (including references) at Phase 2 Course Announcements via 
https://www.ai.rug.nl/minds/uploads/IntroDynSys_IK_2021.pdf  



1. So Many Views on Dynamics



Literature
If you have about 6000 Euros to spare, the Encyclopedia of Complexity and 
Systems Science (R. A. Meyers, ed.), Springer Verlag 2008, is the definite 
compilation of dynamical systems knowledge (~600 detailed articles, > 10K 
pages, 11 volumes). 

A bit more on the affordable side, at https://dsweb.siam.org/Education
you find an extensive compilation of online tutorials and course materials 
spanning the whole range of dynamical systems. 



Things to describe & analyze

http://kybele.psych.cornell.edu/~edelman/, http://www.ifp.illinois.edu/~rajaram1/poisson.html, 
http://myguide.bagarinao.com/2011/11/06, http://staffwww.dcs.shef.ac.uk/people/N.Ma/ , 
http://www.scientificpsychic.com/grammar/enggram1.html, http://www.pxleyes.com/blog/2012/03/



What is a dynamical system?

A DS is any real or artificial or formal system that evolves over time. 

It is almost impossible not to be a dynamical system!  



Examples

• A water molecule, a waterdrop, a river, an ocean
• The Universe
• A calcium channel, a synapse, a dendrite, a neuron, a microcircuit, ... 

a brain, a nervous system, a body
• Life on earth
• A bitstream, a network of communicating signal sources, a language

generating program, a society of linguistic agents
• Mathematics (as a growing body of theorems and proofs)
• You
• A stone
• What you think about you

In sum: 
• Everything that is not dead or boring.

There isn't and there can't be a universal theory of dynamical systems.
We have to face a diversity of methods.



Types of dynamical systems and/or modeling methods

Numerical
Texts, event and action 
sequences, DNA, conceptual 
reasoning 

Physiological models, psychometrical 
measurements, motor control

Symbolic 

Non-autonomousAutonomous
Sleep dynamics (?), central 
pattern generator models (?), 
circadian clocks (?)

well, ...almost every real-life 
system

Deterministic

Non-deterministic

Stochastic
Electrodynamics, artificial 
neural networks, mean-field 
models

Language competence models, 
grammatical sequence generation

spike trains, speech, language 
performance models

Two fundamental decisions before modeling starts:
• selection: what subsystem is modeled 
• perspective: what aspects of that subsystem are modeled

These decisions mandate the use of very different modeling tools. 



... continued

high-dimensional
Hodgkin-Huxley or FitzHugh-
Nagumo model of neurons, 
oscillator models

network-level modeling, modeling of 
cognitive processes 

low-dimensional

non-linear
"classical" analysis of neural 
dynamics as signals

neural pattern generators, chaotic 
dynamics, coupled oscillators

linear

non-stationary
stationary learning processes, speech (short 

timescale), adaptation processes neural noise, speech (long 
timescale), fruit fly in Andrew 
Straw's virtual arena

evolutionary
language evolution, ontogenesis, 
cell differentiation

non-homogeneous
fully or sparsely connected 
neural network 

modular or hierarchical neural circuits 
and architectures

homogeneous

continuous time
state-switching models, models 
learnt from sampled data

classical neuron models, mean-field 
models of collective dynamics

discrete time



Three modeling attitudes

• Try to capture the real-world underlying mechanisms 
• The physicist's and neuro-medicinal view
• Examples: compartment models, Hodgkin–Huxley model, Chomsky generative 

grammar
• Formalisms: ODEs, PDEs, automata models, dynamical Graphical Models   

Analytical modeling

• Try to describe the observable phenomena
• The approach of machine learning, signal processing
• Examples: BCI applications, brain data analyses, artificial intelligence systems 
• Formalisms: hidden Markov models, stochastic DEs, artificial neural networks   

Blackbox modeling

• Try to emulate information gain processes
• Sometimes adopted by roboticists, agent modeling
• Examples: concept formation processes, belief state modeling
• Formalisms: predictive state representations, observable operator models, temporal 

logics

Epistemic modeling (rare)



Basic ingredients

system in 
state x(n)
at time n

x(n)x(n-1)x(n-2). . .

past history

x(n+1) x(n+2) . . .

future

T T T T

T: update operator, 
"system law", 
"transition function"

y(n) y(n+1) y(n+2)y(n-2) y(n-1)
y: observation, 
"measurement", 
"output signal"

u(n) u(n+1) u(n+2)u(n-2) u(n-1)

u: input, "perturbation", 
"input signal"

..., x(n-2), x(n-1), x(n), x(n+1), x(n+2), ... : (state) trajectory



The natural science view

x(n)x(n-1). . . x(n+1) . . .
T T

y(n) y(n+1)y(n-1)

u(n) u(n+1)u(n-1)

• ever since Newton
• objective: understand "the system"
• focus on modeling the system state x

and the system law T
• classical formalism: ordinary

differential equations (ODEs) for T
(continuous time), x∈ Rn

• classical approach: isolate system in 
experimental designs, minimizing role
of perturbations u, making experiments
reproducible

• that is, try to ensure that system can
be treated as an autonomous system

• main role of output y: measurable, that
is, a vehicle to infer back to state x



The engineering view

x(n)x(n-1). . . x(n+1) . . .
T T

y(n) y(n+1)y(n-1)

u(n) u(n+1)u(n-1) • the classical perspective taken by 
signal processing and control 
engineers

• objective: design and build useful 
input-output devices ("filters", 
"controllers") 

• focus on the mathematical 
relationships between input signals     
u(n) and output signals y(n)

• engineers love linear input-output 
relationships: highly developed arsenal 
of mathematical methods ("frequency 
domain" modeling) 

• "state-based representations" are only 
one (and not the classical) of the 
modeling approaches in the signal 
processing field. 

y(n) y(n+1)y(n-1)

u(n) u(n+1)u(n-1)

. . . . . .

"state-based representation"

that's what a classically trained 
engineer calls a "system", or "filter"



Literature

There are many textbooks on signal processing. Free online textbooks
that try to be intuitive and do not require much maths are listed at the
end of http://en.wikipedia.org/wiki/Signal_processing. A more rigorous 
yet accessible and comprehensive textbook treatment is provided by 
the online lecture notes of the MIT open course
Alan Oppenheim, and George Verghese. 6.011 Introduction to 
Communication, Control, and Signal Processing, Spring 2010. 
(Massachusetts Institute of Technology: MIT OpenCourseWare), 
http://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-011-introduction-to-communication-control-and-signal-
processing-spring-2010/



A first comparison

• physicists / neurophysiologists / 
neurologists / neurolinguists want to 
model neural architectures / 
mechanisms

• tools from dynamical systems theory 
proper, "ABC" tradition, stochastic 
processes and information theory  

y(n) y(n+1)y(n-1)

u(n) u(n+1)u(n-1)

. . . . . .

x(n)x(n-1). . . x(n+1) . . .
T T

y(n) y(n+1)y(n-1)

u(n) u(n+1)u(n-1)

• cognitive scientists / linguists / BCI 
engineers / machine learners want to
model neural function / performance

• tools from signal processing, machine
learning, CS, stochastic processes and
information theory

It's good to be familiar with both.



2. A Zoo of Finite-State Models



Deterministic finite-state automata (DFA)

A DFA is defined by:
• a finite set of states, e.g. Q = {p, q, r}
• a finite set of input symbols, e.g. 
𝛴 = {A, B}

• a transition function T: Q× 𝛴 → Q, 
can be written as table, e.g. 

p

r

q
A

A A

B

B
B

A B
p q r
q q p
r q r

• A DFA defines input-sequence 
dependent state trajectories

example trajectory:

A   B   B   A   B   
... ...
q     q    p   r   q    p



DFAs, comments

• deterministic
• can be used e.g. for modeling ion

channel states or an agent's model of
how the world Q reacts on agent's
actions 𝛴

• simplicity is deceptive: a PC can be
considered a DFA, with more-than-
astronomical-sized (but finite)              
Q = {all possible logic gate
state combinations}

• states are "fully observable"
• inferring a DFA from observed

trajectories is easy
• DFAs are standard tool for theoretical

CS, then used only for finite 
sequences ("words")

p

r

q
A

A A

B

B
B

A   B   B   A   B   
... ...
q     q    p   r   q    p



Moore- and Mealy-Machines 

A Moore Machine is a DFA, equipped 
additionally with 
• a finite set of output symbols, e.g.        

O = {0, 1}
• a translation (observation) function     
ρ: Q → O

p

r

q
A

A A

B

B
B

example Moore trajectory:

A   B   B   A   B   

q     q    p   r   q    p

0

0
1

0   1    0   0    1

A Mealy Machine is similar, except the
observations are "emitted" from
transition arrows: ρ: Q × 𝛴 → O

Both are deterministic. 

Efficient methods to infer Moore / Mealy
machines from input-output data are
known. 



Literature
There are many textbooks covering finite automata – they form a core 
part of theoretical CS and any theoretical CS textbook will cover them 
(among other topics). A classic is 
Hopcroft, John E. , Motwani, Rajeev, and Ullman, Jeffrey: Introduction 
to Automata Theory, 2nd edition. Addison-Wesley, 2001 

Textbook concentrating on finite automata which covers both the use of 
automata for finite-word languages and for infinite-sequence languages
A. de Vries: Finite Automata: Behavior and Synthesis. Elsevier, 2014



Non-deterministic finite-state automata (NFA)

A NFA is defined by:
• a finite set of states, e.g. Q = {p, q, r}
• a finite set of input symbols, e.g. 
𝛴 = {A, B}

• a transition function
T: Q× 𝛴 → Pot(Q), (Pot: power set), 
e.g.

p

r

q
A

A
A,B

B

A,B

A,B B
B

A B
p {q, r} ∅
q {p, q} {p, q, r}
r {q} {p, r}

p    r r p    q
dead end

example trajectories:

A   B   B   A   B   
... ...

q p
or



q q r p   q r

NFAs, comments

• an NFA can yield several (typically, 
infinitely many) different state 
sequences on given input sequence

• no probabilities involved; a given state 
sequence cannot be said to be "more 
probable" than another

• this is called a non-deterministic 
system, as opposed to "deterministic" 
and to "stochastic"

• nondeterministic models capture what 
is possible vs. what is impossible to 
observe

• special case: no input (or equivalently, 
one-element input set)

p

r

q

example trajectories:

special case: no input
symbols

q q q q r q



Finite-dimensional Markov chains

A (finite-dimensional) Markov chain (MC) is
defined by:
• a finite set of states, e.g. Q = {q1, q2, q3}
• an initial state distribution p∈ Prob(Q), 

where Prob(Q) is the set of probability
distributions over Q

• a transition kernel T: Q → Prob(Q)
• T can be written as stochastic transition

matrix ("Markov matrix"), e.g.  

q1

q3

q2

q1 q2 q3

q1
0.2 0.5 0.3

q2
0.9 0.1 0.0

q3
0.3 0.3 0.4

rows sum to 1

.2

.1

.4

.3
.3 .3

.9

.5

p = 

0.0



Finite-dimensional MCs, comments 1

• used to describe trajectories that start at 
time n = 0

• probability that a trajectory starts with 
qi0, qi1, ..., qin

is 
q1

q3

q2
.2

.1

.4

.3
.3 .3

.9

.5

p = 

• a MC specifies a stochastic process 

with values in Q

0.0



Finite-dimensional MCs, comments 2

• the crucial defining property to make a 
finite-valued stochastic process a Markov 
chain: the Markov propertyq1

q3

q2
.2

.1

.4

.3
.3 .3

.9

.5

p = 

0.0

• What is going to happen next
(probabilities to observe qin+1) only
depends on current state qin, not on 
previous state history

• MCs are "memoryless" systems



Controlled Markov chains
In a controlled MC the transition
probabilities are switched by inputs. 
Components:
• a finite set of states, e.g. Q = {q1, q2, q3}
• a finite set of inputs ("control actions"), 

e.g. A = {a, b}
• an initial state distribution p∈ Prob(Q)
• for each a∈ A, a transition kernel

Ta: Q → Prob(Q)

q1

q3

q2

q1 q2 q3

q1 0.2 0.5 0.3

q2 0.9 0.1 0.0

q3 0.3 0.3 0.4

.2|.0

.1|.0

.4|.4

.3|.8

.3|.4
.3|.2

.9|1.0

.5|.2

p = 

q1 q2 q3

q1 0.0 0.2 0.8

q2 1.0 0.0 0.0

q3 0.4 0.2 0.4

Ta Tb

.0|.0

• Update mechanism: switch transition
kernel according to current input symbol



Literature

A classical monograph on controlled stochastic processes (general 
rigorous mathematical theory, not restricted to controlled MCs):
Gihman, I.I. and Skorohod, A.V., Controlled Stochastic Processes. 
Springer Verlag 1979

Controlling stochastic systems is, of course, also of prime importance in 
control engineering. In this field, the controlled systems often are 
systems that emit observable output, which is then included in the 
analysis and methods. A textbook:
R. F. Stengel, Stochastic optimal control: theory and application. John 
Wiley and Sons, 1986



Hidden Markov models (HMMs)

Defining components:
• a finite set of states, e.g. Q = {p, q, r}
• a finite set of outputs ("observables", 

"visibles"), e.g. O = {0, 1}
• an initial state distribution p∈ Prob(Q)
• a transition kernel T : Q → Prob(Q)
• for every state q∈ Q and observable      

o∈ O , an emission probability P(o|q) to 
observe o when the hidden Markov state 
trajectory passes through q

or, equivalently, 
an emission function ρ : Q → O            
(as shown in example) 

p

r

q.2

.1

.4

.3

.3
.3

.9

.5

0.0

0

0
1

example trajectory:
q    p   r   q    p

0   1    0   0    1



q    p   r   q    p

HMMs, comments 1

• widely and naturally applicable, because
an experimenter often can't directly
observe states q, only make
measurements o of them

• available experimental data are only
trajectories of observables, states are
unobservable

• model inference task: from (empirical) 
measurement data (e.g., 0 1 0 0 1) infer
underlying stochastic state transition
system, that is...

• ... explain data by generative mechanism
• Example: Q = "brain states", O = "uttered

phonemes"
• Example: Q = "state of a neuron", 

O = "spike"

p

r

q.2

.1

.4

.3

.3
.3

.9

.5

0.0

0

0
1

0   1    0   0    1

unobservable states

visible measurements



p    q   r   p    q

HMMs, comments 2

• The visible trajectories (values of random 
variables Yn) "have memory":

• The observables (Yn)n = 0,1,2,... form a 
stochastic process in their own right, but 
this process does not have the Markov 
property

p

r

q

1.0

1.0

1.0

0

0
1

1   0    0   1    0

hidden states Xn

visible measurements Yn



Literature

The classical tutorial text on HMMs, very readable (30000 Google cites, 
boosted the popularity of HMMs in speech processing):
Rabiner, L., A tutorial on hidden Markov models and selected 
applications in speech recognition. Proceedings of the IEEE 77.2 
(1989): 257-286. (many online copies)



Controlled hidden Markov models, aka POMDPs

• crossover of controlled MCs and HMMs
• also (widely) known as Partially

Observable Markov Decision Processes
(POMDPs) if rewards and decision-
making policy are added to the picture

• a basic tool in theory of autonomous
agents / robotics / reinforcement learning
in the machine learning sense

• In that context, a POMDP constitutes the
agent's world model:
• Q: external world states
• A: agent's actions in world
• O: sensory feedback from world

• methods available for learning a POMDP 
from A-O (action – sensor-feedback) 
timeseries data

• seems a natural model class to me also 
for neural dynamics and animal behavior

q1

q3

q2
.2|.0

.1|.0

.4|.4

.3|.8

.3|.4
.3|.2

.9|1.0

.5|.2

.0|.0

0

0
1



Literature

My favorite tutorial text on POMDPs, set in a context of agent learning 
and reinforcement learning:
Kaelbling, L.P., Littman, M.L., Cassandra, A.R., Planning and acting in 
partially observable stochastic domains. Artificial Intelligence 101 
(1998), 99-134



Cellular automata (CA) – visual demo

http://www.collidoscope.com/modernca/welcome.html (now defunct). 
A nice interactive CA simulator is at https://www.fourmilab.ch/cellab/



1-dim deterministic CA

Defining components:
• a finite set of local cell states, e.g.          

Q = {red, green}  (visualize as colors)
• a local transition function

T local: Q×Q×Q → Q

Example:

3. Iterate, obtain trajectory of 
configurations c0, c1, c2,...

A CA defines a global transition function T: {configurations} → {configurations}

1. Initial configuration: c0: Z → Q

......c0

How it works:

2. Apply local transition function to 
all local neighborhoods (cell 
triplets), get next configuration c1

...c0 ... ...c1 ...



CAs, comments 

• can be defined for 1-dim, 2-dim, ... systems
• simplest kind of model for spatio-temporal 

dynamics
• local transition rules can be also defined 

stochastically τ: Q×Q×Q → Prob(Q)
• PDE models can be approximated by CAs via 

discretization

• Suggested uses in neuroscience:
• neural field models
• classification of cortical dynamics
• computational power analysis of neural 

circuits

• Popular to model pattern formation

Fow
ler et al, 1992

• Popular to analyze self-organization 
classes in spatiotemporal systems

Wolfram Class 1 Class 2

Class 3 Class 4

W
olfram

, 2002



Literature

The popularity of CAs is very much owed to Stephen Wolfram's lifelong
passion about them and his missionary skills (paired with unlimited self-
confidence). His most recent book (in a long series) is
Wolfram, S. A New Kind of Science. Wolfram Media, 2002. Online at 
http://www.wolframscience.com/nksonline/toc.html

A simply beautiful paper about seashell modeling, part of which is done
with CA: 
Fowler, D. R. and Meinhardt, H. and Prusinnkiewicz, P., Modeling 
seashells. In Proc. SIGGRAPH 92, (Computer Graphics 26, ACM 
SIGGRAPH) 1992, 379-387



Petri nets
• An application / engineering oriented formalism for modelling spatially distributed 

systems with flows and transformations of materials or information

Components: 
Places,  transitions, arcs, 

2

2

2
1

1

13

2

tokens.

Configuration update operation:
1. Find some enabled transition

(i.e., each "feeding" place has 
enough tokens for input arc 
weight)

2. Consume input tokens, create 
output tokens (in numbers given 
by output-arc weights)2

2

2
1

1

13

2



Petri nets, comments
• Originated by early informatics researcher Carl 

Adam Petri in the 1960ies as formalism to 
capture concurrency of distributed, discrete-
state switching processes 

• Wide diversity of application domains,  e.g. 
- asynchronous switching circuits, 
- parallel programming, 
- transportation and manufacturing logistics,
- business processes

• Many variations / extensions of formalism
• Active community
• According to Wikipedia, Petri Nets offer a very 

useful compromise between expressiveness 
and analyzability of questions like:
- is a target configuration reachable from an 

initial configuration?
- does a process terminate?
- which configurations are reversible to an 

initial / safe configuration?

2

2

2
1

1

13

2

2

2

2
1

1

13

2



Literature

I can recommend the English and German Wikipedia pages on "Petri 
Net" and "Petri Netz", respectively. 



• This dependency network is unfolded in time

...

Dynamical Bayesian networks, dynamical graphical models

• Idea: describe the state of a stochastic DS at 
time n by the values of a finite collection of 
finite-valued
• input random variables (RVs)
• hidden RVs 
• output RVs

• These are causally interacting along statistical 
dependency chains leading from inputs 
through hiddens to outputs (there may be 
causal cycles between the hiddens)

• Local conditional probability distributions for 
hidden and output variables V

allow one to compute the distribution of the 
entire controlled stochastic process



...

Dynamical Bayesian networks, comments

• DBNs can be seen as multivariate 
generalization of HMMs and POMDPs

• The natural model class for interacting 
stochastic quantities 

• Also useful for analysis of multivariate 
empirical timeseries

• Extensive literature in machine learning, well-
developed mathematical theory, algorithms 
available for
• inference: prediction, filtering, data 

completion, optimal control 
• learning: given input-output data, estimate  

a DBN with hiddens that  can re-generate 
the observed input-output relationships 

• Exemplary suggested uses:
• modeling functional connectivity networks
• blackbox modeling of multivariate timeseries
• high-level models of cognitive probabilistic 

reasoning



Literature

The highly cited, transparently written, career-making PhD thesis on 
dynamical Bayesian networks: 
Murphy, Kevin Patrick. Dynamic Bayesian networks: representation, 
inference and learning. Diss. University of California, Berkeley, 2002. 
(many online pdf copies)

The ultimate handbook on graphical models in general:
Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press 
2009 (1200 pages!)



Finite state models, general comments

• typically set-up in discrete time
• for all these models, "learning" 

algorithms are known ("model 
estimation")

• simpler to describe, analyze and, 
emphatically, to learn (= infer from 
empirical observation data) than 
continuous-time or continuous-
valued models

• don't under-estimate their power 
and complexity: with growing 
number of states models can come 
as close as one wishes to 
continuous models

• lend themselves more easily to 
information-theoretic analyses than 
continuous models 

The zoo
• DFAs, NFAs
• finite-state MCs 
• controlled MCs
• HMMs
• POMDPs
• cellular automata
• dynamical graphical models 
• ...



3. A Ménagerie of Continuous-State Models



Iterated function systems, aka iterated maps

• N-dimensional states x∈ RN

• discrete time steps n∈ Z or n∈ N

• update operator is a function 

T: RN → RN

simplest case: autonomous system, i.e. no 
input, deterministic update

enriched with input u and additive noise ν: 
non-autonomous system. Further addition: 
output function R.

important special case: linear system. 
A, B, C are matrices.



• N-dimensional states x∈ RN

• continuous time t∈ R or t∈ R≥0

• update operator is a function 
T: RN → RN

• but now this operator specifies a 
rate of change, not the next state 
(as in all our models before) 

Simplest case: autonomous system, i.e. no 
input, deterministic update

Enriched with input u: non-autonomous 
system. Further addition: output function R. 
Note: can't be made stochastic by simply 
adding noise term.

Important special case: linear system. 
A, B, C are matrices.

Looks similar to iterated maps 
(deceptively). We will inspect such 
systems in more detail later 

Ordinary differential equations (ODEs)



• Mathematically described by stochastic 
differentials of the kind

where drift is function μ, diffusion strength 
is σ and B is a Brownian motion trajectory 

• Modeling goal: continuous-time processes 
of the kind "deterministic ODE-guided 
mechanism (drift component), all the time 
perturbed by Brownian motion kicks 
(diffusion component)

Stochastic differential equations 

vector field guiding drift:
start point:

pure drift (deterministic) solution:
two realizations of stochastic process:

• Basic model type for the "hardcore 
theoretical physicist" modelers (in my 
perception: the "French school" of neural 
modeling)



Literature

Check out the Wikipedia page
https://en.wikipedia.org/wiki/Stochastic_differential_equation for entry
points to concepts and literature. 

A typical paper from the "French school":
M. Galtier, J. Touboul: Macroscopic Equations Governing Noisy Spiking 
Neuronal Populations with Linear Synapses. PLOS One, November 13, 
2013



• Derivative         depends on current state x(t)
and state x(t-δ) at previous time (or several 
previous times) 

• Mathematically, the state at time t is not x(t)
but it is the trajectory

because all the x(r) in this interval co-
determine the future.

• States are thus infinite-dimensional

Delay differential equations (DDEs) 

Autonomous system case

• The induced dynamics can be extremely 
involved even for simple-looking 1-dim 
DDEs.

A sample trajectory from the Mackey-
Glass system • The induced dynamics can be extremely 

involved even for simple-looking DDEs.
• DDE models arise naturally in neural 

dynamics modeling due to signal travel 
delays, e.g. along axons



Literature

A concise entry point to DDE literature and software: 
Skip Thompson (2007) Delay-differential equations. Scholarpedia, 
2(3):2367. www.scholarpedia.org/article/Delay-differential_equations

A tutorial on time delays in neural systems:
Campbell, S. A. (2007). Time delays in neural systems. In Handbook of 
brain connectivity (pp. 65-90). Springer Berlin Heidelberg. 
http://www.math.uwaterloo.ca/~sacampbe/preprints/brain.pdf



Partial differential equations (PDEs) 

We skip them and immediately proceed to 
the more general...



(Neural) field equations (FEs) 

• Motivation: model dynamics in spatially 
extended neural systems (e.g. 
travelling waves on cortical surfaces)

• Needs to take into account:
• signal travel times
• signal travel distances and field 

geometry

http://www.scholarpedia.org/article/Neural_fields

• Neural field equations hence 
combine DDEs, PDEs, integral 
equations

c time constant
u scalar field measurable (e.g. local firing rate)
x location in field (here: 1-dimensional "field")
w coupling strength profile (e.g. "Mexican hat")
v signal travel speed



Literature

A concise entry point to neural fields: 
Stephen Coombes (2006) Neural fields. Scholarpedia, 1(6):1373 
http://www.scholarpedia.org/article/Neural_fields

A tutorial text (I didn't read it):
Coombes, S., beim Graben, P., Potthast, R.: Tutorial on Neural Field 
Theory. In Coombes, S., beim Graben, P., Potthast, R., Wright, J. 
(eds.): Neural Fields. Springer Berlin Heidelberg, 2014



4. What is a State? ... and Takens' Theorem



The naive view

• a real (idealized, isolated) physical 
system evolves in continuous time

• continuous time is a line of "points in 
time"

• at each point in time t, the system is in 
a state x(t)

• before the present point in time t, there 
is the past: t' < t; and thereafter, the 
future: t'' > t

• the system state x(t) at time t is 
physical reality: it is the system at time 
t, and it's all that there is

• a physical system has neither goals   
(x(t) doesn't "want" to change the 
future) nor memory (x(t) can't access 
the past)

http://www.eoht.info/page/Billiard%20ball%20model

I would call it the fundamental dogma of 
physics: 
• states exist (they ARE THE reality)
• states endow the evolution of reality 

with the Markov property: future 
depends only on the present, not on 
the past



Some problems with that view

Problem 1: time itself
• theory of relativity: pointlike "presence" 

is not uniquely defined
• quantum mechanics: time itself might 

suffer from fine-granular uncertainty

Problem 2: ontological status of state
• Kant: human thinkers don't have access 

to the thing-in-itself (Ding an sich) 
• we can't know or understand the 

noumenonal (as opposed to 
phenomenal) essence of x(t)

Problem 3: freedom in modeling
• a neuron's state can be modeled e.g. as

• a 1-dim binary "fires" vs. "fires not"
• as 3-dim FitzHugh–Nagumo model 

state
• ...
• a 1000-dim compartment model
• an infinite-dim spatiotemporal 

electrochemical pattern
• which model type / granularity is 

appropriate for what modeling goal?
• how are different models related?

I don't know enough physics to say more.

I don't know enough philosophy to dig 
deeper here. That's food for thought for people like you 

and me.



Creating state representations by delay embeddings

given: 1-dim timeseries x(t)

turn into 3-dim timeseries     
x(t) = (x(t), x(t-δ), x(t-2δ))'

x(t)
x(t-δ)

x(t-2δ) • we can artificially transforme a 1-
dim state into an m-dim state by 
time-delay embedding

• no information added
• what is the "real" system state? 

plot the 3-dim timeseries x(t)



Takens' theorem (simplified)

Theorem of Takens
Given: A smooth vector field F on a d-
dimensional manifold M, a map j : M → R.

• The vector field F induces a dynamicsm(t)
on M, and j(m(t)) =: o(t) gives 1-dim 
observation timeseries.

• Consider the 2d+1-dimensional time-delay
embedding state dynamics

e(t) = (o(t), o(t-δ), ..., o(t-2δ)).
Then, e(t) evolves on a d-dimensional 
manifold M' ⊆ R2d+1, and the vector field F'
associated with this evolution is
homeomorphic to F.

Preparation: A d-dimensional manifold is 
a subset of Rn that locally is d-
dimensional. Example:
• unit sphere surface: 2-dim manifold in R3

m(t)

o(t)

e(t)

1-dim 
observation

delay-embedded
reconstruction



Takens' theorem, explanations

• "Homeomorphic" means: the same up to 
smooth "space distortions" ("rubber-
sheet transformations")

• Important characteristics of the 
reconstruction e(t) are identical to m(t).

• Specifically, Lyapunov exponents (which 
quantify stability or chaoticity) are 
preserved.  

• The grand message: 1-dim observations 
of ODE systems, traced over time, 
reveal everything that is essential about 
the invisible, generating high-dim 
system.  

m(t)

o(t)

e(t)

Teaser question: what is the real / true 
state of an ODE-governed system? or 
the real / true state dimension?



Takens' theorem, comments

• TT gives an analytical justification for
reconstructing complex systems from
low-dim observations

• Specifically, TT can be used to detect
and quantify chaos on the basis of data
from a few scalar observation channels

• Use in the cognitive neurosciences: 
quantify degrees of chaos / complexity
measures of underlying high-
dimensional neural activity from
observed timeseries measurements

• CAVE: when there is noise involved, 
analyses must be carried out with the
greatest mathematical care. It is difficult
to distinguish noise from high-
dimensional chaos.   

m(t)

o(t)

e(t)



Literature

The original paper of Takens (>13000 Google cites): 
Florin Takens, Detecting strange attractors in turbulence. In Rand, D.A. 
and Young, L.-S. (eds.), Dynamical Systems and Turbulence. Lecture 
Notes in Mathematics 898, Springer Verlag 1991, 366-381

A generalization to far larger classes of systems:
Stark, J., Broomhead, D. S., Davies, M. E., Huke, J., Takens
embedding theorems for forced and stochastic systems. Nonlinear 
Analysis, Theory, Methods & Applications 30(8), 1997, 5303-5314

A super-carefully done video of "Takenizing" the Lorenz attractor is at 
https://www.youtube.com/watch?v=6i57udsPKms



Back to discussing states...

• Takens theorem reveals a view how 
"states" are the same as "collect some 
observation info over previous history"

• Other models likewise have "time-
accumulated info-states" e.g.

• higher-order Markov chains
• transversal filter systems (introduced 

later today)
• delay differential equations
• general formalism of stochastic 

processes where transition law 
generates next-step distribution on all 
previous observations, as in

where (b0, ..., bn) can be regarded as 
state. 

-4 -3 -2 -1 0 1 2 3 4
n

observations o(n)

state x(0)



Turning the tide of time

• In Takens etc. a state could be interpreted 
/ conceived / reconstructed from / as 
previous observation history sniplets. One 
could call this "history memory states" 

-4 -3 -2 -1 0 1 2 3 4
n

observations o(n)

state x(0)

-4 -3 -2 -1 0 1 2 3 4
n

state x(0)
• One can also construe states as 

"information states" which consist of the 
information necessary to predict the 
future. One could call this future-predictive 
states.

• This is possible and has been done in 
machine learning and automata theory: 

• observable operator models
• predictive state representations
• multiplicity automata 

" ... a state of a system at any given 
time is the information needed to 
determine the behaviour of the system 
from that time on." L. A. Zadeh, 1969 



Literature

The Zadeh quote is from an article that gives a general, abstract, formal 
definition of states-as-future-encodings (in a context of classical
systems engineering):
L.A. Zadeh. The concept of system, aggregate, and state in system
theory. In L.A. Zadeh and E. Polak, editors, System Theory vol 8, 3 -
42. McGraw-Hill, New York, 1969.

A survey and unification of observable operator models, predictive state
representations, and multiplicity automata is in 

Thon, M., Jaeger, H. (2015): Links Between Multiplicity Automata, 
Observable Operator Models and Predictive State Representations - a 
Unified Learning Framework. Journal of Machine Learning Research 
16(Jan):103−147 http://jmlr.org/papers/volume16/thon15a/thon15a.pdf



5. State-Free Modeling of Temporal Systems



The classical engineering view on "systems"

• the classical perspective taken by signal 
processing and control engineers

• focus on the mathematical relationships 
between input signals u(n) and output 
signals y(n)

y(n) y(n+1)y(n-1)

u(n) u(n+1)u(n-1)

. . . . . .

" system", "filter"
• A signal s (input u or output y) is a mapping

from time to (typically scalar) values:
s: Z ⟶ R (or C) discrete time  or

s: R ⟶ R (or C)      continuous time
(suitably constrained, e.g. finite variance)

• Signals are just "time series"
• Let ! be the set of signals (discrete or

continuous time, suitably constrained)
• A filter (or system) is a functional

H: ! ⟶ !
• A filter is just a value map from input

timeseries to output timeseries ... any such 
map, with no "mechanism" implied

H



Continuous vs. discrete-time signals and systems

• The historically earlier theory concerned 
continuous-time analog signals and filters.

• With the advent of modern computers, 
discrete-time digital signals and filters 
became equally (if not more) important. 

H • An important aspect in signal engineering: 
what information is preserved/lost in 
sampling.

• Nyquist-Shannon (et al.) sampling theorem: 
lossless sampling if sampling rate is at least 
2B samples/second, where B is highest-
frequency component in analog signal

• Mathematical analyses of continuous vs. 
discrete-time signals and systems are 
related but not 1-1 translatable into each 
other. 

• Analog signals turn into digital signals by
sampling (not to be confused with 
"sampling" in the sense of statistics).

I will only consider discrete-time signals s(n) in what follows.  



Basic concepts and classes of signals and systems

• Linear systems transform linear 
combinations of input signals into linear 
combinations of their respective outputs.  

• Time-invariant systems transform time-
shifted inputs into time-shifted outputs.  

• "LTI": linear, time-invariant systems. The 
bulk of systems considered by signal 
engineers. 

• A system is causal if current output 
depends only on previous history 

• A system is bounded-input bounded-output 
stable (BIBO stable) if bounded inputs are 
transformed to bounded outputs



LTI systems

• The unit impulse δ is the signal that is zero 
everywhere except at n = 0, where it is 1

-2 -1 0 1 2 3 4 5 6
n • Finite-impulse-response (FIR) filters: H(δ)

returns to zero after a finite number of steps. 
Infinite-impulse-response (IIR) filters: never-
ending "excitation". 

• An LTI system H is uniquely determined by 
its impulse response H(δ).

• FIR filters can be understood as a moving 
average:  w0

w2

w1

• If auto-regression (output feedback) is 
included, IIR filters result (ARMA filters = 
auto-regressive moving average)

• FIR filters are BIBO-stable; ARMA filters can 
be unstable, e.g., 



Linear systems: frequency-domain analysis

• Main mathematical tool for working with 
linear systems: "frequency domain" 
analysis. Signals  are transformed from 
their original time domain to the frequency 
domain by Fourier transforms or 
generalizations thereof (Laplace transform, 
z-transform) 

• One of the reasons why frequency domain 
transforms are so eminently useful: 
• Convolution (applying a filter to a signal) in 

the time domain becomes multiplication in 
the frequency domain

• Deconvolution (inverting a filter, basic 
operation in controller design) becomes 
division 

Fourier transform of continuous-time 
signal s(t):

Laplace transform of s(t):

Fourier transform of discrete-time signal
s(n):

z-transform of s(n):

• These transforms only work for linear systems



Signals and systems, engineering tradition: comments

• A venerable, century-old, comprehensive, powerful, elegant 
theory – in the linear case. 90% – 100% of the material in a 
random engineering textbook will be about linear systems.

• Many connections to neuroscience:

• Supplier of intuitions and functional models of neural
information processing, especially in

• pattern recognition (auditory and visual)

• motor control

• Huge "toolbox" for neural signal analysis

• Some shared historical roots (Norbert Wiener / Cybernetics / 
feedback control)

• Background theory context for neural networks in nonlinear
control (K. S. Narendra, Michael Jordan, Eduardo Sontag)



Literature

Signal processing and control theory is one of the biggest fields of 
engineering and science in general, and there is a plethora of textbooks 
and online tutorial materials. Here is an adhoc sample:
Undergraduate-level lecture notes, elementary, detailed: Stanley Chan, 
Class notes for signals and systems, UCSD  
scholar.harvard.edu/stanleychan/files/note_0.pdf

Nonlinear signal processing and control is less "classical" and more of
a specialization area for engineers. 



Context-free grammars

A context-free grammar (CFG) is defined by
• a finite set V of variables,
• a start variable S ∈ V, 
• a finite set T of terminals
• a finite set of production rules

P ⊆ V × (V ∪ T)*  

• A CFG defines a language, i.e. a set of finite 
symbol sequences (words) over T through 
derivations

Example
V = {S, A}
T = {(, )}
P: S → A, A → (A), A → ( ),

A → AA
A derivation:

Due to this derivation, the word (()(()))
is in this grammar's language.

S

A

A

( )

A A

( )

A

( )( )



Grammars, automata, Chomsky hierarchy

• Grammars can be made more expressive 
by allowing more complex production rules

• Always a grammar defines a language by
derivable words

• Grammars define internal structure of
symbol sequences

• Pioneer since the 1950's: linguist Noam 
Chomsky (for some years the most cited
scientific author, period)

• each Chomskian grammar type comes with
an equivalent automaton model

• more expressive grammar: more powerful 
memory added to DFA

• Today a (maybe the) main tool of the theory
of programming languages

The Chomsky hierarchy 

• simplest: regular languages, 
linear grammars, DFAs (no 
memory)

• next simple class: context-free 
languages, CFGs, pushdown 
automata (single-stack memory)

. . .

• most complex class: recursive 
languages, unrestricted 
grammars, Turing machines 
(infinite tape memory)

⊆
⊆

⊆



Exponential information washout: the default behavior in 
timeseries

• Consider the autocovariance R(d) of a 
numerical timeseries x(t) generated by a 
stationary process

• Often R(d) has an exponentially decreasing 
envelope: |R(d)| ≤ exp(- kd) 

0

R(d) 

d
• Intuitive explanation: in system update laws 

like

the continuing inflow of input signal energy 
u(t) replaces signal energy x(t) at a certain 
average rate    

• Many other range-dependent 
characteristics show similar exponential 
decay with interaction distance



"Long-range" interaction: power laws

• Sometimes however one witnesses a 
slower, polynomial decay of interaction 
strength with interaction distance: 

0

R(d) 

d • Terminological footprint:
- power law

- long-range interaction

- fat tail

- 1/f law (origin: frequency
spectra in Fourier transforms)

• Intuition: certain signal components in the
past are selected (structure formation
effects) and preserved over time (memory
effects)



Power-law behavior and grammars

• Grammars are a prime tool to describe
long-range dependencies in symbol
sequences

• Continuous-time and/or continuous-value
timeseries can be made symbolic by
discretization

• Timeseries with power-law properties often
exhibit structural characteristics like
• multiple relevant timescales
• hierarchical organisation
• self-similarity, fractal properties
• (close to) chaotic dynamics

• Rich phenomenology, rich literature
• Human-generated "intelligent" output

typically has power-law properties: speech, 
motion patterns

S

A

A

( )

A A

( )

A

( )( )

Nested dependencies, long-range 
effects at different timescales, no 
single characteristic timescale



Literature

Grammar formalisms are introduced at length in any standard textbook for theoretical
computer science, e.g.
Hopcroft, John E. , Motwani, Rajeev, and Ullman, Jeffrey: Introduction to Automata Theory, 
2nd edition. Addison-Wesley 2000 
A much-cited paper on long-range (grammatical) structure in nonlinear dynamics at the
onset of chaos:
Crutchfield, J.P. and Young, K.: Computation at the Onset of Chaos. In: Zurek, W.H. (ed.), 
Complexity, Entropy, and the Physics of Information, Addison-Wesley 1990, 223-269 
http://csc.ucdavis.edu/~cmg/papers/CompOnset.pdf
Advertising pro domo: An outstanding BSc thesis that explores the connections between 
grammatical structure and "left-to-right" temporal generation of symbol sequences:
Djolonga, J.: Comparison of the Expressive Powers of Weighted Grammars and OOMs. 
BSc thesis, Jacobs University Bremen 2011. 
https://www.ai.rug.nl/minds/uploads/Thesis_jdjolonga.pdf

This quite non-technical book (in German) is all about structure in timeseries:
W. Ebeling, J. Freund, F. Schweitzer: Komplexe Strukturen: Entropie und Information. 
Teubner Stuttgart Leipzig 1998



6. Qualitative Theory of DS: Attractors, Bifurcations, 
Chaos



Context

• Global intuition: if a DS exhibits a "stable dynamical pattern", it is 
likely in an attractor. Transitions from one pattern to another: can 
often be modelled as bifurcation.

• Attractors and bifurcations (A & B) were increasingly studied in 
(pure) maths and theoretical physics since about the 1960-ies

• Field was boosted by the computer-simulation enhanced study of 
fractals and chaos, thoroughly permeating many scientific (and 
popular) fields since about the late 1970-ies

• Terminological footprint: nonlinear dynamics, dynamical 
systems theory, self-organization, pattern formation, 
emergent behavior, Cybernetics, Synergetics, ...

Personal opinion: though clearly important and insightful, this set of 
tools and metaphors is (still) too weak and narrow to serve as the only 
reference maths for modeling neural dynamics.



Our tutorial example

System equation of a 2-dimensional DS in polar coordinates r and θ :

• Describes a motion of a point (given by coordinates r and θ) in R2

• r and θ are the state variables.  The set of all possible values of the
state variables (here: R2) is the state space (also: phase space)

• a is a (control) parameter, can be set by the "user"; each setting
yields a different version of the system equation



Vector fields

• Use Cartesian 
coordinates x, y for 
plotting

• x = r cos θ , y = r sin θ
• At each point (x, y) , 

consider the vector
• Gives a vector field
• Each vector describes 

a velocity + direction of 
a local motion (velocity 
field) 

x

y

Note: in the plot, velocity vectors are 
scaled down to prevent clutter

For all plots in this section I used Bard Ermentrout's tool XPPAUT5.41



Literature / Resources

In the neurosciences, an influential proponent of DS methods is Bard 
Ermentrout, http://www.pitt.edu/~phase/ . He wrote an ODE solver-simulator 
with an emphasis on graphical output, called XPP or XPPAUT, which is 
available for all operating systems 
(http://www.math.pitt.edu/~bard/xpp/xpp.html). For DS-oriented explorations this 
tool is more convenient than e.g. Matlab because (i) it is more interactive, good 
for hands-on exploration of parameter settings, and (ii) its graphical output 
standardly displays elements typical for DS theory analyses, which in Matlab you 
would have to explicitly program. The graphical user interface of XXPAUT needs 
some time to get used to however.

A recent book by Ermentrout & Terman:
B. Ermentrout, D. H. Terman: Mathematical Foundations of Neuroscience. 
Springer (Interdisciplinary Applied Mathematics series), 2010
Despite its title, it's not really covering math foundations in general but focusses 
on DS.

A very well-written tutorial paper explaining a number of dynamical phenomena 
which are particularly relevant (and popular) in neuroscience models is
Miller P. (2016). Dynamical systems, attractors, and neural circuits. 
F1000Research, 5, F1000 Faculty Rev-992. doi:10.12688/f1000research.7698.1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930057/



xyA closeup 
look



Trajectories and phase portraits

Following the vector field 
from any starting point 
gives a trajectory.

Plotting several 
characteristic trajectories 
gives a phase portrait.



• This example is easy to analyse
because the equations for r and θ
are decoupled (r does not appear in 
equation for θ and vice versa).

• implies that all motion revolves
around the origin with constant
angular velocity.

• The key lies in the radial component
of the dynamics,                    . 

Analysis 1

Observation: (almost) all trajectories 
home in on a limit cycle. -- Why?



Analysis 2
Analysis of

• For 0 < r < 1,  we have ,  
so r will grow with time.

• For 1 < r,  we have ,  so 
r will shrink with time.

• For r = 0 and r = 1, we have
, so r will stay fixed at 

these values.
• indicate motion of r.



Two special trajectories
Start from (0, 0): Trajectory will 
forever remain in (0, 0). This is a 
fixed point of the dynamics. 
This fixed point is unstable: even 
the smallest perturbation will 
drive trajectory away from it. The 
origin is a repellor.

Start from anywhere on the unit 
circle: the trajectory will forever 
revolve around the unit circle. 
This periodic orbit is stable: 
when perturbed, the trajectory 
will asymptotically return to the 
cycle. It is a limit cycle, a cyclic 
attractor.



Surprise!

We added some extra terms to 
the RHS of the system 
equations.

These extra terms "wobble" the 
original equations, but do not 
destroy their basic nature.

original



Structural stability

• Two DS are structurally similar if 
their phase portraits can be 
continuously transformed into 
each other. 

• Structural similarity is an 
equivalence relation. It is used to 
classify dynamical systems.

• A DS is structurally stable if small 
changes to its vector field lead to 
structurally similar phase portraits. 

• Our example system is structurally 
stable.  



Structural instability

• This system is structurally not 
stable. 

• Arbitrarily small changes in ist 
equations will make the circles
"miss themselves on their return
trip" -- giving spiral portraits
instead (inbound or outbound)

• This "spiral" phase portrait is 
structurally stable. 



A question relating to you, maths, and the universe

Given a "random" system equation --
will the system be structurally stable or 
unstable?



Ich spazierte einsmals im Wald herum meinen eitelen Gedanken Gehör zu geben, da 
fand ich ein steinern Bildnis liegen in Lebensgröße [...] da fing es an sich zu regen 
und zu sagen: "Lasse mich mit Frieden, ich bin Baldanders." [...]

[Er] nahm darauf mein Buch, so ich eben bei mir hatte, und nachdem er sich in 
einen Schreiber verwandelt, schrieb er mir nachfolgende Worte darein: "Ich bin der 
Anfang und das End, und gelte an allen Orten. Magst dir selbst einbilden wie es 
einem jeden Ding ergangen, hernach einen Discurs daraus formirn und davon 
glauben was der Wahrheit ehnlich ist, so hast du was dein narrischer Vorwitz 
begehret." 

Als er dies geschrieben, wurde er zu einem großen Eichbaum, bald darauf zu einer 
Sau, geschwind zu einer Bratwurst und unversehens zu einem großen Baurendreck 
(mit Gunst), er machte sich zu einem schönen Kleewasen, und ehe ich mich versah, 
zu einem Kuhfladen; item zu einer schönen Blum oder Zweig, zu einem 
Maulbeerbaum und darauf in einen schönen seidenen Teppich etc. [...] verändert' er 
sich in einen Vogel, floh schnell davon und ließ mir das Nachsehen.

Grimmelshausen, Simplicius Simplicissimus, sechstes Buch, Kapitel 9



I was once walking around in the forest and listening to my idle thoughts

when I found a life-sized stone statue lying on the ground. [...] it began to

move by itself and said: “Leave me alone. I’m Soonchanged.” [...] Then he 

took the book which I happened to have with me and, after he had changed

himself into a scribe, he wrote the following words in it: “I am the beginning

and the end, and I am valid everywhere. [...]” After hed written this, he 

became a large oak tree, then a sow and then quickly a sausage, and then

some peasants dung. The he changed himself into a beautiful meadow of

clover and, before I could turn around, into a cow-pie; then he became a 

beautiful flower or sprout, a mulberry tree and then a beautiful silk rug and

so on till he finally changed back into human form [...] Then he changed

himself into a bird and flew quickly away. (Grimmelshausen (2012), 

translation by Monte Adair) 



Parameter magic...

a = -1



Parameter magic...

a = - 0.2



Parameter magic...

a = 0



Parameter magic...

a = 0.1



Parameter magic...

a = 1



It's a Bifurcation.

a = -1 a = -0.2 a = 0 a = 0.1 a = 1

a < 0: Stable fixed point at origin 
(a point attractor)

Trajectories toward this point have 
finite length.

System is structurally stable.

a = 0: Stable 
fixed point, infi-
nite trajectories.

Structurally 
instable.

a > 0: Repellor at origin, plus a 
limit cycle attractor.

(reverse) trajectories toward this 
point have finite length.

System is structurally stable.

Bifurcation: when a control parameter passes through a critical value, the phase 
portrait changes its nature. 

At (and only at) the critical value, the system is structurally instable. "Left" and "right" of 
this value, the phase portrait is structurally stable. 



A zoo of bifurcations
Name "Left" 

behaviour
Behaviour at critical 
value

"Right" behaviour

Supercritical Hopf 
bifurcation

1 point attractor 1 point attractor with 
"critical slowdown"

1 point repellor, 1 cyclic 
attractor (whose amplitude 
grows from zero)

Subcritical Hopf 
bifurcation

1 point attractor 1 point attractor, 1 cyclic 
trajectory which is 
attracting "from left" and 
repelling "to the right"

1 point attractor, 1 cyclic 
attractor (which appears 
out of the blue with nonzero 
amplitude), 1 cyclic repellor

Pitchfork bifurcation 1 point attractor 
(or one cyclic 
attractor)

1 point attractor with 
"critical slowdown"

2 point attractors (or two 
cyclic attractors), 1 repellor 
(or cyclic repellor)

Saddle-node
bifurcation

[no attractor or 
repellor or other 
fixed point]

1 fixed point, a saddle 
node, neither attractor 
nor repellor

1 point attractor, 1 point
repellor

... and there are many more ...



Literature / Resources
The ABC (attractors, bifurcations, chaos) aspects of DS theorie(s) are amply
covered in many books and online tutorials. 
A (in fact, the) web portal with pointers is https://dsweb.siam.org/ .

My best-liked standard textbook is
Strogatz, S.H., Nonlinear Dynamics and Chaos. Addison Wesley 1994 (latest 
reprint: 2015)

My absolute top-super-favourite book is 
Abraham, R.H., Shaw, C.D., Dynamics: The Geometry of Behavior. Addison-
Wesley, 1992 (http://www.aerialpress.com/dyn4cd.html offers a recent revision 
as e-book for 30 USD, used [expensive] paper copies available at Amazon)
This book is a miracle in didactics. The first author is a pioneer DS 
mathematician, the second a graphics artist. The book explains concepts, 
phenomena and theory of DS, from first steps to fairly advanced topics, without 
a single equation, yet rigorously – all done by brilliantly insightful hand-drawn 
graphics – I have never seen something alike. 



Phase transitions
• Bifurcations manifest themselves as a 

sudden qualitative change of behavior 
when a control parameter passes a 
critical value.

• Similarly (?), physical systems may 
undergo qualitative changes called phase 
transitions (PT) when control parameters 
pass critical values

Phase transition diagram of water

http://schools.birdville.k12.tx.us/cms/lib2/TX01000797/Centricity/Domain/912/ChemLessons/
Lessons/Phases%20and%20Changes/Phase%20Diagrams.htm

• PTs are defined in a context of statistical 
thermodynamics, not dynamical systems. 

• PTs are defined for statistical ensembles 
(like water molecules) in the infinite-size 
limit – for infinite-dimensional stochastic 
systems. Bifurcations are (originally) 
defined for low-dimensional deterministic 
systems.

• classical Definition: a PT occurs when (a 
derivative of) the free energy of a 
thermodynamical system passes through 
a singularity.

• PTs are not intrinsically related to 
bifurcations.

• When macroscopic measurables of a 
statistical thermodynamical system is 
described in a low-dim mean-field model, 
PTs may become modeled by 
bifurcations.  



Literature / resource
A didactic website to explore phase transitions with beautifully interactive
visualizations is
http://www.ibiblio.org/e-notes/Perc/contents.htm



A brief visit to chaos – the Lorenz attractor

A continuous-time DS in 3 
dimensions. System equations:

Classical parameters: 
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The hallmark of chaos: 
exponential divergence of nearby
trajectories
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Miscellaneous notes
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• Attractor is a fractal subset of state space
• Chaos often arises in “highly self-exciting“ DS
• For instance, in recurrent neural networks with

strong self-feedback
• In nature: turbulent flows (atmosphere, ocean

circulations, airflow, plasmas)
• Butterfly effect: 

- Given: two almost identical earth
atmosphere simulations A and B

- Only difference: in simulation B, a 
butterfly in China flaps its wings once

- Result: after some weeks, a tornado in 
Günne in A, calm sunshine in B

• Though deterministic, chaotic DS are
practically unpredictable because initial state
cannot be known with 100% precision



Attractors mathematically defined



Topological dynamics
• Dynamical systems relevant for 

neuroscience modeling come with a 
variety of state spaces, e.g.

• Rn,
• manifolds in Rn,
• function spaces,
• σ-fields (aka σ-algebras),
• sets of words or symbol sequences.

• Desirable: a general theoretical view on 
all of these

• Specifically: define general concepts (i.e., 
get deeper insight) of attraction, 
bifurcations

• Unifying perspective: investigate 
dynamics on topological spaces

Definition. Let X be a set, "⊆ Pot(X)
a collection of subsets, called the open 
sets. Then (X, ") is a topological space
if
(i) «∈ ",

(ii) " is closed under arbitrary unions, 

(iii) " is closed under finite 
intersections

Definition. Let A ⊆ N ⊆ X. Then N is
a neighborhood of A if A ⊆ U ⊆ N for
some U∈ ". 



Attractors defined in topological dynamics

Definition. Given: topological state space X, 
map T: X → X. A set A ⊆ X is an attractor of T
if 
1. A is invariant under T, i.e. T(A)⊆ A
2. There is a neighborhood B of A, called the 

basin of attraction, where B(A) is the set of 
all b∈ X satisfying

for any open neighborhood U of A the T-
iterates of b are ultimately confined to U, 
i.e. 

Notes.
• Some authors call this an attracting set, and 

for an attractor in addition require minimality 
or that some T-orbit is dense in A. 

• Several subtly non-equivalent definitions. 
Watch out for the small print!

X
B
U

A

b

orbit of b

T(b)
T(T(b))
...



Example: cyclic attractors and their basins in a 16-cell CA

• State space X: binary 
16-bit patterns

• CA transition rule yields 
T: X → X

• discrete topology         
" = Pot(X)  

http://uncomp.uwe.ac.uk/wuensche/gallery/ddlab_gallery.html



Example: a point attractor in a continuous 2-dim DS

• State space X:  R2

• continuous dynamics 
generated by  

• standard R2 topology 
(induced by Euclidean 
metric)

http://www.egwald.ca/nonlineardynamics/twodimensionaldynamics.php

fixed point attractor

basin of attraction



Literature
Very accessible, yet comprehensive and rigorous (in other words, just very well-
written):

Ethan Akin: Topological Dynamics: A Survey. Online manuscript, Dpt. of 
Mathematics, City College New York, 2007. Find it at 
http://math.sci.ccny.cuny.edu/people?name=Ethan_Akin. 
(Also appeared as chapter "Topological Dynamics" in the Encyclopedia of 
Complexity and Systems Science (R. A. Meyers, ed.), Springer Verlag 2008)



Attractors and symbols



The riddle

Neurons fire.

store.metmuseum.org, www.theguardian.com/education/2012/jun/11/gold-wedding-
rings-trail-marital-disintegration

Humans think.
I think, 
therefore I 
am

The golden riddle of neural-symbolic integration

• Thinking uses concepts, words, symbols -- stable, 
identifiable "tokens" 

• What are the neural correlates?
• One natural modelling approach: symbols = 

attractors in neural dynamics 



Other modelling approaches

Other candidates for neural correlates of symbols:
• discrete regions in neural state space
• individual neurons or areas (space coding)
• dimensions / subspaces in neural state space (the 

core of most artificial neural networks trained for 
classification)

• saddle nodes (theory of homoclinic cycles)
• conceptors



Literature
Overview articles (from a somewhat specific perspective) on neural-symbolic integration:

Besold, T. et al (2017): Neural-Symbolic Learning and Reasoning: A Survey and
Interpretation https://arxiv.org/pdf/1711.03902

L. C. Lamb. The grand challenges and myths of neural-symbolic computation. In L. De 
Raedt, B. Hammer, P. Hitzler, and W. Maass, editors, Recurrent Neural Networks -
Models, Capacities, and Applications, number 08041 in Dagstuhl Seminar 
Proceedings, Dagstuhl, Germany, 2008 
http://drops.dagstuhl.de/opus/volltexte/2008/1423

Symbols as regions in neural state space, e.g.:
Tino, P. and Cernansky, M. and Benuskova, L.: Markovian Architectural Bias of Recurrent 

Neural Networks. IEEE Trans. on Neural Networks 15(1), 2004, 6-15

Symbols as saddle nodes: 
Gros, C.: Cognitive computation with autonomously active neural networks: an emerging 

field. Cognitive Computation 1, 2009, 77-90 

Symbols as conceptors: 
H. Jaeger (2014): Conceptors: an easy introduction. http://arxiv.org/abs/1406.2671



Symbols as attractors
Pros
• accounts naturally for temporal 

stability of using "symbols" in neural 
processing

• the classical model of a neural 
memory for discrete items: Hopfield 
networks. 

• Here point attractors = learnt 
concepts

Con
• inherent conflict: attractors by 

definition capture neural trajectory 
forever, while thinking transits from 
concept to concept

Attempts to resolve the inherent 
conflict:
• neural noise (kicks trajectory out of 

attractor)
• generalized / modified attractor 

concepts:
• chaotic itinerancy
• attractor relics, attractor ruins, or 

attractor ghosts; 
• transient attractors
• unstable attractors
• high-dimensional attractors 

(initially named partial attractors)
• attractor landscapes

• Cautious authors speak of attractor-
like phenomena



Literature 
References for the listed variations of attractor concepts can be found in 

H. Jaeger (2014): Controlling Recurrent Neural Networks by Conceptors. 
Jacobs University technical report Nr 31 (page 89f) 
http://arxiv.org/abs/1403.3369



7. Non-Autonomous Dynamical Systems



Context

Personal opinion: many guiding metaphors borrowed from 
autonomous DS theory are misguiding.
Specifically, this holds for attractor concepts. 
One reason for the slow progress in neuro-symbolic integration 
programme: inavailability / inaccessibility of a suitable non-autonomous 
theory of attractors

• ABC theory was developed toward its current striking beauty by pure 
mathematicians working on autonomous (input-free, deterministic, 
stationary) systems. 

• But: real-life neural dynamics is input-driven, stochastic, non-
stationary: it is non-autonomous

• The mathematical theory of non-autonomous DS is young, much 
more involved than autonomous DS theory, very incomplete



Non-autonomous systems, general definition

A non-autonomous (discrete-time) DS is given by an update equation 

• The state update law is now time-dependent itself: Tn instead of T
• Time-dependency can arise from various sources, e.g.

• input:   Tn(x(n)) = T(x(n), u(n)), 
• random perturbations: Tn(x(n)) = T (x(n)) + ν(n),
• nonstationarity:  Tn is intrinsically time-varying

• General theory of non-autonomous dynamical systems (NDS) 
abstracts away from specific sources of non-autonomy



Example of a non-autonomous system: neural 
working memory

• a recurrent neural network was 
trained to predict next symbol in a 
graphical "video" input stream

• symbol sequence structured by 
nested curly brackets { { } { { } } }

• different bracket level = different 
grammar for symbol sequence inside 
the bracket pair

• to solve task, network must keep track 
of nesting levels

• each nesting level was "locked into" 
by bistable memory neurons y

• network had to remain "temporarily 
stably" locked until next bracket was 
processed

• modeling intuition: nesting levels ~ 
attractor states 

• due to ongoing input, this is a non-
autonomous system and classical 
attractor notion is not applicable

switching states of memory units



Literature
The neural working memory is documented in
R. Pascanu, H. Jaeger (2011): A Neurodynamical Model for Working 
Memory. Neural Networks 24(2), 199-207 
https://www.ai.rug.nl/minds/uploads/2321_PascanuJaeger10.pdf

This article also contains pointers to a diversity of mathematical approaches for 
non-autonomous attractors. However, I became aware (thanks to Manjunath
Gandhi) of the existing general topological theory of non-autonomous systems 
only after writing this article, so ignore the attempts for an ab initio formalization 
made in that article. 



Specific assumptions

We consider 
• an individual input sequence (un)n∈ Z, un ∈ U;

• a system update equation of the kind 
xn+1 = f(un, xn) =: gn(xn), xn∈ X,

where X is metric and compact, and f is uniformly continuous or U is
compact.

These assumptions hold for input-driven RNNs (and many other real-world
systems).



time n

. . . . . .A0 A1 A2 A3 A4A-1A-2A-3A-4A-5 A5 A6

D0 D1 D2 D3 D4
D-1D-2D-3D-4

D-5 D5 D6

forward 
attractor

pullback 
attractor

Time-dependent attractors

• consider a time-varying set (An)n∈ Z 

that is g-invariant: gn(An) = An+1 

• [simplified] such (An) is a pullback 
attractor if there are neighborhoods 
Dn of An such that 

• [simplified] (An) is a forward attractor if

• if an attractor is both forward and 
pullback, it is a uniform attractor. 



Time-independent attractors

Motivation. In the neural working memory
example, network states seem to be stably
confined in a certain region while operating
within a particular parenthesis nesting level. 
This "attracting set" is time-independent.

state space regions visited by
working memory network when
locked in different memory
modes. 

Approach (highly simplified)
• graph of each gn is a set of pairs {(x, gn(x))}.

• consider the set G of all accumulation points
{(y, y')} where (y, y') ∈ G iff there is a 
subsequence gk of the gn such that
(y, y') = limk→∞ (x, gk(x)). 

• G is a time-independent relation.

• Consider G as graph of a time-independent 
multi-valued function g. 

• Define attractors w.r.t. this g: base attractors. 



Non-autonomous dynamics and attractors, comments
• Research started seriously only in the 1990-ies, in 

pure maths and fragmented application communities
• A diversity of results in specific contexts, e.g.

• input is from a known stochastic process
• symbol dynamics

• General theory in the spirit of topological dynamics is 
very young, not fully ready for end-user adoption

• Not yet available: generally agreed definition of 
attractors

• Attractivity phenomena are wildly different from the 
autonomous case, new intuitions needed

• Example of novel phenomenon: shovel bifurcation
• As control parameter passes critical value, a 

continuous family of "entire solutions" (roughly 
corresponding to fixed points in autonomous 
systems) is created

shovel bifurcation
Carreer hint: You are young, healthy, ambitious, mathy? 
Make non-autonomous DS your research theme! 



Literature 

Current standard textbook:
Kloeden, Peter E., and Martin Rasmussen. Nonautonomous dynamical systems. 
Volume 176 of Mathematical Surveys and Monographs. American Mathematical 
Society, Providence, RI (2011).

Detailed treatment and some new results to relationships between pullback, 
forward, and time-independent attractors:
Manjunath, G., Jaeger, H. (2014): The Dynamics of Random Difference 
Equations is Remodeled by Closed Relations. SIAM Journal on Mathematical 
Analysis 46(1), 2014, 459-483
https://www.ai.rug.nl/minds/uploads/2499_ManjunathJaeger13a.pdf

Shovel bifurcation introduced in
Poetzsche, C.: Nonautonomous bifurcation of bounded solutions II: A Shovel-
Bifurcation pattern. AIMS DCDS-A 31(3), 2011, 941-973 http://wwwu.uni-
klu.ac.at/cpoetzsc/Christian_Potzsche_(Publications)/(C)_files/Manuscript_Poet
zsche.pdf



Appendix: Themes not Covered in this Tutorial



This tutorial could not cover all of the existing wonderful and powerful and
insightful formal methods for describing dynamical systems. Here is a list of
what I find the most painful omissions which maybe in future editions I will add:

• general formalism of stochastic processes as sequence of random variables
• ergodicity
• entropy and time arrow
• coupled oscillator systems
• reasoing about time: temporal logic, Allen's time relations
• multiple timescale dynamics (see our preliminary survey at 

https://arxiv.org/abs/2102.10648)


