0-7803-9048-2/05/$20.00 ©2005 |EEE

Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

Reservoir Riddles: Suggestions for Echo State
Network Research (Extended Abstract)

Herbert Jaeger
International University Bremen
Bremen, Germany
E-mail: h.jaeger@iu-bremen.de

Abstract— Echo state networks (ESNs) offer a simple learning
algorithm for dynamical systems. It works by training linear
readout neurons that combine the signals from a random,
fixed, excitable “dynamical reservoir’ network. Often the method
works beautifully, sometimes it works poorly — and we do not
really understand why. This contribution discusses phenomena
related to poor learning performance and suggests research
directions. The common theme is to understand the reservoir
dynamics in terms of a dynamical representation of the task’s
input signals.

I. RESERVOIR RIDDLES ...

Echo state networks (ESNs), as well as the closely related
“liquid state machines” (LSM) (1), present a recurrent neural
network (RNN) learning architecture which is characterized
by

o a large, randomly connected, recurrent “reservoir’ net-

work that is passively excited by the task’s input signal,
and

« trainable readout neurons that combine the desired output

from the excited reservoir state.

Training an ESN on a supervised learning task boils down to
compute the output weights. From a computational perspective
this is just a linear regression, for which numerous batch
and adaptive online algorithms are available. This simple
method yields models that in many engineering tasks surpass
in accuracy other modelling methods (2). The ESN/LSM
principle — combine a target signal from random, dynamic
input variations — may also be effective in biological brains
(3) .

It is intutively clear that reservoir properties are of great
importance for the learning performance.

A basic, necessary property is the echo state property:
for the ESN learning principle to work, the reservoir must
asymptotically forget its input history. A necessary and a suf-
ficient algebraic condition on the reservoir weight matrix are
known, which ensure the echo state property (5). Furthermore,
a number of heuristic tuning strategies for the three most
important global control parameters (network size, spectral
radius of reservoir weight matrix, scaling of input) have been
described (6). All in all, this body of knowledge renders ESNs
applicable in daily practice.

However, this state of the art is clearly immature. Here is a
choice of unresolved issues:
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o If the reservoir is fixed up to a global weight scaling

(for input weights and internal reservoir weights), differ-
ent tasks require different global scaling parameters for
optimal performance. It is not quite clear however which
properties of a task have what influence on these scalings.
It is sometimes observed that the correlation matrix of
the activation signals of the reservoir has an eigenvalue
spread in the order of 1E12 or even higher. This is
typically accompanied by very large learnt output weights
(order of 1ES8 is easily reached). This is a condition that
should better be avoided because

1) a large EV spread makes it impossible to use the
low-cost LSM online learning algorithm,

2) large output weights imply a lack of generalization
capabilities (the trained network will behave very
different if input characteristics change but slightly
away from the training data),

3) large output weights require high-precision repre-
sentations of reservoir state, rendering such net-
works unsuitable for analog (cheap and fast) VLSI
implementations,

4) in networks featuring output feedback (which im-
plement NARMA filters) large output weights are
indicative of marginal or lacking stability,

5) very large weights which at the same time require
a high precision are biologically implausible.

Adding noise to the reservoir during training very much
reduces the EV spread and improves stability in networks
with output feedback, but it impairs model accuracy. It is
not understood which types of tasks induce a large EV
spread and why.

With standard gradient-descent training methods, or with
evolutionary optimization methods, sometimes for a given
task a very small (less than 10 or even less than 5
units), yet quite precise RNN model is found. However,
reasonably accurate ESNs for these tasks need 100 units
or more. It is not understood how task properties relate
to the required ESN size.

On some tasks (communicated to the author by Danil
Prokhorov) of the “learning with fixed weights” (aka
“metalearning”) type, the ESN approach yields results
that are quite inferior to models learnt by expertly ap-
plying the EKF learning method (7). Apparently the
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randomly created ESN reservoirs are “almost surely un-
suited” for these particular tasks. Why?

All of these difficulties point in the same direction: the
connection between task specifics (dynamical properties of the
input and output signal) and properties of the induced reservoir
dynamics is not well understood.

II. ... AND RESERVOIR RESEARCH.

Here is a list of research questions that in the author’s view
mark the route to further progress:

« How can one characterize that a given reservoir is suited
for a particular task? Currently, the only (rather tau-
tological) answer is: a reservoir is suited if it yields
accurate models. A necessary but not sufficient condi-
tion for “suitedness” is a low EV spread. If we were
dealing with linear systems, an obvious candidate for a
“good” reservoir would be one where the unit signals
are decorrelated. This would mean, in the perspective of
linear systems, that they represent the main orthogonal
components of the driving (= input) signal. However,
when it comes to nonlinear systems, these metaphors
quickly lose their value.

e« How can one adapt the reservoir in an unsupervised
fashion to the task’s type of data? What would be the
target quantities that one would wish to optimize by such
an unsupervised training? Candidates that come to mind
are the EV spread (minimize it — but how?), or a pairwise
decorrelation of reservoir signals (the author tried to
achieve this with anti-Hebbian learning and failed...), or
entropy of reservoir state distribution (maximize it)... all
of which aim at making the individual reservoir units
as mutually different as possible in some information-
theoretic sense.

o What is the role of topological organization of reservoirs?
So far, the author mostly worked with randomly and
sparsely connected reservoirs that had no “retinal” or
otherwise locally homogeneous topology. In contrast,
biological (vertebrate) brains clearly exploit spatial segre-
gation of dynamics to realize information-rich dynamical
input representations.

o The problem of very large output weights can be very
much alleviated if for a given single output channel y not
only a single set of output weights is learnt, but instead
several of them, plus a switching mechanism (in the spirit
of mixtures of experts) that chooses and activates the most
appropriate set of output weights according to the current
dynamic context. With this method, dramatic jumps in
model quality (or equivalently, dramatic reduction of
reservoir size) have been achieved in some cases (to be
presented at the IJCNN talk).

o If the stake is to obtain small-sized ESNs, employ evolu-
tionary optimization algorithms to pre-adapt the reservoir
to tasks of a desired class (first investigations of this
kind in (8)). Theoretical problem: what characterizes a
canonical class of problems such that problems from that
class can be learnt with a single ESN?

o Looking at biological brains, shouldn’t we expect that
the powers of quickly adaptive information processing
arise from numerous dynamic feature extractors (care-
fully optimized by evolution) that transform the sensor
input (and importantly, its history) into a wealth of
maximally independent signals? The work about slow
feature analysis (9) is very inspiring in this respect.

All in all, my personal view at the moment is that ESN/LSM
reveal a nice “readout and learn” trick, but the real wonders
of learning and adpatation lie in the riddles of features and
representations. The true value of ESN/LSMs may lie not in
their raw learning performance that we currently experience —
naively amazed — but rather in that they give us novel means to
characterize and evaluate the quality of internal representations
of dynamic sensor input. Namely, a representation is “good”
if it enables fast, robust learning of desired output signals.
The contribution of ESNs to this eternal question may be
that ESNs disentangle the representation (in the reservoir)
from learning (of the output weights), which in previous RNN
learning schemes were tied together.
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