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Abstract

Hidden Markov Models (HMMs) today are the method of choice for blackbox
modelling of symbolic, stochastic time series with memory. HMMs are usually
trained using the expectation-maximization (EM) algorithm. This learning al-
gorithm is note entirely satisfactory due to slow convergence and the presence
of many globally suboptimal solutions. Observable operator models (OOMs)
present an alternative. At the surface OOMs appear almost like HMMs: both
can be expressed in structurally identical matrix formalisms. However, the ma-
trices and state vectors of OOMs may contain negative components, whereas
the corresponding components in the world of HMMs are non-negative prob-
abilities. This freedom in sign gives OOMs algebraic properties that radically
differ from HMMs, and leads to novel learning algorithms that are fast and
yield asymptotically correct model estimates. Unfortunately, the basic versions
of these algorithms are statistically inefficient, which has so far precluded a
widespread use of OOMs. This chapter gives, first, a tutorial introduction to
OOMs, and second, introduces a novel approach to OOM estimation called ef-
ficiency sharpening (ES). The ES method is iterative. In each iteration, the
model estimated in the previous round is used to construct an estimator with
a better statistical efficiency than the previous one. The computational load
per iteration is comparable to one EM iteration, but only 2 to 5 iterations are
typically needed. The chapter gives an analytical derivation of the ES principle
and describes two learing algorithms that build on this principle, a simple “poor
man’s” version and a more complicated but superior version which is based on
a suffix-tree representation of the training string. The quality of the latter algo-
rithm is demonstrated on a task of learning a model of a long belletristic text,
where OOM models markedly outperform HMM models in quality, requiring
only a fraction of learning time.



1 Introduction

Observable operator models (OOMs) are mathematical models of stochastic
processes. In their basic version, they describe stationary, finite-valued, discrete-
time processes — in other words, symbol sequences. We will restrict ourselves
to this basic type of processes in this chapter.

A number of models for stochastic symbol sequences are widely used. Listed
in order of increasing expressiveness, the most common are elementary Markov
chains, higher-order Markov chains and hidden Markov models (HMMs) [38;
2]. Well-understood learning algorithms to estimate such models from data
exist. Specifically, HMMs are usually trained by versions of the expectation-
minimization (EM) algorithm [6]. HMMs currently mark the practical limit of
analytical and algorithmic tractability, which has earned them a leading role in
application areas such as speech recognition [32], biosequence analysis [11] and
control engineering [13].

In this chapter we wish to establish OOMs as a viable alternative to HMMs
— albeit as yet only for the case of modeling stationary symbol processes. We
see three main advantages of OOMs over HMMs:

• The mathematical theory of OOMs is expressed purely in terms of linear
algebra and admits a rigorous, transparent semantic interpretation.

• OOMs properly generalize HMMs, that is, the class of processes that have
finite-dimensional OOM properly includes the processes characterized by
finite-dimensional HMMs.

• New learning algorithms for OOMs, derived from a novel principle which
we would like to call efficiency sharpening (ES), yields model estimates
in a fraction of the computation time that EM-based algorithms require
for HMM estimation. Furthermore, on most datasets that have been in-
vestigated so far, the OOM models obtained via ES are markedly more
accurate than HMM models.

However, at the current early state of research there remain also painful short-
comings of OOMs. Firstly, the OOMs learnt from data are prone to predict
negative “probabilities” for some (rare) sequences, instead of small non-negative
values. Currently only heuristic methods to master this problem are available.
Secondly, our OOM learning algorithms tend to become instable for large model
dimensions. Again, heuristic coping strategies exist, which are detailed out in
this chapter.

This chapter has two main parts. The first part (Sections 2 through 9)
contains a tutorial introduction to the basic theory of OOMs, including the basic
version of the learning algorithm. This material has been published before [30]
but has been almost completely rewritten with a more transparent notation and
a new didactic approach. We hope that this tutorial part becomes the standard
introductory text on OOMs. The second part (Sections 10 through 15), as an
original contribution, establishes the ES principle and two learning algorithms
are derived from it. Two case studies round off the presentation.

1



2 The Basic Ideas Behind OOMs

In this section we first describe the essence of OOMs in informal terms and then
condense these intuitions into a mathematical formalism.

Envision a soccer-playing robot1 engaged in a soccer game. In order to
play well, the robot should make predictions about possible consequences of its
actions. These consequences are highly uncertain, so in one way or the other
they must be internally represented to the robot as a distribution of future
trajectories (Figure 1a).

... n nn+1 + 2    ...

observation
a

n

observation
a

n+1

(a)

(b) (c)

F

ta

Figure 1: (a) A robot’s future depicted as a “spaghetti bundle” of expected
possible future trajectories. (b) The robot’s expected futures change due to
incoming observations an of information. (c) An operator τa associated with an
observation a yields an update operation on the vector space of future distribu-
tions.

Soccer is a dynamic game, and the robot has to update its expectations about
the future in an update cycle from time n to n + 1, assuming a unit cycle time.
OOMs are a mathematical model of this kind of update operation. Clearly the
update is steered by the information that the robot collects during an update
interval. This comprises incoming sensory information, communications from
other robots, but also the robot’s own issued motor commands or even results
from some planning algorithms that run on it — in short, everything that is

1The first author originally devised OOMs while thinking about action selection algorithms

for mobile robots.
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of some informational value for the expected future. We comprise all of these
bits of information under the term of an observation. At the root of OOMs
lies the assumption that nothing but the observation an between n and n + 1
controls the update of future expectations, and that such update operations can
be identified with observations (Figure 1b). Thus, in OOMs we have for every
possible observation one operator that can be used to update expected futures.
This identification of observations with update operators has given OOMs their
name, observable operator models.

Mathematically, a future of a stochastic process is a probability distribu-
tion on the set of potential future trajectories after the current time n. Such
distributions can be specified by a real-valued function f in various ways. For
instance, f may be a probability density funciton, or one may use a function f
which assigns probabilities to finite-length future sequences, that is, a function
on words over the observation alphabet. At this point we do not care about
the particular format of f , we only assume that some real-valued function can
describe a future’s distribution (for general abstract treatment see [29]).

The real-valued functions f over some set can be added and multiplied with
scalars and hence span a vector space F . Identifying observations with update
operators on futures, and identifying futures with functions f which are vectors
in F , we find that observations can be seen as operators on F . In the OOM
perspective, each possible observation a is identified with an operator ta on F
(Figure 1c).

The key to OOMs is the observation that these observable operators are lin-
ear. We now give a formal treatment of the case where the stochastic process is
of a particular simple kind, namely, discrete-time, finite-valued, and stationary.
Let (Xn)n∈N, or for short, (Xn) be a stationary, discrete-time stochastic process
with values in a finite alphabet O = {a1, . . . , aα} of possible observations.

We shall use the following shorthand. For P (Xn = a0, . . . ,Xn+r = ar) we
write P (a0 . . . ar) or even shorter P (ā). For conditional probabilities P (Xn =
b0, . . . ,Xn+r = br |Xn−s = a0, . . . ,Xn−1 = a−1) we write P (b0 . . . br |a0 . . . as−1)
or P (b̄ | ā). Unconditional probabilities P (ā) can be seen as conditional proba-
bilities conditioned by the empty sequence ε, that is P (b̄) = P (b̄ |ε).

The distribution of (Xn) is uniquely characterized by the probabilities of
finite substrings, i.e. by all probabilities of the kind P (b̄), where b̄ ∈ O∗ (O∗

denotes the set of all finite strings over O including the empty string).
For every ā ∈ O∗, we define a real-valued function

fā : O∗ → R, (1)

b̄ 7→

{
P (b̄ | ā), if P (ā) 6= 0,
0, if P (ā) = 0,

with the understanding that fā(ε) = 1 if P (ā) > 0, else it is 0.
A function fā describes the future distribution of the process after an initial

realization ā. In our robot illustration in Figure 1, ā would correspond to the
past that the robot has in its short-term memory (symbolized by the blue trajec-
tory), and fā would correspond to the “spaghetti bundle” of future trajectores,
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as anticipated at that moment. We call these fā the prediction functions of the
process.

Let F be the functional vector space spanned by the prediction functions.
Thus F can be seen as the (linear closure of the) space of future distributions
of the process (Xt).

We now define the observable operators. In order to specify a linear operator
on a vector space, it suffices to specify the values the operator takes on a basis of
the vector space. Choose a set (fāi

)i∈I of prediction functions that is a basis of
F . Define, for every a ∈ O, a linear observable operator ta : F → F by putting

ta(fāi
) = P (a | ā)fāia (2)

for all i ∈ I (āa denotes the concatenation of the sequence ā with a). It is easy
to verify [30] that (2) carries over from basis elements fāi

to all ā ∈ O∗:

Proposition 1 For all ā ∈ O∗, a ∈ O, the linear operator ta satisfies the
condition

ta(fā) = P (a | ā)fāa. (3)

Furthermore, the definition of observable operators does not depend on the choice
of basis of F .

Intuitively, the observable operator ta describes the change of knowledge about
a process’ future due to an incoming observation of a – which is just the idea of
our update operators. A new ingredient that we find here is that the updated
future distribution fāa becomes weighted by P (a | ā). This circumstance can
be used to express the probability of a sequence P (a0 . . . ar) in terms of the
operators ta0

, . . . , tar
. Let σ : F → R be the linear function that returns 1 on

all basis vectors fāi
. Then the following proposition holds (proof in [30]):

Proposition 2 For all a0 . . . ar ∈ O∗,

P (a0 . . . ar) = σ tar
· · · ta0

fε. (4)

Note that Eqns. (3) and (4) are valid for any choice of basis vectors fāi
. Equa-

tion (4) is the fundamental equation of OOM theory. It reveals how the distribu-
tion of any stationary symbol process can be expressed purely by means of linear
algebra. Furthermore, the observable operators and fε are uniquely determined
by the the distribution of (Xt). This leads to the following definition:

Definition 1 Let (Xn)n∈N be a stationary stochastic process with values in a
finite set O. The structure (F, (ta)a∈O, fε) is called the observable operator
model of the process. The vectors fā are called states of the process; the state
fε is called the initial state. The vector space dimension of F is called the
dimension of the process.

We will soon introduce matrix representations of OOMs. If we wish to distin-
guish the abstract OOMs introduced above from matrix representations, we will
speak of “functional” vs. “matrix” OOMs, respectively.
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We have only treated the discrete time, discrete value, stationary case here.
However, OOMs can be defined in a similar way also for non-stationary, continuous-
time, arbitrary-valued processes [29]. It turns out that in those cases the re-
sulting observable operators are linear too. In the sense of updating prediction
functions, the change of knowledge about a process due to incoming observations
is a linear phenomenon.

3 From HMMs to OOMs: Matrix Representa-
tions of OOMs

If one wishes to carry out concrete computations, one has to work with finite-
dimensional matrix representations of OOMs. Instead of deriving them from
the abstract Definition 1, we will introduce matrix representations of OOMs in
a very different way, by showing how they can be obtained as a generalization
of HMMs.

A basic HMM specifies the distribution of a discrete-time, discrete-value
stochastic process (Yn)n∈N, where the random variables Yn have outcomes in an
alphabet O = {a1, . . . , aα}. To specify (Yn)n∈N, first a Markov chain (Xn)n∈N is
considered that produces sequences of hidden states from a state set {s1, . . . , sm}.
Second, when the Markov chain is in state sj at time n, it “emits” an observable
outcome ai with a time-invariant probability P (Yn = ai |Xn = sj).

We now represent a HMM in a matrix formalism that is a bit different from
the one customarily found in the literature. The Markov chain state transition
probabilities are collected in an m × m stochastic matrix M which at position
(i, j) contains the transition probability from state si to sj . For every a ∈ O,
we collect the emission probabilities P (Y = a | X = sj) in the diagonal of an
m × m matrix Oa that is otherwise zero.

In order to fully characterize a HMM, one must supply an initial distribution
w0 = (P (X0 = s1), . . . , P (X0 = sm))⊤ (superscript ⊤ denotes transpose of
vectors and matrices). The process described by the HMM is stationary if w0

is an invariant distribution of the Markov chain [10], namely, if it satisfies

M⊤w0 = w0. (5)

We consider only stationary processes here. The matrices M , Oa and w0 can
be used to compute the probability of finite observation sequences. Let 1 =
(1, . . . , 1) denote the m-dimensional row vector of units, and let Ta := M⊤Oa.
Then the probability to observe the sequence a0 . . . ar among all possible se-
quences of length r + 1 is obtained by

P (a0 . . . ar) = 1Tar
· · ·Ta0

w0. (6)

Equation (6) is a matrix notation of the well-known forward algorithm for deter-
mining probabilities of observation sequences in HMMs. Proofs may be found
in [24] and [23].
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Matrix M can be recovered from the operators Ta by observing that

M⊤ = M⊤ · id = M⊤(Oa1 + · · · + Oaα) = Ta1 + · · · + Taα , (7)

where id denotes the identity matrix. Equation (6) shows that the distribution
of the process (Yt) is specified by the operators Ta and the vector w0. Thus,
the matrices Ta and w0 contain the same information as the original HMM
specification in terms of M,Oa and w0. Namely, one can rewrite a HMM as a
structure (Rm, (Ta)a∈O, w0), where R

m is the domain of the operators Ta.
From here one arrives at the definition of a finite-dimensional OOM in matrix

representation by (i) relaxing the requirement that M⊤ be the transpose of a
stochastic matrix, to the weaker requirement that the columns of MT each sum
to 1, and by (ii) requiring from w0 merely that it has a component sum of 1.
That is, negative entries are now allowed in matrices and vectors, which are
forbidden in the stochastic matrices and probability vectors of HMMs. Using
the symbol τ in OOMs in places where T appears in HMMs, and introducing
µ =

∑
a∈O τa in analogy to (7) we get:

Definition 2 An m-dimensional (matrix) OOM is a triple A = (Rm, (τa)a∈O, w0),
where w0 ∈ R

m and τa : R
m → R

m are linear maps represented by matrices,
satisfying three conditions:

1. 1w0 = 1,

2. µ =
∑

a∈O τa has column sums equal to 1,

3. for all sequences a0 . . . ar it holds that 1τar
· · · τa0

w0 ≥ 0.

Conditions 1 and 2 reflect the relaxations (i) and (ii) mentioned previously,
while condition 3 ensures that one obtains non-negative values when the OOM
is used to calculate probabilities. While the non-negativity of matrix entries
in HMMs guarantees non-negativity of values obtained from the right-hand-
side (rhs) of Eq. (6), non-negativity must be expressedly assured for OOMs.
Unfortunately, for given operators (τa)a∈O there exists no known way to decide
whether condition 3 holds. This is our first encounter with the central unresolved
issue in OOM theory, and we will soon hear more about (and suffer from) it.

Since concatenations of operators like τar
· · · τa0

will be much used in the
sequel, we introduce a shorthand notation: for τar

· · · τa0
we also write τa0···ar

(be aware of the reversal of indices) or even τā.
A matrix-based OOM specifies a stochastic process as in (4):

Proposition 3 Let A = (Rm, (τa)a∈O, w0) be an OOM according to the previ-
ous definition. Let Ω = O∞ be the set of all right-infinite sequences over O, and
A be the σ-algebra generated by all finite-length initial sequences on Ω. Then, if
one computes the probabilities of finite-length sequences by

P0(ā) = 1τāw0, (8)
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where the numerical function P0 can be uniquely extended to a probability mea-
sure P on (Ω,A), giving rise to a stochastic process (Ω,A, P, (Xn)n∈N), where
Xn(a1a2 . . .) = an. If w0 is an invariant vector of µ, i.e., if µw0 = w0, the
process is stationary.

A proof can be found in [30]. Since we introduce matrix OOMs here by general-
izing away from HMMs, it is clear that every process that can be characterized
by a finite-dimensional HMM can also be described by a matrix OOM of di-
mension at most the number of hidden HMM states.

Conversely, there exist processes that can be described by a matrix OOM,
but that cannot be characterized by a finite-dimensional HMM. One way to
construct examples of such processes is to design one of the operators τa to
be a rotation of R

m by a non-rational angle φ. Such a rotation gives rise to
a “probability oscillation”, that is, the sequence P (a | an)n≥0 converges to an
oscillation with angular velocity φ (radian per unit time step). Intuitively, the
reason why such a process cannot be modelled by an HMM is that a matrix
describing a rotation needs to contain some negative entries. If a HMM for such
a process would exist, reinterpreting it as an OOM according to the construc-
tion Ta = M⊤Oa would yield a purely non-negative matrix for the rotating
operator, which is impossible. A concrete example of such a process (dubbed
the “probability clock”) and a proof that it is not a hidden Markov process was
given in [30].

In Section 2 we introduced abstract OOMs in a top down fashion, by starting
from a stochastic process and transforming it into its OOM. In this section we
introduced matrix OOMs in a bottom-up fashion by abstracting away from
HMMs. These two are related as follows (for proofs, see [30; 25]):

• A matrix OOM of matrix dimension m specifies a stochastic process of
process dimension m′ ≤ m.

• A process of finite dimension m has matrix OOMs of matrix dimension
m.

• A process of finite dimension m has no matrix OOMs of smaller matrix
dimension.

When we refer to OOMs in the remainder of this chapter we mean matrix OOMs.

4 OOMs as Generators and Predictors

In this section we describe how an OOM can be used to generate a random
sequence, and to compute the probabilities of possible continuations of a given
initial sequence.

Concretely, assume that an OOM A = (Rm, (τa)a∈O, w0) describes a process
(Xn)n≥0, where O = {a1, . . . , aα}. Then, the task is to use A to produce at
times n = 0, 1, 2, . . . observations a0, a1, a2, . . ., such that (i) at time n = 0,
the probability of producing a is equal to P (X0 = a), and (ii) at every time
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step n > 0, the probability of producing a (after a0, . . . , an−1 have already been
produced) is equal to P (Xn = a |X0 = a0, . . . ,Xn−1 = an−1). We address (i)
and (ii) in turn.

(i). For generating the first symbol we need the probability vector p0 =
(P (X0 = a1) · · ·P (X0 = aα))⊤. This could be done by calculating P (X0 =
a) = 1τaw0 for all a ∈ O. A faster way is to precalculate the row vectors 1τa

for all a, and assemble them in a matrix

Σ =




1τa1

...
1τaα


 , (9)

and directly obtain
p0 = Σw0. (10)

This probability vector is then used to randomly generate the symbol a0 with
the correct distribution.

(ii). In order to obtain P (Xn = a |X0 = a0, . . . ,Xn−1 = an−1) we make use
of Eq. (8):

P (Xn = a |X0 = a0, . . . ,Xn−1 = an−1)

= 1τaτan−1
· · · τa0

w0 / 1τan−1
· · · τa0

w0

= 1τa(
τan−1

· · · τa0
w0

1τan−1
· · · τa0

w0
). (11)

Introducing the notation

wa0...an−1
=

τan−1
· · · τa0

w0

1τan−1
· · · τa0

w0
, (12)

Equation (11) can be more concisely written as P (Xn = a |X0 = a0, . . . ,Xn−1 =
an−1) = 1τawa0...an−1

. A vector wā of the kind (12) that arises after a sequence
ā has been observed is called a state vector of an OOM. Note that state vectors
have unit component sum. Again we can use Σ to obtain all of the probabilities
P (ai | ā) in a single operation:

pn = (P (a1 | ā) · · ·P (aα | ā))T = Σwā. (13)

Observing that the next state vector can be obtained from the previous one by

wāa = τawā / 1τawā, (14)

the entire generation procedure can be neatly executed as follows:

1. State vector initialization: put w = w0.

2. Assume that at time n a state vector wn has been computed, then deter-
mine the probability vector p of the (n+1)-st symbol as Σ wn, and choose
an according to that vector.
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3. Update the state vector by wn+1 = τan
wn / 1τan

wn and resume at step
2.

Now we consider the task of predicting the probability P (b̄ | ā) of a continuation
b̄ of an initial sequence ā that has already been observed. It is easy to see that
an iterated application of eq. (11) yields

P (Xn+1 = bn+1, . . . ,Xn+r = bn+r |X0 = a0, . . . ,Xn−1 = an−1)

= 1τbn+r
· · · τbn+1

wa0···an
, (15)

which in our shorthand notation becomes P (b̄ | ā) = 1τb̄ wā. If one is interested
in repeated predictions of the probability of a particular continuation b̄ (for
instance, an English word), then it pays off to precalculate the row vector σb̄ =
1τb̄ and obtain P (b̄ | ā) = σb̄ wā by a single inner product computation.

5 Understanding Matrix OOMs by Mapping Them
to Functional OOMs

OOM states are conceptually quite different from HMM states. This conceptual
issue is complicated by the circumstance that the term “state” is used in two
different ways for HMMs. First, it may denote the finite set of physical states
that the target system is assumed to take. Second, it is used for the current
probability distribution over these physical states that can be inferred from a
previous observation sequence. In both cases, the notion is connected to the as-
sumed physical states of the target system. By contrast, OOM states represent
the expectation about the system’s future and outwardly observable development
given an observed past. In no way do OOM states refer to any assumed physical
state structure of the target system — they are purely epistemic, one might say.
Incidentally, this agrees with the perspective of modern physics and abstract
systems theory: “[...] a state of a system at any given time is the information
needed to determine the behaviour of the system from that time on” [42]. This
perspective was constitutional for the construction of functional OOMs in Sec-
tion 2. We will now add further substance to this view by showing how matrix
OOMs map to functional OOMs, and thereby how the finite state vectors of
matrix OOMs represent the process’ future. As by-products our investigation
will yield a construction for minimizing the dimension of a matrix OOM, and
an algebraic characterization of matrix OOM equivalence.

Definition 3 Let A = (Rl, (τa)a∈O, w0) be a matrix OOM of the process (Xn)n≥0.
Let F = (F, (ta)a∈O, fε) be the functional OOM of the same process. Let W
be the linear subspace of R

l spanned by the state vectors {wā | ā ∈ O∗}. Let
{wā1

, . . . , wād
} be a basis of W . Define a linear mapping π : R

l → F through
π(wāi

) = fāi
(i = 1, . . . , d). This mapping is called the canonical projection of

A.

This definition is independent of the choice of basis, and the canonical projection
has the following properties:
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Proposition 4 1. ∀ ā ∈ O∗ π(wā) = fā.

2. π is surjective.

3. ∀ w ∈ W σπ(w) = 1w.

4. ∀ ā ∈ O∗, w ∈ W π(τāw) = tā π(w).

The proof of 1. – 3. is given in [25], the proof of 4. is in the Appendix A.
Note that 3. implies that the matrix dimension l of A is at least as great as the
process dimension m.

Our goal is now to distil from the l-dimensional state vectors of the matrix
OOM those parts which are relevant for representing the process’ future. In-
tuitively, if the process dimension is m, only projections of the matrix OOM
states on some m-dimensional subspace of R

l contain relevant information.
First observe that a basis {wā1

, . . . , wād
} of the linear subspace W can

be effectively constructed from A, as follows. Construct a sequence of sets
(Sj)j=0,1,...,r of states as follows:

1. Let S0 = {w0}.

2. Obtain Sj+1 from Sj by first adding to Sj all states from the set {τaw / 1τaw |
a ∈ O,w ∈ Sj}, and then deleting from the obtained set as many states
as necessary to get a maximal set of linearly independent states.

3. When the size of Sj+1 is equal to the size of Sj , stop and put r = j; else
resume at 2.

It is clear that the size of the sets (Sj)j=0,1,...,r properly grows throughout the
sequence, and that the vectors contained in Sr yield the desired basis for W .

To determine the “prediction relevant” portions in the states w, we investi-
gate the kernel, denoted as ker π, of the canonical projection.

Proposition 5

∀x ∈ W x ∈ ker π ⇔ ∀ā ∈ O∗ 1τāx = 0. (16)

The proof is in the Appendix B. As a special case we get 1x = 0 for all x ∈ ker π.
Using this insight, a basis for ker π can be constructed from A as follows. Again
build a sequence (Sj)j=0,1,...,s of sets of (row) vectors:

1. Let S0 = {1}.

2. Obtain Sj+1 from Sj by first adding to Sj all vectors from the set {uτa |
a ∈ O, u ∈ Sj}, and then delete from the obtained set as many vectors as
necessary to get a maximal set of linearly independent vectors.

3. When the size of Sj+1 is equal to the size of Sj , stop and put s = j; else
resume at Step 2.
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It follows from Proposition 5 that

ker π = {x ∈ W |∀u ∈ Ss x ⊥ u⊤}, (17)

from which some orthonormal basis for ker π is readily constructed. Since π
is surjective we have dim ker π = d − m. Let {x1, . . . , xd−m} be such a basis.
Consider the orthogonal complement of the kernel:

V = {v ∈ W |v ⊥ ker π}. (18)

where V is a linear subspace of W and has a dimensionality of m. It is an easy
exercise to obtain a concrete representation of V through creating an orthonor-
mal basis for V .

For w ∈ W , let w̃ denote the orthogonal projection of w on V . From linearity
of orthogonal projections and Proposition 5 we obtain that

1w̃ = 1w (19)

for all w ∈ W . Let π0 be the restriction of π on V . In light of (19) and
Proposition 4(3), π0 preserves our probability measuring functionals 1 (in A)
and σ (in F) in the sense that 1v = σπ0(v) for all v ∈ V .

Furthermore, define restrictions τ̃a of the observable operators τa by

τ̃av = τ̃av (20)

for all v ∈ V . It is easy to see that τ̃a is linear, and a matrix representation for
τ̃a is readily obtained from the bases of V and ker π. The projection π0 maps
τ̃a on ta by virtue of

∀ v ∈ V π0(τ̃av) = π0(τ̃av) = π(τav) = taπ(v), (21)

where the last equality follows from Proposition 4(4). Assembling our findings
we see that

π0 : (V, (τ̃a)a∈O, w̃0) ∼= (F, (ta)a∈O, fε) (22)

induces an isomorphism of vector spaces and operators which maps 1 on σ.
This is just another way of saying that (V, (τ̃a)a∈O, w̃0) is an OOM for our
process. Note that V is represented here as a linear subspace of R

l and the
matrices τ̃a have a size of l × l. A little more elementary linear algebra would
finally transform (V, (τ̃a)a∈O, w̃0) into an m-dimensional (and thus minimal-
dimensional) matrix OOM.

We are now prepared to provide a simple answer to the question when two
matrix OOMs A and A′ are equivalent in the sense of yielding identical prob-
abilities for finite sequences. To decide the equivalence between A and A′, we
first transform them into minimal-dimensional OOMs of dimension m (if their
minimal dimensions turn out not to be identical, they are not equivalent), we
then obtain the following proposition:
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Proposition 6 Two minimal-dimensional OOMs A = (Rm, (τa)a∈O, w0) and
A′ = (Rm, (τ ′

a)a∈O, w′
0) are equivalent if and only if there exists a bijective linear

map ̺ : R
m → R

m, satisfying the following conditions:

1. ̺(w0) = w′
0,

2. τ ′
a = ̺τa̺−1 for all a ∈ O,

3. 1w = 1̺w for all w ∈ R
m.

Sketch Proof. (for detailed proof see [25]). The “if” direction is a mechanical
verification. The interesting direction is to show that if A and A′ are equivalent
then a map ̺ exists. First observe that for minimal-dimensional OOMs, the
canonical projection π coincides with π0 and is an isomorphism of the matrix
OOM with the functional OOM. Let π, π′ be the canonical projections A and
A′, respectively, then ̺ = π′−1 π satisfies the conditions of the proposition.

A matrix ̺ satisfies condition 3 of Proposition 6 from the proposition if and only
if each column of ̺ sums to unity. Thus, if we have one minimal-dimensional
OOM A, we get all the other equivalent ones by applying any transformation
matrix ̺ with unit column sum.

6 Characterizing OOMs via Convex Cones

The problematic non-negativity condition 3 from Definition 2 can be equiva-
lently stated in terms of convex cones. This sheds much light on the relationship
between OOMs and HMMs, and also allows one to appreciate the difficulty of
the issue. I first introduce some cone-theoretic concepts, following the notation
of a standard textbook [3].

With a set S ⊆ R
n we associate the set SG, the set generated by S, which

consists of all finite nonnegative linear combinations of elements of S. A set
K ⊆ R

n is defined to be a convex cone if K = KG. A convex cone KG is called
n-polyhedral if K has n elements. A cone K is pointed if for every nonzero
w ∈ K, the vector −w is not in K.

Using these concepts, the following proposition gives a condition which is
equivalent to condition 3 from Definition 2, and clarifies the relationship between
OOMs and HMMs.

Proposition 7 (i) Let A = (Rm, (τa)a∈O, w0) be a structure satisfying the first
two conditions from Definition 2, i.e. 1w0 = 1 and µ =

∑
a∈O τa has unit

column sums. Then A is an OOM if and only if there exists a pointed convex
cone K ⊂ R

m satisfying the following conditions:

1. 1w ≥ 0 for all w ∈ K,

2. w0 ∈ K,

3. ∀a ∈ O : τaK ⊆ K.

12



(ii) Assume that A is an OOM, then there exists a HMM equivalent to A if and
only if a pointed convex cone K according to (i) exists which is n-polyhedral for
some n, where n can be selected such that it is not greater than the minimal
state number for HMMs equivalent to A.

Part (i) can be proven by reformulating a similar claim [30] that goes back to
[21] and has been renewed in [23]2. Part (ii) was shown in [23]. These authors
considered a class of stochastic processes called “linearly dependent processes”
that is identical to what we introduced as processes with finite dimension m;
they did not use observable operators to characterize the processes.

Part (ii) has the following interesting implications:

• Every two-dimensional OOM is equivalent to some HMM, because all
cones in R

2 are 2-polyhedral. A nice exercise left to the reader is to
construct a 2-dimensional OOM whose smallest equivalent HMM has 4
states (hint: derive a 2-dimensional OOM from a HMM defined not by
emitting observations from states but from state transitions).

• If an OOM contains an operator τa that rotates R
m by a non-rational

multiple of π, then this OOM has no equivalent HMM because τa leaves
no polyhedral cone invariant.

• Three-dimensional OOMs can be constructed whose equivalent minimal-
size HMMs have at least p states (for any prime p ≥ 3), by equipping the
OOM with an operator that rotates R

3 by 2π/p. This is so because any
polyhedral cone left invariant by such an operator is at least p-polyhedral.

Proposition 7 is useful to design interesting OOMs, starting with a cone K
and constructing observable operators satisfying τaK ⊆ K. Unfortunately it
provides no means to decide, for a given structure A, whether A is a valid
OOM, since the proposition is non-constructive w.r.t. K.

If one would have effective algebraic methods to decide, for a set of k linear
operators on R

m, whether they leave a common cone invariant, then one could
decide whether a candidate structure (Rm, (τa)a∈O, w0) is a valid OOM. How-
ever, this is a difficult and unsolved problem of linear algebra. For a long time,
only the case of a single operator (k = 1) was understood [3]. Recently however
there was substantial progress in this matter. In [12] interesting subcases of k
= 2 were solved, namely, the subcases of of m = 2 and of polyhedral cones.

7 Interpretable OOMs

OOM states represent future distributions, but the previous section might have
left the impression that this representation is somewhat abstract. We will now
see that within the equivalence class of a given minimal-dimensional OOM,

2Heller and Ito used a different definition for HMMs, which yields a different version of the

minimality statement in part (ii)
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there are some members whose states can be interpreted immediately as future
distributions – interpretable OOMs. Interpretable OOMs are pivotal for OOM
learning algorithms.

Because this concept is so important for OOM theory we will first illustrate
it with an informal example. Assume we have a 26-dimensional OOM A over
the English alphabet O = {a, . . . , z} — the OOM dimension and the alphabet
size accidentally coincide. Assume that A models the distribution of letter
sequences in English texts. Utilizing the generation procedure from Section 4,
A can be run to generate strings of pseudo-English. Remember that at time n,
the state wn is used to compute a 26-dimensional probability vector pn+1 of the
nth occurring letter via pn = Σwn, where Σ’s rows are made from the column
sums of the 26 observable operators (Eqn. (13)).

Wouldn’t it be convenient if we had pn+1 = wn and Σ = id (where id
denotes the identity matrix)? Then we could immediately take the next letter
probabilities from the current state vector, spare us the computation of Σwn,
and directly “see” the development of very interesting probabilities in the state
evolution.

We will now see that such an interpretable OOM can be constructed from
A. The definition of interpretable OOMs is more general than this example
suggests in that it admits a more comprehensive notion of the future events
whose probabilities become the state vector’s entries. In our example, these
events that we will call characteristic events — were just the singletons a, . . . , z.
Here is the general definition of such events:

Definition 4 Let (Xn)n≥0 be an m-dimensional stationary process with ob-
servables from O. Let, for some sufficiently large l, Ol = B1 ∪ · · · ∪ Bm be a
partition of the set of strings of length l into m disjoint, non-empty sets Bi.
Then this partition is called a set of characteristic events Bi (i = 1, . . . ,m),
if some sequences ā1, . . . , ām exist such that the matrix (P (Bi | āj))1≤i,j≤m is
nonsingular.

Here by P (Bi | āj) we mean
∑

b̄∈Bi
P (b̄ | āj). We introduce some further no-

tational commodities. For a state vector w of an OOM A of (Xn)n≥0 and a
sequence b̄ let P (b̄ |w) = 1τb̄w denote the probability that the OOM will pro-
duce b̄ when started in state w. Furthermore, let P (Bi |w) =

∑
b̄∈Bi

P (b̄ |w).
Now we are equipped to define interpretable OOMs:

Definition 5 Let B1, . . . , Bm be characteristic events for an m-dimensional
process with observables O, and let A = (Rm, (τa)a∈O, w0) be an OOM for that
process. Then A is interpretable w.r.t. B1, . . . , Bm if the states w of A have the
property

w = (P (B1 |w) · · ·P (Bm |w))⊤. (23)

Here is a method to transform a given OOM A = (Rm, (τa)a∈O, w0) for (Xn)n≥0

into an OOM that is interpretable w.r.t. characteristic events B1, . . . , Bm. De-
fine τBi

:=
∑

b̄∈Bi
τb̄. Define a mapping ̺ : R

m → R
m by

̺(x) := (1τB1
x · · ·1τBm

x)⊤. (24)
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The mapping ̺ is obviously linear. It is also bijective, since according to the
definition of characteristic events, sequences āj exist such that the matrix (P (Bi |
āj)) = (1τBi

xj), where xj = τāj
w0/1τāj

w0, is nonsingular. Furthermore, ̺
preserves component sums of vectors, since for j = 1, . . . ,m it holds that 1xj =
1 = 1(P (B1 | xj) · · ·P (Bm | xj))

⊤ = 1(1τB1
xj · · ·1τBm

xj)
⊤ = 1̺(xj) (a linear

map preserves component sums if it preserves component sums of basis vectors).
Hence ̺ satisfies the conditions of Proposition 6. We therefore obtain an OOM
equivalent to A by

A′ = (Rm, (̺τa̺−1)a∈O, ̺w0) = (Rm, (τ ′
a)a∈O, w′

0). (25)

Equation (23) holds in A′. To see this, let w′
n be a state vector obtained in a

generation run of A′ at time n, and wn the state obtained in A after the same
sequence has been generated. Then it concludes that

w′
n = ̺̺−1w′

n

= (1τB1
(̺−1w′

n) · · ·1τBm
(̺−1w′

n))⊤

= (1τB1
wn · · ·1τBm

wn)⊤

= (P (B1 |wn) · · ·P (Bm |wn))⊤

= (P (B1 |w
′
n) · · ·P (Bm |w′

n))⊤,

where the last equality follows from the equivalence of A and A′.
We will sometimes denote A′ by ̺A. The m×m matrix corresponding to ̺

can be obtained from the original OOM A by observing that

̺ = (1τBi
ej), (26)

where ei is the i-th unit vector.
The following fact lies at the heart of the learning algorithm presented in

the next section:

Proposition 8 In an OOM that is interpretable w.r.t. B1, . . . , Bm it holds that

1. w0 = (P (B1) · · ·P (Bm))⊤,

2. τāw0 = (P (āB1) · · ·P (āBm))⊤,

where P (āB) denotes
∑

b̄∈B P (āb̄). The proof is trivial.
Most often interpretable OOMs are used in a context when they are minimal-

dimensional, but sometimes it is useful to generalize the notion by dropping
the requirement of minimal-dimensionality. An n-dimensional OOM of an m-
dimensional process is called interpretable w.r.t. B1, . . . , Bn if the analog of Eq.
(23) holds. An n-dimensional OOM with operators τa can be made interpretable
by putting τ ′

a = ̺ τa̺†, where again ̺ = (1τBi
ej) and ̺† is the pseudo-inverse

of ̺. A special case that we will need to consider later on is obtained when the
Bi are all singletons. We introduce some special concepts for this case:
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Definition 6 Let (Xn) be an m-dimensional process over an observation alpha-
bet O. Fix some k ∈ N, k > 0, put κ = |O|k and let b̄1, . . . , b̄κ be the alphabetical
enumeration of Ok. Then these sequences b̄i are the characteristic sequences
of length k for (Xn) if m “indicative” sequences ā1, . . . , ām exist that make the
κ × m matrix V = (P (b̄i|āj)) regular. The minimal k for which such sequences
ā1, . . . , ām exist is the characterizing length of (Xn).

We list two properties of characteristic sequences (the simple proof is left to the
reader):

Proposition 9 Let b̄i be characteristic sequences of (Xn)n≥0 of length k and
let κ = |O|k.

1. If A = (Rn, (τa)a∈O, w0) is some (not necessarily minimal-dimensional)
OOM for (Xn)n≥0, then the κ× n matrix πA that has as its i-th row 1τb̄i

maps states w of A to πAw = (P (b̄1|w) · · ·P (b̄κ|w)⊤.

2. The characterizing length k0 of (Xn) is the minimal length of characteristic
events for (Xn) and vice versa.

3. The characterizing length k0 is less or equal than m − 1.

Here are some observations concerning interpretable OOMs:

• If an m-dimensional OOM A has been learnt from empirical data, and
one chooses disjoint events B1, . . . , Bm at random, it is generically the
case that some sequences ā1, . . . , ām exist such that the matrix (P (Bi |
āj))1≤i,j≤m is nonsingular. The reason is that the matrix composed from
rows (1τBi

) is a random matrix and as such generically non-singular. Gen-
erally speaking, for arbitrary events B1, . . . , Bm being characteristic is the
rule, not an exceptional circumstance.

• A given OOM can be transformed into many different equivalent, inter-
pretable OOMs depending to the choice of characteristic events.

• Interpretability yields a very useful way to visualize the state dynamics of
an OOM. To see how, first consider the case where the OOM dimension
is 3. Interpretable states, being probability vectors, are non-negative and
thus lie in the intersection of the positive orthant of R

3 with the hyper-
plane H = {x ∈ R

3 | 1x = 1}. This intersection is a triangular surface.
Its corners mark the three unit vectors of R

3. This triangle can be con-
veniently used as a plotting canvas. Figure 2 shows three “fingerprint”
plots of states obtained from generating runs of three different synthetic
3-dimensional OOMs (see Appendix C for details) over an observation al-
phabet of size 3, which were made interpretable w.r.t. the the same three
characteristic events. The states are colored with three colors depending
on which of the three operators was used to produce this state. A similar
graphical representation of states was first introduced in [39] for HMMs.
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When one wishes to plot states of interpretable OOMs with dimension
m > 3, one can join some of the characteristic events, until three merged
events are left, and create plots as explained above.

• If one has several non-equivalent OOMs over the same alphabet O, making
them interpretable w.r.t. to a common set of characteristic events is useful
for comparing them in a meaningful way. This has been done for the three
OOMs plotted in Figure 2. Their observable operators depended on a
control parameter α which was slightly changed over the three OOMs.
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Figure 2: State dynamics “fingerprints” of three related interpretable OOMs.
For details see text.

8 The Basic Learning Algorithm

We shall address the following learning task. Assume that a realization S =
a0a1 · · · aN of a stationary, m-dimensional process (Xn) is given, that is, S is
generated by some OOM A of (minimal) dimension m. We assume that m is
known but otherwise A unknown. We wish to induce from S an estimate Â
of A in the sense that the distribution characterized by Â comes close to the
distribution characterized by A (the hat ·̂ will be used throughout this chapter
for denoting estimates).

We first collect some observations concerning the unknown generator A.
We may assume that A is interpretable w.r.t. characteristic events B1, . . . , Bm.
Then the principle of learning OOMs emerges from the following observations:

• Proposition 10(2) can be used to procure argument-value pairs for the
operator τa (a ∈ O) by exploiting

τa((P (āB1) · · ·P (āBm))⊤) = τa(τāw0)

= τāaw0

= (P (āaB1) · · ·P (āaBm))⊤. (27)

Such argument-value pairs are vectors that are made from probability
values.
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• A linear operator on R
m is determined by any m argument-value pairs

provided the arguments are linearly independent.

• Probabilities of the kind P (āBi) that make up the argument-value pairs
in (27) can be estimated from the training string S through the relative
frequencies P̂S of the event āBi:

P̂S(āBi) =
number of ocurrences of words āb̄ (where b̄ ∈ Bi) within S

N− | āBi | +1
,

(28)
where | āBi | denotes the length of ā plus the length of the sequences in
Bi.

Thus the blueprint for estimating an OOM Â from S is clear:

1. Choose characteristic events B1, . . . , Bm and indicative sequences ā1, . . . , ām

such that the matrix V̂ =
(
P̂S(ājBi)

)
i,j=1,...,m

is non-singular (this ma-

trix contains in its columns m linearly independent argument vectors for
the operators τa).

2. For each a ∈ O, collect the corresponding value vectors in a matrix Ŵa =(
P̂S(ājaBi)

)
i,j=1,...,m

.

3. Obtain an estimate for τa by

τ̂a = Ŵa V̂ −1. (29)

If the process (Xn) is ergodic, the estimates P̂S(ājBi), P̂S(ājaBi) converge with
probability 1 to the correct probabilities as the sample size N grows to infinity.
This implies that the estimated τ̂a will converge to the operators of the true
data generator A, assuming that A is interpretable w.r.t. the characteristic
events B1, . . . , Bm used in the learning procedure. In other words, the learning
algorithm is asymptotically correct.

The statistical efficiency of the algorithm can be improved if instead of using
indicative sequences āj one uses indicative events Aj that partition Ol into

m non-empty, disjoint subsets. Then V̂ =
(
P̂S(AjBi)

)
i,j=1,...,m

and Ŵa =
(
P̂S(AjaBi)

)
i,j=1,...,m

. If this is done, counting information from every subword

of S of length |AjBi| enters the model estimation, whereas when indicative
sequences are used, only those subwords beginning with an indicative sequence
are exploited.

A computational simplification of this basic algorithm is obtained if one uses
in (29) the raw counting matrices

V raw =
(
count no. of event AjBi in Sshort = a0 . . . aN−1

)
i,j=1,...,m

,

W raw
a =

(
count no. of event AjaBi in S

)
i,j=1,...,m

. (30)

It is easy to see that W raw
a (V raw)−1 = Ŵa V̂ −1.
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The counting matrices can be gleaned in a single sweep of a window of length
| AjBi | across S, and the computation of (29) incurs O(m3) flops. This makes
the overall computational cost of the algorithm O(N + m3).

Note that while the obtained models Â converge to an interpretable OOM
with increasing sample size, it is not the case that a model obtained from a
finite training sample is interpretable w.r.t. the characteristic events chosen for
learning.

The statistical efficiency (model variance) of this basic algorithm depends
crucially on the choice of characteristic and indicative events. This can be seen
immediately from the basic learning equation (29). Depending on the choice of
these events, the matrix V̂ will have a high or low condition number, that is,
its inversion will magnify estimation errors of V̂ to a high or low extend, which
in turn means a high or low model variance. Several methods of determining
characteristic and indicative events that lead to a low condition number of V̂
have been devised. The first of these methods is documented in [34]; another
will be presented later in this chapter (it is documented in Appendix H).

We assumed here that the correct model dimension m is known beforehand.
Finding the correct model dimension is however an academic question. Real-life
processes will hardly ever have a finite dimension. The problem in practical
applications is instead to find a model dimension that gives a good compromise
in the bias-variance dilemma. The model dimension m should be chosen (i) large
enough to enable the model to capture all the properties of the distribution that
are statistically revealed in S, and in the meantime (ii) small enough to prevent
overfitting.

Negotiating this compromise can be affected by the standard techniques of
machine learning, for instance cross-validation. But OOM theory suggest a
purely algebraic approach to this problem. The key is the matrix V̂ . Roughly
speaking, if it has a low condition number and can thus be stably inverted,
model variance will be low and overfitting is avoided. Quantitative bounds on
model variance, as well as an algebraic method for finding good characteristic
events (of a more general kind than introduced here) that minimize the condition
number of V̂ for a given model dimension can be found in [34].

While the basic learning algorithm is conceptually transparent and compu-
tationally cheap, it has two drawbacks that make it ill-suited for applications:

1. Even with good characteristic and indicative events for a small condition
number of V̂ , the statistical efficiency of the basic algorithm has turned
out to be inferior to HMMs estimated via the EM algorithm. The reason
is that the EM algorithm implicitly exploits the statistics of arbitrarily
long substrings in S, whereas our OOM learning algorithm solely exploits
the statistics of substrings of length |AjBi|.

2. The models returned by this learning method need not be valid OOMs.
The non-negativity condition 3 of Definition 2 is often violated by the
“OOMs” computed via this method.
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In Sections 10 to 13 of this chapter, the first of these problems will be com-
pletely solved. The second problem will remain unsolved, but practical working
solutions will be presented.

9 History, Related Work, and Ramifications

Hidden Markov models (HMMs) [2] of stochastic processes have been investi-
gated in mathematics under the name of “functions of Markov chains” long
before they became a popular tool in speech processing and engineering. A
basic mathematical question was to decide when two HMMs are equivalent,
i.e. describe the same distribution [20]. This problem was tackled by framing
HMMs within a more general class of stochastic processes, nowadays termed lin-
early dependent processes (LDPs). Deciding the equivalence of HMMs amounts
to characterise HMM-describable processes as LDPs. This strand of research
[4; 7; 8; 9; 21; 15; 16; 17] came to a successful conclusion in [24], where equiv-
alence of HMMs was characterized algebraically, and a decision algorithm was
provided. That article also gives an overview of the work done in this area up
to writing time.

The results from [24] were further elaborated in [1], where for the first time
matrix representations with negative entries appeared, called “generalized hid-
den Markov models”. The algebraic characterization of HMM equivalence could
be expressed more concisely than in the original paper [24].

All of this work on HMMs and LDPs was mathematically oriented and did
not bear on the practical question of learning models from data.

In 1997, the concept of OOMs was introduced in [25], including the basic
learning algorithm [26]. Independently a theory almost identical to the OOM
theory presented here was developed in [40]. The only difference is that in that
work characteristic sequences were utilized for learning instead of characteristic
events, which renders the algorithm a bit more complicated.

Unconnected to all of these developments, the idea of describing the observ-
ables of a stochastic process as update operators was carried out in [22] within
a very general mathematical framework. However, it was not perceived that
these operators can be assumed to be linear.

Recently we have witnessed a growing interest in observable operator mod-
els in the field of optimal decision making / action selection for autonomous
agents. Under the name of predictive state representations (PSRs) and with
explicit connections made to OOMs, a generalization of partially observable
Markov decision processes (POMDPs, e.g. [33]) is being explored (e.g. [35; 31],
try Google on “predictive state representation” to find more). PSRs can be
seen as a version of OOMs that models systems with input. Such input-output
OOMs (including a variant of the basic learning algorithm) were first described
in [27].

Since their discovery, OOMs have been investigated in the group of the first
author. The most notable results are (i) matrix OOMs for continuous-valued
processes, including a version of the basic learning algorithm [28], (ii) a general
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OOM theory for stochastic processes (non-stationary, continuous-time, with ar-
bitrary observation sets) including an algebraic characterization of general pro-
cesses which reveals fascinating structural similarities between the formalism
of quantum mechanics and OOMs, (iii) a first solution to the problem of find-
ing characteristic events that optimize statistical efficiency, including bounds on
model variance [34], and (iv) the introduction of suffix tree representations for
the training string as a tool to improve statistical efficiency [37] (more about
this later). Much effort was spent and wasted on the non-negativity problem;
for the time being we put this at rest. Hopefully, new developments in linear
algebra will ultimately help to resolve this issue [12].

Ongoing work in our group focusses on online learning algorithms, heuristics
for ascertaining non-negativity of model-predicted probabilities (more in later
sections), and the investigation of quadratic OOMs which arise from replacing
the basic equation (8) by P (ā) = (στāw0)

2. Non-negativity is clearly a non-
issue in quadratic OOMs, which is the prime motivation for considering them,
and the basic learning algorithm is easily carried over; however, it is currently
not clear which processes can be characterized by quadratic OOMs. Finally, in
a PhD project by Alexander Schönhuth at the University of Cologne, learning
algorithms for non-stationary processes are being developed.

10 Overview of the ES Algorithm

We have seen that the basic OOM learning algorithm has limited statistical
efficiency

1. because only the statistics of substrings of some (small) fixed length are
entered in the estimation algorithm, thus much information contained in
the training data is ignored, and

2. because it is unclear how to choose the characteristic/indicative events
optimally, thus the information that enters the algorithm becomes further
degraded by agglomerating it into possibly badly adapted collective events.

Both obstacles can be overcome:

1. Using a suffix tree representation of the training sequence, one can exploit
characteristic/indicative sequences of all possible lengthes simultaneously.
Instead of exploiting a mere m argument-value pairs, the number of used
argument-value pairs is in the order of the training data size.

2. We can get rid of characteristic and indicative events altogether. They
will only be used for the estimation of an initial model Â(0), from which
a sequence Â(1), Â(2), . . . of better models is iteratively obtained without
using such events at all. The model improvement is driven by a novel
learning principle whose main idea is to use the model Â(n) for improving
the statistical efficiency of the estimation procedure yielding Â(n+1). We
call this the principle of efficiency sharpening (ES).
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11 The ES Principle: Main Idea and a Poor
Man’s ES Learning Algorithm

This is the main section of this chapter. We derive the underlying ideas be-
hind the ES principle, present an elementary instance of an ES-based learning
algorithm and finish with a little simulation study.

The core of the ES principle is to use in each iteration a new set of character-
istic events that yields an estimator with a better statistical efficiency. However,
a very much generalized version of such events is used:

Definition 7 Let A = (Rn, (τa)a∈O, w0) be a (not necessarily minimal-dimen-
sional) OOM of an m-dimensional process (Xn). Let k ∈ N. A function c :
Ok → {r ∈ R

n |1r = 1} is a characterizer of A (of length k) if

∀ā ∈ O∗ : wā =
∑

b̄∈Ok

P (b̄ | ā) c(b̄), (31)

If convenient, we will identify c with the matrix C = [c(b̄1) · · · c(b̄κ)], where
b̄1, . . . , b̄κ is the alphabetical enumeration of Ok.

It is clear that C is a characterizer for A if and only if every state wā of A can
be written as

wā = C (P (b̄1|ā) · · ·P (b̄κ|ā))⊤, (32)

where b̄1, . . . , b̄κ is the alphabetical enumeration of Ok. The characteristic events
introduced in Section 7 can be regarded as a special characterizer: if A is
interpretable w.r.t. characteristic events B1, . . . , Bn of length k, and if b̄ ∈ Bi

then define c(b̄) as the vector of dimension n that is zero everywhere except at
position i. The two conditions from the above definition are easily checked. In
matrix form, this gives the characteristic event characterizer (apologies for the
loopy terminology)

CB1,...,Bm
= (cij) i=1,...,m

j=1,...,κ

where (33)

cij =

{
1, if b̄j ∈ Bi

0, else.

We proceed by investigating other characterizers.

Proposition 10 Let κ and b̄1, . . . , b̄κ be as in Definition 7. Given an m-
dimensional process (Xn), then an n × κ matrix C whose columns sum to 1
is a characterizer of some n-dimensional OOM for (Xn) if and only if there
exist m sequences āj such that the n×m product matrix W = CV of C and the
κ × m matrix V = (P (b̄i | āj)) has rank m.
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The proof is in Appendix D. Now consider two equivalent, minimal-dimensional
OOMs A, A′ which are related by τ ′

a = ̺τa̺−1 (cf. Eq. (25)). Then it holds
that

Proposition 11 if C is a characterizer of A, then ̺ ◦ C is a characterizer of
A′,

because the states w′
ā of A′ are equal to the transforms ̺wā of the respective

states of A. A given minimal-dimensional OOM (of dimension m) has many
finite characterizers of length k if κ > m; if κ = m then the characterizer is
unique. This is detailed out in the following corollary to Proposition 10 (proof
in Appendix E):

Proposition 12 Let C0 be a characterizer of length k of a minimal-dimensional
OOM A. Let κ and V be as in Proposition 10. Then C is another characterizer
of length k of A if and only if it can be written as C = C0 + G, where

G = [g1, · · · , gm−1,−Σi=1,...,m−1gi]
⊤, (34)

where the gi are any vectors from ker V ⊤.

An important type of characterizers is obtained from the states of reverse OOMs,
that is, OOMs for the time-reversed process. We now describe in more detail
the time reversal of OOMs. Given an OOM A = (Rm, (τa)a∈O, w0) with an
induced probability distribution PA, its reverse OOM Ar is characterized by a
probability distribution PAr satisfying

∀ a0 · · · an ∈ O∗ : PA(a0 · · · an) = PAr (an · · · a0). (35)

The reverse OOM can be computed from the forward OOM observing the fol-
lowing fact, whose proof is in Appendix F:

Proposition 13 If A = (Rm, (τa)a∈O, w0) is an OOM for a stationary process,
and w0 has no zero entry, then Ar = (Rm, (Dτ⊤

a D−1)a∈O, w0) is a reverse OOM
to A, where D = diag(w0) is a diagonal matrix with w0 on its diagonal.

Because from an m-dimensional matrix OOM for the “forward” process an m-
dimensional matrix OOM for the reverse process can be constructed and vice
versa, it follows that the process dimension of the forward process equals the
process dimension of the reverse process.

When discussing “forward” and reverse OOMs of a process at the same time,
using shorthand notations of the kind P (b̄i | āj) easily leads to confusion. We
fix the following conventions:

1. The character “b” and string shorthands b̄ always denote symbols/substrings
that follow symbols/substrings denoted by character “a” and string short-
hands ā — “after” with respect to the forward time direction.

2. We use P to denote probabilities for the forward process and P r for the
reverse process.
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3. When using indices i, j for alphabetical enumerations for words b̄i, āj , the
enumeration is carried out in the forward direction, even if we denote re-
verse probabilities. For example, if O = {0, 1, 2}, and if āj , b̄j are each
the alphabetical enumerations of O2, and if τa, τ r

a are the observable op-
erators for a forward and a reverse OOM of a process, then ā6 = 12,
b̄2 = 01 and 1τ1τ0τ2τ1w0/1τ2τ1w0 = P (b̄2 | ā6) = P (X2 = 0,X3 = 1 |
X0 = 1,X1 = 2) = P r(X2 = 0,X3 = 1 |X0 = 1,X1 = 2) = P r(b̄2 | ā6) =
1τ r

1 τ r
2 τ r

0 τ r
1 wr

0/1τ r
1 τ r

2 wr
0.

4. Likewise, when using ā as an index to denote a concatenation of operators,
the forward direction is always implied for interpreting ā. For example,
τ01 = τ1τ0 and τ r

01 = τ r
0 τ r

1 .

The states of a reverse OOM obtained after sufficiently long reverse words make
a characterizer of a forward OOM for the process:

Proposition 14 Let the dimension of (Xn) be m and let Ar = (Rm, (τ r
a )a∈O, w0)

be a reverse OOM for (Xn) that was derived from a forward OOM A = (Rm, (τa)a∈O, w0)
as in Proposition 13. Let k0 be the characterizing length of (Xn), let k ≥ k0,
and let κ = |Ok|. Then the following two statements hold:

1. C = [wr
b̄1
· · ·wr

b̄κ
] is a characterizer of an OOM A′ for (Xn).

2. The states w′
ā of A′ are related to the states wā of A by the transformation

w′
ā = ̺wā, where ̺ = CπA. If in addition w0 = (1/m · · · 1/m)⊤, then

furthermore ̺ = R⊤R. The matrices πA and R are

πA =




1τb̄1
...

1τb̄κ


 , R = πA diag ((mP (b̄1))

−1/2 · · · (mP (b̄κ))−1/2).

(36)

The proof can be found in Appendix G. The proposition implies that ̺−1C =
(CπA)−1C =: Cr

A is a characterizer for the original forward OOM A. Cr
A =

[̺−1wr
b̄1
· · · ̺−1wr

b̄κ
] is the characterizer obtained from the reverse OOM ̺−1Ar =

(Rm, (̺−1τ r
a̺)a∈O, w0), so we may note for later use that every OOM A has a

reverse characterizer Cr
A that is made from the states of a suitable reverse OOM.

Among all characterizers of OOMs A for (Xn), the reverse characterizers
minimize a certain measure of variance, an observation which is the key to
the ES learning principle. We enter the presentation of this core finding by
describing some variants of the basic learning algorithm from Section 8.

In the basic learning algorithm from Eqn. 29, an estimate τ̂a of an m-
dimensional OOM was determined from m estimated argument-value pairs for
τa, which were sorted in the columns of an m×m matrix V̂ = (P̂ (ājBi)) (con-

taining the argument vectors) and another m × m matrix Ŵa = (P̂ (ājaBi))

(containing the values), by τ̂a = ŴaV̂ −1. It is clear that this is equivalent to

24



τ̂a =
(
P̂ (aBi|āj)

)
i,j=1,...,m

(
P̂ (Bi|āj)

)−1

i,j=1,...,m
. (37)

The choice of m indicative sequences āj is arbitrary and has the additional
drawback that in estimating the argument-value matrices from a training string,
only a fraction of the data enters the model estimation - namely, only the
counting statistics of substrings beginning with one of the m chosen indicative
sequences. The information contained in the data is better exploited if we use all
indicative sequences ā1, . . . , āκ ∈ Ok, which yields two m×κ matrices containing
the argument and the value vectors, requires the use of the pseudoinverse †
instead of the matrix inverse, and turns (37) into

τ̂a =
(
P̂ (aBi|āj)

)
i=1,...,m

j=1,...,κ

(
P̂ (aBi|āj)

)†

i=1,...,m

j=1,...,κ

. (38)

Let V =
(
P (b̄i|āj)

)
i,j=1,...,κ

be the matrix of all conditional probabilities of

length k sequences b̄ given length k sequences ā, where i, j index the alpha-
betical enumeration of Ok (we will always use underlined symbols like V to
denote “big” matrices of size κ × κ), and let V̂ be the estimate of V obtained
from the training string through the obvious counting procedure. Likewise, let
W a =

(
P (ab̄i|āj)

)
i,j=1,...,κ

and Ŵ a its estimate. Then (38) is easily seen to be

equivalent to

τ̂a = CB1,...,Bm
Ŵ a (CB1,...,Bm

V̂ )†. (39)

Instead of the characteristic event characterizer CB1,...,Bm
one may use any

characterizer C, which gives us the following learning equation:

τ̂a = CŴ a (CV̂ )† for any characterizer C. (40)

It follows from Prop. 12 that all characterizers C + G, where G is any m × κ
matrix with zero column sums and GV = 0 yield the same state vectors as C,
which entails

τa = CW a CV † = (C + G)W a ((C + G)V )† (41)

for any such G. Finally, we observe that if ̺ is an OOM transformation as in
Prop. 6, and if C is a characterizer for some OOM A and ̺C a characterizer for
A′ (cf. Prop. 11), then it is irrelevant whether we use C or ̺C in the learning
equation 40, because the estimated OOMs will be equivalent via ̺:

If τ̂a = CŴ a (CV̂ )†

and τ̂ ′
a = ̺CŴ a (̺CV̂ )†

then ̺τ̂a̺−1 = τ̂ ′
a. (42)

After Prop. 14 we remarked that every OOM A has a reverse characterizer
Cr

A, and Prop. 11 informs us how transforming OOMs via transformations ̺ is
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reflected in transforming their characterizers with ̺. Together with Prop. 12
and Eqn. (41) we can draw the following overall picture:

• Call two characterizers equivalent if they characterize the same OOM.
Then the equivalence class of all characterizers of an OOM A can be
written as Cr

A + G, where G is any matrix as described above.

• We know empirically that different choices of characteristic events (and
hence, different characterizers) yield models of different quality when used
in the learning equation (40). In order to study such sensitivity of learning
w.r.t. choice of characterizers, (42) informs us that we may restrict the
search for “good” characterizers to a single equivalence class.

• Concretely, we should analyze the quality of model estimates when G is
varied in

τ̂a = (Cr + G)Ŵ a ((Cr + G)V̂ )† (43)

for some reverse characterizer Cr whose choice (and hence, choice of equiv-
alence class) is irrelevant.

In order to explain the ES principle, we concentrate of the role of (Cr +G)V̂ in
this learning equation. We can make the following two observations:

• The variance of models estimated via (43) is determined by the variance
of (Cr + G)V̂ across different training sequences. We may ignore the role
of variance in (Cr + G)Ŵ a because either the condition of (Cr + G)V̂ is
significantly larger than one, in which case variance in this matrix becomes
magnified through the pseudoinverse operation in (43) and the overall
variance of (43) becomes dominated by the variance of (Cr + G)V̂ . Or,
the condition of this matrix is close to one, in which case the variance of
both ((Cr + G)V̂ )† and (Cr + G)Ŵ a will be approximately the same due
to the similar makeup of V̂ and Ŵ a, and again we may focus on (Cr+G)V̂
alone. (For a detailed analysis of these issues see [34]).

• The j-th column in the correct matrix (Cr + G)V is the state wāj
of an

OOM characterized by (Cr + G). This is also the expectation of the j-th
column v̂j in estimates (Cr +G)V̂ . This column v̂j can be computed from
the training string S as follows:

1. Initialize v̂j = 0.

2. Sweep an observation window of length 2k across S. Whenever the
windowed substring begins with āj , showing āj b̄i, add the i-th column
(Cr + G)(:, i) of (Cr + G) to v̂j .

3. When the sweep is finished, normalize v̂j to unit component sum.

We can interpret each additive update of v̂j in 2. as adding a stochastic
approximation (Cr+G)(:, i) of wāj

to v̂j . The variance of v̂j will thus grow
monotonically with the mean stochastic approximation error. Considering
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the entire matrix (Cr + G)V̂ with all its columns, we see that its variance
is monotonically tied to the expected stochastic approximation error

ξG =

κ∑

i,j=1

P (āib̄j) ‖wāi
− (Cr + G)(:, j)‖2. (44)

Looking for statistically efficent model estimations via (43) we thus must ask
which choice of G makes ξD minimal. Here is the main result of this report:

Proposition 15
arg min

G
ξG = 0, (45)

that is, the reverse characterizer Cr itself minimizes, within its equivalence class,
the variance of the argument matrix (Cr + G)V̂ . The proof (by M. Zhao) is in
Appendix H. We would like to point out again that it is irrelevant which reverse
characterizer (and hence, which equivalence class of characterizers) is used; all
reverse characterizers yield equivalent models.

The normalizing step 3. is in fact redundant. Just as in the original learning
method (cf. Eqn. 30) we may just as well use the “raw” counting matrices
V raw = (#āj b̄i) and W raw

a = (#āj a b̄i) in place of the normalized matrices V̂

and Ŵ a in (43), saving one normalization operation.
This finding suggests an iterative learning procedure, with the goal of devel-

oping a sequence of characterizers that approaches a reverse characterizer, as
follows:

1. Learning task. Given: a training sequence S of length N over an obser-
vation alphabet O of size α, and a desired OOM model dimension m.

2. Setup. Choose a characterizing length k (we found that the smallest k
satisfying κ = αk ≥ m often works best). Construct the κ × κ counting
matrices V raw = (#āj b̄i) and W raw

a = (#āj a b̄i).

3. Initial model estimation. To get started, use the basic learning algo-
rithm from Section 8 once. Choose characteristic events B1, . . . , Bm and
code them in the characteristic event characterizer CB1,...,Bm

(Eqn. (33)).
The characteristic events should be chosen such that CB1,...,Bm

V raw has
a good condition number. A greedy heuristic algorithm for this purpose,
which works very well, is detailed out in Appendix H. Compute an initial

model Â(0) through τ̂
(0)
a = CB1,...,Bm

W raw
a (CB1,...,Bm

V raw)†. The starting

state ŵ
(0)
0 can either be computed as the eigenvector to the eigenvalue 1

of the matrix µ̂(0) =
∑

a∈O τ̂
(0)
a , or equivalently as the vector of rowsums

of CB1,...,Bm
V raw, normalized to unit component sum.

4. ES iteration. Assume that Â(n) is given. Compute its reverse Âr (n)

and the reverse characterizer Ĉ(n+1) =
(
ŵ

r (n)

b̄1
· · · ŵ

r (n)

b̄κ

)
. Compute a new

model Â(n+1) through τ̂
(n+1)
a = Ĉ(n+1)W raw

a (Ĉ(n+1)V raw)†. The starting
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state ŵ
r (n+1)
0 can again be computed as the normalized rowsum vector of

Ĉ(n+1)V raw or from µ̂(n+1).

5. Termination. A standard termination criterium would be to calculate
the log-likelihood of each model Â(n) on S and stop when this appears to
settle on a plateau, which is typically the case after 2 to 5 iterations.

The rationale behind the iteration step is that if some model Â(n+1) comes
closer to the true model than the previous one, then the resulting estimated
reverse characterizer Ĉ(n+1) will come closer to a version of the true reverse
characterizer, thereby yielding an estimator with lower variance, which in turn
on average will yield an even better model, etc. This idea motivated calling
the entire approach “efficiency sharpening” (ES). We like to call this particular
algorithmic instantiation of the ES principle the “poor man’s” ES algorithm
because it is simple, cheap, and suboptimal – the latter because it exploits
only the statistics of substrings of length 2k. We will soon see how one can do
better in this respect. Here are two optional embellishments of the poor man’s
algorithm:

• In each iteration, the model Â(n) can be transformed into an equivalent
one that is interpretable w.r.t. the characteristic events used for the initial
model estimation, before it is used in the iteration. This has, in principle,
no effect on the procedure: a sequence of models each equivalent to the
corresponding member in the original sequence of models will be obtained.
The benefit of having interpretable models is cosmetical and diagnostic:
one can produce state plots for each model which are visually comparable.

• The computational cost per iteration is dominated by computing the
pseudo-inverse of Ĉ(n+1)V̂ (0). If this matrix is not too ill-conditioned
(rule of thumb: with a condition number below 1e10 one is on the safe
side when using double precision arithmetics), one may employ the well-
known [e.g., 14], computationally much cheaper Wiener-Hopf equation to

compute the desired least-square solution τ̂
(n+1)
a to (Ĉ(n+1)V raw)⊤X⊤ =

(Ĉ(n+1)W raw
a )⊤.

A technical point not directly related to the ES principle: If one uses W raw
a , V raw

as suggested here, the pseudoinverse (which minimizes MSE of the obtained
argument-value mapping) leads to a solution that disproportionally emphasizes
the influence of argument-value pairs that represent a relatively small “mass
of evidence” in the sense that the corresponding argument-value pairs in V raw

and W raw
a have a small mass. If the j-th column of these raw matrices is

normalized through dividing by the square root of the total weight of the j-
th column of V raw (instead of division by the raw total weight), one obtains

Ŵ
(0)
a , V̂ (0) that under the τ̂a = ŴaV̂ † operation behave as if the argument-value

pair (P̂ (b̄1|āj) · · · P̂ (b̄κ|āj)), (P̂ (ab̄1|āj) · · · P̂ (ab̄κ|āj)) would occur in Ŵ
(0)

a , V̂
(0)

multiple times with a multiplicity proportional to P̂ (āj). This more properly
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reflects the “mass of evidence” represented in each argument value pair and
should be preferred. We omitted this reweighting above for expository reasons.
We conclude this section with a little demonstration of the poor man’s algo-
rithm at work. The training sequences were obtained from running a randomly
created HMM with 4 states and 3 output symbols for 1000 steps; test sequences
were 10,000 steps long. The random creation of Markov transition and emission
probabilities was biased towards a few high probabilities and many low ones.
The reason for doing so is that if the HMM probabilities were created from a
uniform distribution, the resulting processes would typically be close to i.i.d.
— only Markov transition and emission matrices with relatively many low and
a few high probabilities have enough structure to give “interesting” processes.
Hundred train/test sequence pairs from different HMM generators were used to
train and test 100 OOMs of dimension 3 with the poor man’s algorithm, em-
ploying two versions where the raw counting matrices were normalized through
division with the column sums (variant A, corresponding to Eqn. (43)) and
through division with the square root of the column sums (variant B).

For comparison, HMMs with 3 states were trained with the Baum-Welch
algorithm. For HMM training we used a public domain implementation of
Baum-Welch written by K. P. Murphy (http://www.cs.ubc.ca/∼murphyk/Soft-
ware/HMM/hmm.html). The Baum-Welch algorithm was run for at most 100
iterations and stopped earlier when the ratio of two successive training log-
likelihoods dropped below 5e-5. Only a single Baum-Welch run was executed
per data set with the HMM initialization offered by Murphy’s software package.
On average Baum-Welch used 40.8 iterations.

Our findings are collected in Figure 3. Here is a summary of observations of
interest:

• On average, we see a rapid development of training and testing log-likeli-
hoods to a plateau, with the first iteration contributing the bulk of model
improvement. A closer inspection of the individual learning runs (not
shown here) however reveals a large variability.

• Interesting things happen to the condition number of the argument ma-
trices CV̂ (or their square-root normalized correlates in version B). The
first iteration on average leads to a significant decrease of it, steering the
learning process into a region where the matrix inversion magnifies estima-
tion error to a lesser degree and thus improves statistical efficiency by an
additional mechanism different from the ES mechanism proper. We must
concede that all phenomena around this important condition number are
not well understood.

• The initial model estimates with the basic learning algorithm are, on
average, already quite satisfactory (for variant B, they match the final
Baum-Welch outcome). This is due to the heuristic algorithm for finding
characteristic events, which not only in this suite of experiments worked
to our complete satisfaction.
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• Compared to the Baum-Welch trained HMMs, the training log-likelihood
of OOMs is higher by about 1%, reflecting the greater expressiveness of
OOMs and/or the fact that our learning algorithm cannot be trapped in
the local optima. In contrast, the OOM test log-likelihood is significantly
lower. This reflects the fact that for this particular kind of data, HMMs
possess a built-in bias which prevents these models from overfitting.

• Variant B leads to better training log-likelihoods than variant A. Espe-
cially the initial models are superior.

• Even the averaged curves exhibit a non-monotonic development of like-
lihoods. Inspection of the individual runs would reveal that sometimes
the likelihood development is quite bumpy in the first three steps. This
point is worth some extra consideration. The ES principle does not root
in a concept of iteratively minimizing training error, as Baum-Welch does
(and most other machine learning algorithms do). In fact, the ES principle
comes with no guaranteed mechanism of convergence whatsoever. The ES
algorithm only “tries” to find an estimator of better statistical efficiency
in each iteration, but there is no guarantee that on a given dataset, an
estimator of higher efficiency will produce a model with higher likelihood.

• The state fingerprints plotted in Figure 3 have been derived from models
that were interpretable w.r.t. the characteristic events used in the initial
model computation. The plots exhibit some states which fall outside the
triangular region which marks the non-negative orthant of R

3. Whenever
we witness states outside this area in an interpretable OOM, we see an
invalid OOM at work, that is, the non-negativity condition 3 from Defi-
nition 2 is violated. It is unfortunately the rule rather than the exception
that trained OOMs are invalid. This is cumbersome in at least two re-
spects. First, if one uses such pseudo-OOMs for computing probabilities
of sequences, one may get negative values. Second, and even more criti-
cally in our view, invalid OOMs are inherently instable (not detailed out
here), that is, if they are used for generating sequences, the states may
explode. A fundamental solution to this problem is not in sight (cf. the
concluding remarks in Section 6). We can offer only a heuristic stabilizing
mechanism that affords non-exploding states and non-negative probabil-
ities when an invalid OOM is run, at the expense of slightly “blurred”
probabilities computed by such stabilized OOMs. This mechanism is de-
scribed in Appendix J. We used it in this suite of learning experiments for
determining the training and testing log-likelihoods of learned OMMs.

12 Essentials of Suffix Trees

We now proceed to describe an improved instantiation of the ES learning princi-
ple, using suffix trees to represent state sequences. In this section we recapitulate
the basic concepts of suffix trees.
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Figure 3: a. Training and testing log-likelihoods (scale on left y axis) of variant
A trained OOMs plotted against the iteration number. The test log-likelihoods
were divided by 10 because test strings were longer by this factor, to render
them directly comparable with training log-likelihoods. The plot shows the
average over 100 training experiments. For comparison, the final train/test log-
likelihoods of Baum-Welch trained HMMs is shown by straight horizontal lines.
Iteration 0 corresponds to the initial model estimation. In addition, the average
of log10 of condition numbers of the matrices CV̂ are shown (scale on the right
y axis). b. A similar plot for variant B. c. “Fingerprints” of the OOM models
obtained in the successive iterations in one of the learning runs.

The suffix tree T [41] for a given string S provides a compact representation
of all substrings of S while exposing the internal structure of S in an efficient
data structure. Moreover, a (compact) suffix tree T can be constructed in linear
time O(|S |). While the suffix tree is a simple enough data structure, linear-time
construction algorithms are quite involved [19].

Formally, a suffix tree is a trie with additional properties. A trie T [18]
— the name being derived from retrieval - is an ordered tree where edges are
labelled with strings over an alphabet O such that no two edges from some node
k of T to its children have labels beginning with the same symbol a ∈ O. Thus
we may speak of the path to a node k of T , defined as the concatenation of all
edge labels encountered when traveling from the root to k, and we may identify
the node k with path(k) ∈ O∗. The set of words words(T ) ⊂ O∗ represented by
a tree is defined by

ā ∈ words(T ) ⇐⇒ ∃k ∈ T : ā = path(k)b̄ (46)
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where b̄ is a prefix of an outgoing edge of k. Then, a suffix tree TS of a string
S is a trie that contains all substrings of S:

words(TS) = {ā ∈ O∗ : ā is a substring of S}. (47)

In general there will be more than one trie satisfying the above condition. How-
ever if we additionally require that all nodes in TS are either leaves or have at
least two children, the suffix tree of S is uniquely determined (up to ordering).
It is called the compact suffix tree of S. Compact tries were introduced histor-
ically under the name Patricia trees [36]. Figure 4 illustrates the concept with
a compact suffix tree for the string cocoa.

c

o

c

o

a
a

o

c

o

a a

a

Figure 4: The compact suffix tree for cocoa. Note that a sentinel is not required
because the symbol a appears in the string only at the terminal position and
thus acts as a sentinel.

Sometimes it is desirable to have every suffix of S represented by a leaf. This
can be enforced by appending a sentinel symbol $ /∈ O at the end of S. Then
the compact suffix tree for the extended string S$ represents every suffix of S$
and only the suffixes of S$ as leaves. Finally, note that a compact suffix tree of
a sequence of length N has at most 2N nodes.

13 A Suffix-Tree Based Version of ES

An obvious weakness of the poor man’s ES algorithm is that the family of indica-
tive sequences (āi)1≤κ = Ok is not adapted to the training sequence S. Some of
the āi might not occur in S at all, entailing a useless computational overhead.
Some others may occur only once or twice, yielding very poor estimates of prob-
abilities through relative frequencies. On the other side of the spectrum, if some
sequence āi occurs very frequently, learning would clearly benefit from splitting
it into α longer sequences by āi 7→ {aāi|a ∈ O}. In this section we show how
a compact suffix tree (ST) representation of S can be used to support a choice
of indicative sequences which is matched to S. (We will henceforth drop the
qualifier “compact”, it is tacitly assumed throughout). The idea of representing
variable-length “context” for prediction purposes in a suffix tree is known in the
literature under various names, e.g. “prediction suffix trees” or “variable-order
Markov chains” (concise overview in [5]).
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Implementing suffix trees involves some tedious “indexery witchcraft”. We
therefore do not attempt a detailed documentation of our suffix-tree based EM
implementation but instead outline the basic ideas, which are quite straightfor-
ward.

Let $ be a sentinel symbol not in O, and let $S be S prepended by $. We
will still speak of $S as the training sequence. Suffix trees are brought into the
learning game by observing that, first, the words of the ST T($S)r = TSr$ of
the reverse training sequence ($S)r = Sr$ are the reverse substrings of $S (this
is clear by definition of a ST). But second and more interestingly, it moreover
holds that if

• k1 is a node in TSr$ and k2 is a child node of node k1,

• c̄1 = path(k1) is the path to k1 and c̄1c̄2 the path to k2,

• ā1 = c̄r
1, ā2 = c̄r

2, ā2ā1 = (c̄1c̄2)
r are the associated forward words,

• ā2 = ā21ā22 is some split of ā2,

then wherever ā22ā1 occurs in $S, it occurs after ā21.
This can be rephrased as follows. Let, for some word ā, pos(ā) denote the

set of all the position indices n in S such that the sequence from the beginning
of S up to position n ends with ā. Furthermore, for some node k of TSr$, let
pos(k) = pos((path(k))r) be the set of positions in the forward sequence $S
associated with the reverse path of k. Then, if we reuse the notations from the
above bullet list, and if ā2 = a1 · · · al, then

pos(a1a2 · · · al ā1) = pos(a2a3 · · · al ā1)

· · ·

= pos(al ā1)
⊂
6= pos(ā1). (48)

Now think of reverse versions ā of words c̄ from TSr$ as candidates for indicative
sequences. If pos(ā) = pos(ā′), then clearly it makes no sense to collect contin-
uation statistics of the type #āb̄ both for ā and ā′, because they are identical.
Therefore, the nodes of TSr$ correspond to potential indicative sequences that
are distinguishable within S w.r.t. their continuations in S, and we may ignore
all words ā whose reverse does not end in a node of TSr$. This is the basic idea
of suffix-tree based ES: use as indicative sequences all the words whose reverse
correspond to nodes in TSr$.

We now turn to reverse characterizers. An analysis of the poor man’s algo-
rithm reveals that, given a reverse OOM with states wr

b̄
, we constructed esti-

mates of wā through

ŵā =

∑
b̄∈Ok wr

b̄
∗ (number of occurences of āb̄ in O)

number of occurences of ā in O
. (49)

If we were to copy this idea identically for use with suffix-tree managed indica-
tive sequences ā, we would have to collect statistics for continuations by all
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b̄ ∈ Ok, for all our indicative sequences ā. Furthermore, in doing so we would of
course have to fix k and thus ignore information provided in S by continuations
longer than k. A stronger idea suggests itself here. Let S = a1 . . . aN . Instead
of precalculating all wr

b̄
and collecting the necessary continuation statistics, we

simply run the reverse OOM on the reverse training sequence once, obtaining
a state sequence wr

ε = (wr
0, w

r
aN

, wr
aN−1aN

, . . . , wr
S). Reversing in time and re-

naming yields a state sequence that is more convenient for our purposes, by
putting

(c0, c1, . . . , cN ) := (wr
S , . . . , wr

aN−1aN
, wr

aN
, wr

0). (50)

We interpret cn as a stochastic approximation to wān
, in the following sense.

Consider the limit case of N → ∞. Assume that for a right-infinite sequence
b̄∞ = b1b2 . . . the limes cb̄∞ = liml→∞ wr

b1···bl
exists almost surely (we conjecture

that for reverse ergodic processes this always holds). Let Pān
be the conditional

probability distribution over the set of right-infinite continuations b̄∞ of ān.
Then the family (cb̄∞)b̄∞∈O∞ can be regarded as an (infinite) characterizer by
setting

wā =

∫
cb̄∞dPā (51)

for all ā ∈ O∗. Because S is finite, interpreting cn as a stochastic approximation
to wān

via (51) will incur some inaccuracy, which however will be negligible for
all n that are not very close to the right end of S. All of this entitles us to
change the poor man’s strategy (49) to this rich woman’s version:

ŵā =
1

|pos(ā)|

∑

n∈pos(ā)

cn. (52)

Finally, observe that TSr$ has N + 1 leaf nodes, each corresponding uniquely
to one position in $S. That is, for a leaf node k, pos(k) = {n}, where n
is the position within $S where the reverse path of k ends, started from the
beginning of $S. For an internal node k with children k1, . . . , kx it holds that
pos(k) =

⋃
i=1,...,x pos(ki).

Now everything is in place for describing the suffix-tree based ES algorithm.

• Task. Given: a training sequence S of length N and a model dimension
m. Wanted: an m-dimensional OOM.

• Initialization.

Learn initial model. Learn an m-dimensional OOM Â(0) using the ba-
sic learning algorithm, as in the poor man’s algorithm.

Construct TSr$.

Procure argument value pair mapping. Let kall be the leaf that cor-
responds to the entire sequence. Allocate a map f : TSr$ − {kall} ×
O → TSr$ ∪ {0} and initialize it by all zero values. For each node
k except kall, where the reverse path of k is ā, and for each a ∈ O,
determine the highest node k′ such that (āa)r is a prefix of the path
of k′ (then pos(k′) = pos(āa)). Set f(k, a) = k′.
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• ES Iteration. Input: Â(n), TSr$. Output: Â(n+1).

Procure ŵā’s. (i) Compute the reverse OOM Âr (n). (ii) Run it on the
reverse training sequence to obtain (c0, c1, . . . , cN ) (use the “blurred”
but stabilizing method for running potentially invalid OOMs that is
detailed out in Appendix J). (iii) Sort these N + 1 states into the
leaf nodes of TSr$, where cn goes to the leaf node with pos(k) = {n}.
Formally, for leaves k set C(k) = cpos(k). (iv) From the leaves upward,
for some internal node k for whose children k′ C(k′) has already been
determined, set C(k) =

∑
k′is a child ofk C(k′). Do this until all nodes

have been covered. Then for all nodes k it holds that

C(k) = |pos(ā)| ŵā =
∑

n∈pos(ā)

cn. (53)

where ā is the reverse path of the node.

Procure argument-value matrices V̂ and Ŵa. To obtain matrices V̂
and Ŵa (each of size m × |TSr$| − 1) that play a similar role as we
are accustomed to, go through all nodes k of the tree (except kall),
write C(k) into the k-th column of V̂ and C(f(k, a)) into the k-th
column of Ŵa.

Reweigh. In analogy to the reweighing scheme described for the poor
man’s algorithm, divide each column k in V̂ and all Ŵa by the square
root of the k-th column sum of V̂ .

Compute new model. Set τ̂
(n+1)
a = WaV̂ † and ŵ

(n+1)
0 as the eigenvec-

tor to the eigenvalue 1 of µ̂ =
∑

a∈O τ̂
(n+1)
a (normalized of course to

unit component sum), obtaining Â(n+1).

• Termination. Stop after a predetermined number of iterations or when
training log-likelihood seems to saturate.

• Optional tuning. One may augment this algorithm in several ways:

Make models interpretable. Transform each Â(n+1) to an interpretable
OOM before further use, using the characteristic events employed in
the initial model estimation. This gives comparable “fingerprint”
plots that are helpful in monitoring the algorithm’s progress. More
importantly, we found that such renormalization sometimes renders
the algorithm more robust when otherwise the condition of V dete-
riorated over iterations.

Use subsets of tree. When constructing V̂ and Ŵa, we may restrict
ourselves to using only ST nodes that represent some minimal number
of positions, guided by the intuition that nodes representing only very
few string positions contain too unreliable stochastic approximations
of forward states.
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A nasty trick to improve stability. The algorithm depends on a ma-
trix inversion (more correctly, a pseudoinverse computation). We
sometimes experienced that the matrix V̂ becomes increasingly ill-
conditioned as iterations progress, completely disrupting the learning
process when the ill-conditioning explodes. A powerful but brutal
and ill-understood remedy is to transform the reverse OOM Âr (n)

(before using it) into a surely valid OOM by making its operator
matrices all-nonnegative. Concretely, set all negative entries in the
operator matrices of Âr (n) to zero and renormalize columns by divid-
ing them through the corresponding column sum of their sum matrix.
To our surprise, often the model quality suffered only little from this
dramatic operation. Purely intuitively speaking, we might say that
learning process is forced to find a solution that is close to a HMM
(where forward and reverse matrices are non-negative).

All ST related computations involved in this procedure can be effected in time
linear of the ST size, which is at most 2N . The main cost factors in a suffix-
tree ES iteration are the computation of the reverse state sequence, which is
O(Nm2), and the computation of the pseudo-inverse. To speed up the compu-
tation in cases where V̂ is not too ill-conditioned, one may use the Wiener-Hopf
solution instead, as described for the poor man’s version of ES. Then the cost
of calculating the operators from V̂ and the Ŵa’s is O(αm2N), which domi-
nates the cost for obtaining the reverse state sequence. In practice we found
runtimes per iteration that are somewhat shorter than a Baum-Welch iteration
in the same task. However, for the total time of the algorithm we must add
the time for the initial model estimation and the computation of the suffix tree.
The latter in our implementation takes about 1 to 2 times the time of an ES
iteration.

14 A Case Study: Modeling 1 Million Pound

The most demanding task that we tried so far was to train models on Mark
Twain’s short story “The 1,000,000 Bank-Note” (e.g., www.eastoftheweb.com/short-
stories/UBooks/MilPou.shtml). We preprocessed the text string by deleting all
special characters except the blank, changing capital letters to small caps, and
coding letters by integers. This gave us 27 symbols: 1 (codes “a”), ..., 26 (“z”),
27 (“ ”). The resulting string was sorted sentence-wise into two substrings of
roughly equal length (21042 and 20569 symbols, respectively) that were used as
training and test sequences.

The suffix-tree based learning algorithm was used with the “brutal” stabiliz-
ing method mentioned above, which was necessary for larger model dimensions.
Five ES iterations besides the zero-th step of estimating an initial model were
run for model dimensions 5, 10, 15,...,50, 60,..., 100, 120, 150. More details can
be found in Appendix K.

For comparison, HMMs of the same dimensions were trained with K. Mur-
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phy’s Matlab implementation of Baum-Welch. HMMs were initialized using the
default initialization offered by this implementation. Iterations were stopped
after 100 iterations or when the ratio of two subsequent training log-likelihoods
was smaller than 1∼1e-5, whichever occurred first (almost always 100 iterations
were reached). Only a single run per model dimension was carried out; no
overhead search methods for finding good local optima were invoked. Thus it
remains unclear whether with more search effort, the HMM performance could
have been significantly improved. In the light of the fact that across the dif-
ferent model dimension trials the HMM performance develops quite smoothly,
this appears unlikely: if significantly better HMMs would exist and could be
found by random search, then we would expect that due to the random HMM
initialization the performance curve would look much more rugged.

Computations were done on a notebook PC with a Pentium 330 MHz pro-
cessor in Matlab.
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Figure 5: a. Training and test log-likelihoods (scale on left y axis) of ES trained
OOMs and EM trained HMMs plotted against model dimension. In addition,
the CPU time (in seconds, scale on right y axis) for both is shown. b. A closeup
on the development of training log-likelihood for the learning of a 50-dimensional
OOM and HMM. The EM algorithm here met its termination criterion in the
90th iteration. For details see text.

15 Discussion

The findings about the ES algorithm reported in this chapter are not older than
3 months at the time of writing and far from mature. We could not yet exten-
sively survey the performance of the ES algorithm except for ad hoc tests with
some synthetic data (discretized chaotic maps, outputs of FIR filters driven by
white noise input, outputs of random recurrent neural networks, HMM gener-
ated sequences) and a few standard benchmark datasets (sunspot data, Mel-
bourne meteorological data). In all cases, the behavior of ES was similar to the
HMM and 1,000,000 Mio Pound datasets reported here: a rapid development of
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models towards plateau training log-likelihoods (in 1 to 10 iterations, typically
3), followed by a jittery “hovering” at that plateau. Both training and testing
likelihoods at the plateau level were superior to HMM performance (however,
these were not optimized) except for HMM generated data, where HMM models
can play out their natural bias for these data. Thus it is fair to say that learn-
ing algorithms based on suffix-tree ES clearly have the potential to yield more
accurate models of stationary symbol processes, and in a much shorter runtime,
than HMMs.

Although it might be tempting, it is misleading to see the ES algorithm as a
variant of the EM algorithm. Both algorithms execute an iterative interplay be-
tween model re-estimation and state generation, but there are two fundamental
differences between them:

• The estimator instantiated by each ES step, including the initial model
estimator, is asymptotically correct. That is, if the process is in fact
m-dimensional and m-dimensional models are trained, the modeling error
would go to zero with increasing length of training data almost surely, right
from the zero-th iteration. This is not the case with the EM algorithm.

• The training log-likelihood does not necessarily grow monotonically under
ES, — but this behavior is constitutional for EM. The ES principle is not
designed to monotonically improve any target quantity.

Contemplating the task of improving an asymptotically correct estimator, the
natural target for improvement – actually the only one that we can easily think
of – is the statistical efficiency of the estimator. This was the guiding idea that
led us to the discovery of the learning methods described in this chapter, and
it is borne out by the mathematical analysis presented in Section 11. However,
we are not sure whether this is already the complete explanation of why and
how our algorithms work. First, the role of the condition of the V̂ matrix
has to be clarified — if it is not well-conditioned, inverting V̂ will magnify
estimation errors contained in it and potentially invalidate the reasoning of
Section 11. Interestingly, even when the condition of V̂ deteriorates through
ES iterations, we mostly find that the model quality increases nonetheless, up
to a point where V̂ becomes so ill-conditioned that numerical errors explode.
We confess that this is hard to understand. Second, we have only provided an
argument that the reverse characterizer obtained from the correct model yields
a maximally efficient estimator. But it remains to be investigated in what sense
the sequence of reverse characterizers constructed in ES runs moves toward this
correct model; in other words, how the sequence of reverse characterizers is
related to the gradient of ξ at points away from the minimum.

The main problem of current ES implementations is that learning runs some-
times become instable (condition of V̂ explodes). This is related to the model
dimension: while small dimensions never present difficulties in this respect,
learning larger models becomes increasingly prone to instability problems. We
currently perceive two sources for instability:
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Data-inherent ill-conditioning. If the generating process has a lower dimen-
sion than the models one wants to learn, the matrix V̂ must become ill-
conditioned with increasing training data size. Now, real-life datasets will
hardly come from any low-dimensional generator. But if we would inves-
tigate their limiting singular value spectrum (that is, the singuluar value
spectrum of the matrices Vk = (P (b̄i|āj))ā,b̄∈Ok in the limes of k → ∞) and
find a rapidly thinning tail, then for all practical learning purposes such
generators behave like low-dimensional generators, intrinsically leading to
matrices V of low numerical rank.

Invalid OOMs. Running invalid reverse OOMs to create reverse characterizers
is prone to sprinkle the obtained state sequence with outliers, which are
hard to detect. Using such contaminated reverse characterizers to feed the
input to linear regression task will even deteriorate the situation because
the minimization of MSE will further magnify the impact of outliers — a
familiar problem. This clearly happened in some of our more problematic
(high model dimension) test runs.

HMM/EM learning does not rely on any matrix (pseudo-)inversion and does not
suffer from the ensuing stability problems. Although we are fascinated by the
promises of ES, for the time being we would prefer HMM/EM over OOM/ES in
any safety-critical application. But we hope that the rich repertoire of numerical
linear algebra will equip us with the right tools for resolving the stability issue.
The rewards should be worth the effort.

Appendix A: Proof of Proposition 4(4)

We first show ∀ a ∈ O, w ∈ W π(τaw) = ta π(w). Let w =
∑

i=1,...,d αiwāi
.

Then

π(τaw) = π
( ∑

i=1,...,d

αiτawāi

)

= π
( ∑

i=1,...,d

αi 1τawāi

τawāi

1τawāi

)

=
∑

i=1,...,d

αi P (a | āi)fāia

=
∑

i=1,...,d

αi ta fāi
= ta

∑

i=1,...,d

αifāi

= ta π(w).

An iterated application of this finding yields the statement of the proposition.
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Appendix B: Proof of Proposition 5

“⇒”: Let x ∈ ker π, ā ∈ O∗. Then 1τāx = σπ(τāx) = σtāπ(x) = 0 by
Proposition 4 (3. and 4.).
“⇐”:

∀ā ∈ O∗ 1τāx = 0

→ ∀ā ∈ O∗ σtāπ(x) = 0

→ ∀ā ∈ O∗ (π(x))(ā) = 0

→ π(x) = 0.

Appendix C: The Three OOMs from Figure 2

The plotted OOMs were obtained from HMMs over the alphabet O = {a, b, c}
as described in Section 3. The Markov transition matrix was

M =




1 − 2α α α
α 0 1 − α
0 1 − α α


 , (54)

where α was set to 0.1, 0.2 and 0.3 respectively for the three plotted OOMs.
The symbol emission matrices Oa were

Oa = diag(0.8 0.1 0.1), Ob = diag(0.1 0.8 0.3), Oc = diag(0.1 0.1 0.6) (55)

for all HMMs. From these HMMs, OOMs were created that were interpretable
w.r.t. the singleton characteristic events A1 = {a}, A2 = {b}, A3 = {c}.

Appendix D: Proof of Proposition 10

To see the “if” direction, consider an n-dimensional OOM A for (Xn) whose
states wāj

(j = 1, . . . ,m) are the columns of W and whose other states wā are
linear combinations of the wāj

(whereby A is uniquely determined according to
the insights from Section 5 — the column vectors of W span the “prediction-
relevant” subspace V from Eq. (18)). It is a mechanical exercise to show that
condition (31) holds. For the “only if” direction choose any m sequences āj

such that V has rank m. Then by the definition of a characterizer, W has the
states wāj

of the OOM characterized by c as its columns, which must be linearly
independent because V has rank m.

Appendix E: Proof of Proposition 12

According to Proposition 10, every characterizer C of A must satisfy V ⊤C⊤ =
W⊤. It is straightforward to derive that conversely, any C with unit column
sums satisfying V ⊤C⊤ = W⊤ is a characterizer. Now any m × κ matrix C
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satisfies V ⊤C⊤ = W⊤ if and only if C = C0 + D, where the rows of D are in
kerV ⊤. The additional requirement that the column sums of C must sum to
unity is warranted by making the last row of D equal to the negative sum of
the other rows.

Appendix F: Proof of Proposition 13

Recalling that D is a diagonal matrix with w0 on its diagonal, the following
transformations yield the claim:

PA(a0 · · · an) = 1τan
· · · τa0

w0

= w⊤
0 τ⊤

a0
· · · τ⊤

an
1⊤

= w⊤
0 D−1Dτ⊤

a0
D−1 · · ·DτT

an
D−1D1⊤

= 1Dτ⊤
a0

D−1 · · ·Dτ⊤
an

D−1w0

= PAr (an · · · a0).

Appendix G: Proof of Proposition 14

We first assume that C is a characterizer and show claim 2. According to
Eq. (32) we have w′

ā = C (P (b̄1|ā) · · ·P (b̄κ|ā))⊤, which is equal to C πA wā by
Proposition 9 (1). To show that ̺ = R⊤R (assuming now w0 = (1/m · · · 1/m)⊤),
we consider for some b̄ = b1 · · · bk a column c = τ r

b̄
w0 /1τ r

b̄
w0 = τ r

b̄
w0/P (b̄) of C.

Using the terminology from Proposition 13 and noting that D = (1/m · · · 1/m)⊤,
it can be re-written as follows:

P (b̄)c = τ r
b1 · · · τ

r
bk

w0

= Dτ⊤
b1 · · · τ

⊤
bk

D−1 w0

= 1/m τ⊤
b1 · · · τ

⊤
bk

1⊤

= 1/m
(
1τbk

· · · τb1

)⊤
= 1/m (1τb̄)

⊤.

Thus the i-th column of C equals the transpose of the i-th row of πA up to a
factor of (mP (b̄i))

−1. Splitting this factor into (mP (b̄i))
−1/2 (mP (b̄i))

−1/2 and
redistributing the splits over C and πA yields the statement ̺ = R⊤R.

To show the first claim, first notice that C is a characterizer for A′ if and
only if ˜̺C is a characterizer for ̺A′ for some equivalence transformation ˜̺
according to Propositions 6 and 11. Because a transformation ˜̺ can always be
found that maps w0 on (1/m · · · 1/m)⊤ (exercise), we may assume w.l.o.g. that
w0 = (1/m · · · 1/m)⊤. Let

R =
(
(mP (b̄1))

−1/2(1τb̄1)
⊤ · · · (mP (b̄κ))−1/2(1τb̄κ

)⊤
)⊤

(56)

as above. Define vectors vā = CπAwā = R⊤ R wā. We want to show that the
transformation CπA = R⊤ R is an OOM equivalence transformation according

41



to Proposition 6. It is easily checked that CπA has the property 3 listed in
Proposition 6. The critical issue is to show that CπA = R⊤ R is bijective, i.e.
has rank m. We use that for any matrix A it holds that rank(A) = rank(A⊤A).
We see that rank(R⊤R) = rank(R) = rank((1τb̄1)

⊤ · · · (1τb̄κ
)⊤) = m, where

the last equality is due to the fact that the b̄i are characterizing sequences.
Thus, CπA = R⊤ R is an OOM equivalence transformation, and the vectors
vā = CπAwā are the states of an OOM equivalent to A. But considering Eq.
(32), this is just another way of saying that C is a characterizer.

Appendix H: Proof of Proposition 15

We first derive some conditions that the matrix G should satisfy. It follows from
Prop. 12 that 1mG = 0 and GV = 0. As before, here we use 1 to denote the row
vector of units, but with a subscript specifying its dimension. By the definition
of V and πA (cf. Eq. (36)), we have V = πAW , where W = [wā1

· · ·wāκ
].

Because rankW = m, it is clear that GV = 0 if and only if GπA = 0. Thus, it
suffices to show that G = 0 is a minimizer of the following optimization problem:

min
G

J(G) =
1

2

κ∑

i,j=1

P (āib̄j)‖wāi
− (Cr + G)(:, j)‖2 ,

s.t. 1mG = 0 , GπA = 0 . (57)

The target function J(G) can be re-written as:

J(G) =
1

2

κ∑

i,j=1

P (āib̄j)
(
‖wāi

‖2 + ‖(Cr + G)(:, j)‖2
)

−

κ∑

i,j=1

P (āib̄j)
〈
wāi

, (Cr + G)(:, j)
〉

, (58)

where the pair 〈x, y〉 denotes the inner product of x and y. The second item on
the r.h.s. of the above equality can be further simplified, as follows:

κ∑

i,j=1

P (āib̄j)
〈
wāi

, (Cr + G)(:, j)
〉

=

κ∑

i=1

〈
wāi

,

κ∑

j=1

P (āib̄j)(C
r + G)(:, j)

〉

=

κ∑

i=1

〈
wāi

, P (āi)

κ∑

j=1

P (b̄j |āi)(C
r + G)(:, j)

〉

=
κ∑

i=1

〈
wāi

, P (āi)(C
r + G)V (:, i)

〉
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=

κ∑

i=1

〈
wāi

, P (āi)wāi

〉

=
κ∑

i=1

P (āi)‖wāi
‖2 ,

Assuming that the process is stationary, and substituting the above equality
into Eq. (58), we get

J(G) =
1

2

κ∑

j=1

P (b̄j)‖(C
r + G)(:, j)‖2 −

1

2

κ∑

i=1

P (āi)‖wāi
‖2 . (59)

Since the second item of Eq. (59) is irrelevant to G, minimizing J(G) under the
constraints (57) is a convex quadratic programming problem. So G = 0 is a
minimizer of J(G) if and only if it satisfies the following KKT system:

∂J

∂G
= (Cr + G)Dp = 1⊤

mµ⊤ + λπ⊤
A , (60)

1mG = 0 , (61)

GπA = 0 , (62)

where Dp = diag{P (b̄1), P (b̄2), · · · , P (b̄κ)}; µ ∈ R
κ and λ ∈ R

m×m are Lagrange
multipliers. By the definition of Cr (cf. the paragraph after Prop. 14, pp. 24),
we have

CrDp = ̺−1[P (b̄1)w
r
b̄1

, · · · , P (b̄κ)wr
b̄κ

]

= ̺−1[τ r
b̄1

w0, · · · , τ
r
b̄κ

w0]

= ̺−1[Dτ⊤
b̄1

D−1w0, · · · ,Dτ⊤
b̄κ

D−1w0]

(cf. Prop. 13 and item 4 of the list thereafter)

= ̺−1D[τ⊤
b̄1

1⊤
m, · · · , τ⊤

b̄κ
1⊤

m]

= ̺−1Dπ⊤
A , (63)

where D = diag(w0) (cf. Prop. 13) and ̺ = CπA (cf. Prop. 14). And it follows
that (G,µ, λ) = (0,0, ̺−1D) is a solver of the KKT system (60)–(62).

By the above discussion, we conclude that G = 0 is a (global) minimizer of
the target function J(G); and is the unique minimizer if P (b̄j) > 0 (j = 1, · · · , κ).

Appendix I: Finding Good Characteristic Events

Given a training sequence S = a0 . . . aN over an alphabet O of size α, and
given a desired length k of characteristic events and model dimension m, we use
the following heuristic brute-force strategy to construct characteristic events
B1, . . . , Bm that in all our learning experiments rendered the matrix V̂ or V raw

(cf. Eq. 30) reasonably well-behaved with respect to inversion, which is the
prime requirement for success with the basic learning algorithm.
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Let #ā denote the number of occurrences of some word ā in S, let κ = αk

and let (āj)1≤j≤κ and (b̄i)1≤i≤κ both be the alphabetical enumeration of Ok.
Start by constructing a κ × κ (often sparse) matrix V raw

0 = (#āj b̄i). Then
it is clear that the matrix V raw is obtained from V raw

0 by additively joining
rows (to agglomerate characteristic sequences b̄ into characteristic events B)
and columns (to assemble indicative sequences ā into indicative events A). We
treat only the row-joining operations here; the column joining can be done
simultaneously or separately in a similar fashion. So we consider a matrix
sequence V raw

0 , V raw
1 , . . . , V raw

κ−m−1, where each matrix in the sequence is obtained
from the previous by joining two rows. The last matrix V raw

κ−m−1 then has size
m×κ; the characteristic sequences of the original rows from V raw

0 that are then
collected in the i-th row of V raw

κ−m−1 yield the desired characteristic events.
The intuitive strategy is to choose from V raw

n for joining that pair of rows
rx, ry that have the highest pairwise correlation rx/‖rx‖(ry/‖ry‖)

⊤ among all
pairs of rows in V raw

n . This greedy strategy will (hopefully) result in char-
acteristic events B that each comprise characteristic sequences b̄, b̄′ which are
“prediction similar” in the sense that P (b̄|ā) ≈ P (b̄′|ā) for all or most ā – that is,
joining b̄, b̄′ in B incurs a small loss of to-be-predicted distribution information.
In addition we take care that the final characteristic events Bi are reasonably
weight-balanced in the sense that P (Bi) ≈ P (Bi′) ≈ 1/m, in order to ensure
that the estimation accuracy P̂S(AjBi) is roughly similar for all entries of V̂ .
Spelled out in more detail, we get the following joining algorithm:

1. Initialization. Construct V raw
0 and a normalized version V norm

0 thereof
whose rows are either all zero (if the corresponding row in V raw

0 is zero) or
have unit norm. For all rows of V raw

0 whose weight (sum of row entries)
already exceeds N/m, put the corresponding row in V norm

0 to zero. These
finished rows will thereby automatically become excluded from further
joining. Set f to the number of finished rows. Furthermore, set the
remaining mass Q of rows still open for joining to N minus the total entry
sum of finished rows.

2. Iteration. V raw
n , V norm

n and f are given. If f = m − 1, jump to termi-
nation by joining all remaining unfinished rows. Else, compute the row
correlation matrix R = V norm

n (V norm
n )⊤ and choose the index (x, y) (where

y > x) of the maximal off-diagonal entry in R for joining rows rx, ry by
adding in V raw

n the y-th row to the x-th and deleting the y-th row, ob-
taining V raw

n+1. Normalize the summed row, replace the x-th row in V norm
n

by it and zero the y-th row in V norm
n . If the entry sum of row x in V raw

n+1

exceeds Q/(m− f), or if m− f = κ−m− 1−n, increment f by one, zero
the row x in V norm

n , and decrement Q by the component sum of the x-th
row in V raw

n+1. The result of these operations on V norm
n yields V norm

n+1 .

The computationally most expensive operation is R = V norm
n (V norm

n )⊤. It can
be effected by re-using the R from the previous step with O(κ2) floating point
operations (the recursion will be easily found). All in all the theoretical cost
of this algorithm is O(κ3) = O(α3k), but for κ/N > 1 the concerned matrices

44



quickly become sparse, which could be exploited to greatly reduce the compu-
tational load. However, k should be chosen, if possible, such that κ/N ≤ 1. The
condition number of matrices V̂ that we obtained in numerous experiments with
natural and artificial data typically ranges between 2 and 50, which makes the
algorithm very useful in practice for an initial model estimation with the basic
OOM learning algorithm. Unfortunately it is theoretically not clarified what
would be the best possible condition number among all choices of characteris-
tic and indicative events; it may well be the case that the observed condition
numbers are close to the optimum (or quite far away from it).

Appendix J: Running Invalid OOMs as Sequence
Generators

Here is a modification of the sequence generation procedure described in Sec-
tion 4, which allows us to use invalid OOMs and yet avoid negative probabilities.
Notation from that section is re-used here without re-introduction. The basic
idea is to check, at each generation step, whether the probability vector p con-
tains negative entries, and if so, reset them to a predetermined, small positive
margin (standard range: 0.001 ∼ 0.01), which is one of the three tuning parame-
ters of this method. Furthermore, if the sum of negative entries in p falls below
a significant setbackMargin (standard range: −0.1 ∼ −0.5), indicating that the
generation run is about to become instable, the generation is re-started setback-

Length (typical setting: 2 or 3) steps earlier with the starting state w0. Some
care has to be taken that the resetting to margin leads to probability computa-
tions where the summed probability for all sequences of some length k is equal
to 1. The method comes in two variants, one for generating random sequences,
and the other for computing the probability of a given sequence S. The former
has an additional step 3a in the description below. Detailed out, the n-th step
using this method works as follows.

Input. Fixed parameters: margin, setbackMargin, setbackLength, size α of al-
phabet, observable operators τa, starting state w0. Variables: the state
wn−1, and (if n ≥ setbackLength) the word s = an−setbackMargin · · · an−1 of
previously processed symbols, and index ian

of current symbol an [only if
used probability computation mode].

Output. State wn, log-probability L = log(P (an|wn−1)), and new symbol an

[only if used in generation mode] .

• Step 1. Compute p = Σwn−1.

• Step 2. Compute δ =
∑

i∈{1,...,α},p(i)≤0(margin − p(i));

p+ =
∑

i∈{1,...,α},p(i)>0 p(i); p− = p+ − δ and ν = p−/p+.

• Step 3. Check for potentially instable state, and act if necessary.]
If δ < setbackMargin and n ≤ setbackLength + 1 [we encounter a
problematic state early in the process], put wn−1 = w0, recompute
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p = Σwn−1 and δ, p+, p−, ν as in step 2.
Else, if δ < setbackMargin [we encounter a problematic state later in
the process and restart the generation a few steps earlier],
set w = w0;
for i = 1 to setbackLength: w = τs(i)w; w = w/1w [we recompute the
last few states from w0];
set wn−1 = w;
recompute p = Σwn−1 and recompute δ, p+, p−, ν as in step 2.

• Step 3a. [only executed in the generation variant] Randomly choose
an according to the probability vector p; set ian

to its index in the
alphabet.

• Step 4. [update state and compute “blurred” probability of current
symbol]
If p(ian

) ≤ 0 [current symbol would be assigned a negative probability],
set L = log(margin) and w = τan

wn−1; wn = w/1w.
Else [current symbol is O.K. but its probability has to be reduced to
account for the added probability mass that might have been assigned
to other symbols in this step] set L = log(νp(ian

)) and w = τan
wn−1;

wn = w/1w.

Appendix K: Details of the 1,000,000 Mio Pound
Learning Experiment

All OOMs computed during the ES iterations were invalid, so we employed the
stabilizing method described in Appendix I for computing the requisite reverse
state sequences. The same method was used to determine the log-likelihoods on
the training and testing sequences. The settings (cf. Appendix I) that we used
were margin = 0.001, setbackMargin = 0.3, setbackLength = 2. These settings
were optimized by hand in preliminary tests.

Only such indicative sequences ā were gleaned from the suffix tree that
occurred at least 10 times in the training sequence.

This little study was carried out before the algorithm for finding good charac-
teristic events described in Appendix H was available. Thus we used an inferior
method for initial model estimation that we need not detail out here. Using the
better method for initial model estimation would very likely have resulted in an
improved overall performance (the high initial jump in model quality from the
initial model to the first ES estimated model that appears in Figure 5b would
disappear).
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