
Collected Exercises and Exam Sheets with Solutions 
for ACS1, Fall 03 
 
Exercises for ACS 1, Fall 2003, sheet 1 
 
Return solutions in paper form on Wednesday Oct. 1, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
 
Exercise 1 (30 points). Describe a method which directly transforms an �-NFA into an 
equivalent NFA, by eliminating the �-transitions.  
 
Solution A: 1. Delete all reflexive��-cycles . 2. merge all nodes that are connected by �-cycles 
of length > 1. 3. Pick one �-transition which has no precursor, and which goes from node i to 
j. Take all transitions into i, duplicate them and redirect the duplicates to j. Delete the �-
transition. Repeat until all �-transitions are gone. 
 
Solution B: Take the �-NFA as is, and for any symbol a define��(q,a) of the new NFA as the 
extended transition function �^(q,a) of the �-NFA. The new set of accepting states is the old 
one, except possibly adding the starting state, if in the original �-NFA an accepting state lies 
in the Closure of the starting state.  
 
 
Exercise 2 (30 points). A transition system is a generalization of �-NFAs, in which 
additionally transitions labelled with words of length greater than 1 are admitted. A transition 
graph of a transition system might look like this: 
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Give a formal definition of transition systems (20 points) and their accepted languages and 
prove that the languages accepted by transition systems are accepted by DFAs (10 points).  
 
Solution (for proof): simplest proof is to transform transition system into �-NFA by changing 
each word-labelled arc into a sequence of symbol-labelled arc. 
 
Exercise 3 (30 points). Give a regular expression that tries to catch in an electronic ad 
newspaper all contact ads where a man looks for a woman (or, if you prefer, the other way 
round), like "Lonely man looks for lovely woman, blahblab....", or "My nest is so empty 
...blah blah... when will she call me ...". You may assume that each ad (of whatever sort) is 
enclosed by a blank line (that is, two newline commands \nl). Start with some simple initial 
regex, give an example of a valid contact ad that it does not catch or an unwanted contact ad 



of different type that it does catch, improve the initial regex to deal with that example, etc., 
through at least 8 cycles of improvement.  
 
Exercise 4. Give (a) a formal set description of the kind L = {w � {0,1}* | w = u1}, (b) an �-
NFA and (c) a regex (using UNIX style if you like) for the following languages: 
 
(30 points) L1: The set of words over {0,1} that do not contain 101 as a subword 
(30 points) L2: The set of words over {0,1} with equal numbers of 0's and 1's such that no 
prefix has two more 0's than 1's, nor two more 0's than 1's (for (a), assume that the function f0 
counts the number of 0's in a word and the function f1 that counts the number of 1's in a word) 
(30 points) L3: The set of nonempty words over {0,1} whose number of 0's is divisible by 3 or 
divisible by 5. 
 
In each case, prove that your solution is correct. 
 
One solution for L1: (b): first write a NFA that accepts the complement of L1, transform it into 
a DFA, exchange accepting / nonaccepting states. (c): derive regex from your DFA or build 
regex directly from admissible concatenations of non-101 three-symbol words (taking care of 
leading two- and one-symbol words and the empty word) 
One solution for L2: Show first (by induction over even wordlength) that words of even length 
must have identical numbers of 1's and 0's. The rest is easy.  
One solution for L3: (b): design a DFA A1 whose states count the number 0's read in and 
accepts all words with 3n zeros, and another similar DFA A2 accepting words with 5n zeros. 
Join A1 and A2 in a NFA. (c): create regex from your NFA or write down directly, as 
((1*01*)3 )+ |((1*01*)5 )+ 



Exercises for ACS 1, Fall 2003, sheet 2 
 
Return solutions in paper form on Wednesday Oct. 15, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
 
Exercise 1 (20 points). Consider the DFA A given by the following transition table: 
 
  0 1 
 q1 q2 q3 
 q2 q3 q1 
          *q3 q3 q2 
 
Construct the transition graph and construct a regular expression that describes L(A), by 
eliminating state q2. Provide the transition graph of the 2-state automaton that you obtain after 
elinimatint state q2.  
 
Solution: I found the regex (00 + (1+01)(01)*(1+00))*(1+01)(01)* 
 
Exercise 2 (10 points). Convert 00(0+1)* to an �-NFA.  
 
Exercise 3. Prove (by exploiting Theorem 4.3 and possibly some further arguments, or by 
construction of minimal DFAs) or disprove (by using Theorem 4.4): 

(i) (R + S)* S = (R*S)*   [10 points] 
(ii) (RS + R)*R = R(SR + R)*  [30 points] 

 
Exercise 4 (10 points). Prove that the language {0n | n is a power of 2} is not regular.  
 
Exercise 5 (10 points). Show that the regular languages are closed under the min operation, 
where min(L) = {w | w is in L, but no proper prefix of w is in L}.  
 
Solution: Take a DFA for L and delete all arcs that leave accepting states. 
 
Exercise 6 (30 points). Suppose that L is any language, not necessarily regular, over the 
alphabet {0}. Show that L* is regular. Hint: you may use the fact from number theory that if 
integers k1, ..., kn have greatest common divisor d, then for some l, all integers which are 
greater than l and which are divisibly by d can be written as a sum �1 k1 + ... + �n kn, where 
the �i are nonnegative integers.  
 
 



Exercises for ACS 1, Fall 2003, sheet 3: Solution sheet 
 
Note: Solutions given here are sometimes more detailed than would be required for full 
grades. 
 
 
Exercise 1 (30 points). A word w  made from symbols "(" and ")" is called balanced if 
iterated deletion of substrings "()" ends in the empty word. Prove with a proof of the kind 
given in example 6.3 in the lecture notes: The language of the grammar B � BB | (B) | �  is 
the language of all balanced words.  
 
Solution. Call our grammar G and call the language of balanced words Lb.We have to show 
(a) if w � Lb, then w �  L(G) and (b) if w � L(G), then w � Lb.  
 
(a): Let w � Lb, |w| = 2n, w = s1,..., s2n, where si � {(,)}. Then there exists a sequence of 
deletions d1, ..., dn of innermost "()" that at the end deletes w altogether. Call a pair (si, sj) the 
balance pair of dk if (si, sj)  is deleted by dk. For showing that w �  L(G) we may without loss 
of generality assume that (s1, s2n) is a balance pair of dn. [If it isn't, consider w' = (w), where 
we may assume this, and show that w' is in L(G); conclude that then also w is in L(G) because 
if we have a derivation of w' then its first derivation must be  B ��(B) and the remaining 
derivations for w' give a derivation for w]. We call a balance pair (si, sj) a descendant of (s'i, 
s'j) if s'i < si and sj < s'j, and write (si, sj) < (s'i, s'j) for this. Clearly descendance is transitive 
and anti-symmetric, has (s1, s2n) as maximal element, and balance pairs of form (si, si+1) are 
the minimal elements of < . Hence the balance pairs are organized in a tree T by <, where the 
nodes are the balance pairs. The leaves are the minimal balance pairs and the root is (s1, s2n). 
When we annotate a node N of this tree by the bracket expression obtained from assembling 
all the balance pairs below and including N, we get a (unique) hierarchic tree representation of 
w, as in the following figure for w = (1(2)3(4(5)6)7)8:  
 
  (1(2)3(4(5)6)7)8 
 
  (2)3 (4(5)6)7 
 
   (5)6 
 
We call these node annotations the subexpressions of w. For a node N let e[N] denote the 
subexpression annotating N.  
 
In order to show that w can be generated by G, observe first that clearly B �* (Bn) for n � 1. 
We show by induction on the structure of trees that w can be generated by G, as follows. 
Claim: each subexpression in T can be generated by G (and therefore, the root w can be 
generated by G). 
 
Basis: all subexpressions at the leaves of the tree can be obviously generated by B � (B) 
��().  
 
Induction: consider some non-leave node N of T with direct tree childs N1, ..., Nk. Then e[N] = 
(e[N1] ... e[Nk]). By induction we know that each e[Ni] can be generated by G. Then e[N] can 



be generated by G, too, by first generating B �* (Bk) and then expanding each of the B on the 
rhs. by the generation for the corresponding e[Ni].  
 
Note. For getting full grades, this detailed treatment is not required. You may have used the 
tree representation of a balanced parenthesis expression without deriving it – it is basic 
knowledge for computer scientists. 
 
(b) We now show that if w � L(G), then w � Lb. Induction on the length n of derivations of w.  
 
Basis: n 	 2: the only derivation in G of length at most 2 is B � (B) � () [can be found by 
systematic construction of all derivations of length at most 2], which is a balanced. 
 
Induction: Assume we have derived w in G with a derivation D of length n > 2, and all w' 
derivable in G with derivations of length smaller than n are in Lb. The first step in D is B � 
BB or B � (B). In the first case, w = uv with u, v � Lb by induction. Thereby, w � Lb because 
we can ultimately delete u and v separately by deleting innermost (), and thereby delete uv = 
w altogether. In the second case, w = (u) with u � Lb by induction, thus we can delete w by 
first deleting u (by deleting all innermost ()) and then deleting the outermost () of w.  
 
 
Exercise 2. Consider the language L = {w � {a, b}* | w is not of the form vv}. 
 

a. (20 points) Show that L is not regular.  
b. (30 points) Show that L is a context-free language.  
c.  

Solution. a. First use the pumping lemma to show that Lc = {w � {a, b}* | w is of the form 
vv} is not regular. That's a routine argument: let n be the PL constant. Assume Lc is regular. 
Consider the word anbn. It can be written as xyz with |xy| 	 n, y 
 �. Because |xy| 	 n, y = ak 
for some k > 0. By PL, an-kbn � Lc. Contradiction. Thus Lc is not regular. Because the regular 
languages are closed under complement, L is not regular either.  
 
First observe that  
 

L = L1 � L2 � L3 :=  
{uavxby � {a, b}* | |u| = |x| � 0 and |v| = |y| � 0  } � 
{ubvxay � {a, b}* | |u| = |x| � 0 and |v| = |y| � 0  } � 
{v � {a, b}* | v has uneven length}.  

 
L3 is clearly regular (for complete completeness, you may easily construct a DFA for this 
language) and thereby context-free. L2 can be re-written as {uavxby � {a, b}* | |u| = |v| � 0 
and |x| = |y| � 0}. Observing this, it is easy to find a CFG for this language, for instance, S � 
AB, A � a | aAa | bAa | aAb | bAb, B � a | aBa | bBa | aBb | bBb does it. By a similar 
argument, L3 is context-free, too. So we have three context-free languages. Without loss of 
generality ("w.l.o.g."), you may assume that we have grammars for these languages with 
disjoint variable sets and start variables S1, S2, S3 and production sets P1, P2, P3. Then you get 
a CFG for L by joining P1, P2, P3 and adding a new start symbol S and the rule S � S1 | S2| 
S3. Thus, L is context-free. 
 



 
Exercise 3 (30 points). You might want to boost the power of grammars by allowing regular 
expressions (over the joined alphabet of terminals and variables) for the body. For instance, it 
would then be allowed to write the rule A � ((a + b)*B)(C + a)*. You would use such 
productions in two steps: first, replace the regular expression by any word described by this 
expression (in this example, for instance, you might get  A � aaBCa in this first step), 
second, use the ordinary production that you now obtained in the ordinary way in derivations. 
Because a regular expression can define an infinite number of words, this amounts to a 
shorthand notation for an infinite set of ordinary production rules. Show that the languages 
defined by such "boosted" grammars G are again the context-free languages. Note: The HMU 
book gives a direct proof of this claim on page 202/203, using structural induction over the 
form of regex's. You should give a different proof that uses the fact that regular languages are 
context-free.  
 
Solution: Let G = (V, T, S, P) be a "boosted" grammar, where P contains rules that have 
regex's as bodies. Let A � e be such a rule (e is a regex over � = V � T ). We show how to 
replace it by a finite set of ordinary production rules. First introduce another alphabet �' = V'� 
T' which is a variant of � obtained by replacing each A � V by a new symbol A' and each a � 
T by a'. Denote by e' the regex obtained from e by replacing variables from � with their 
counterparts from �'.  Let G'(e') be a CFG for the language of e' [here you need the fact that 
regular languages are context-free], where without loss of generality the variables of G' are 
disjoint from the variables of G. Note that the set of terminal symbols of G' is �'. Let S' be the 
start symbol of G'.  Now replace A � e by the following set of rules: (i) a rule A  � S', (ii) the 
rules from G'(e'), (iii) for each x' ����' , a rule x' � x. Then G with the new "ordinary" rules 
(i) – (iii) instead of the boosted rule A � e describe the same language. Repeat for all boosted 
rules.  
 
 
Exercise 4. (Writing context-free grammars in two formats for an XML document). Consider 
the XML document from Example 6.4 of the script.  
 

a. (20 points) Write a CFG in Backus-Naur format (the format used in Fig. 6.1 in the 
script) that describes XML documents of the kind given in Example 6.4 (that is, that 
XML document should lie in the language of the grammar you write). Consult 
http://dublincore.org/documents/2002/07/31/dcmes-xml/ for guidance – actually, all 
you have to do is to pick a suitable subset from the grammar given in the URL. 

b. (20 points) Write a DTD for RDF documents as the one from the example, that is, the 
particular RDF document given in Example 6.4 should fall into the class of XML 
documents described by your DTD. Ignore the xmlns declarations of the example 
document and stick to the toy example 6.4 from the tutorial. (See 
http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd for a DTD 
that would cover the second block in the document from above – but because this 
DTD is very detailed, it is also confusing).  

 
Solution. First I must apologize for a serious typo in the original exercise text. The "example 
6.4" mentioned in the text should correctly read as "example 6.8" in the first to occurences 
[this happened because I re-arranged the script after writing the exercise sheet – sorry.]. Only 
with this adjustment made, the exercise makes much sense. The example 6.8 was the 
following RDF document:  
 
 

http://dublincore.org/documents/2002/07/31/dcmes-xml/
http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd


<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' 
 xmlns:iX='http://ns.adobe.com/iX/1.0/'> 
 
 <rdf:Description about='' 
  xmlns='http://ns.adobe.com/pdf/1.3/' 
  xmlns:pdf='http://ns.adobe.com/pdf/1.3/'> 
  <pdf:CreationDate>2003-09-17T10:50:16Z</pdf:CreationDate> 
  <pdf:Author>Herbert Jaeger</pdf:Author> 
  <pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator> 
  <pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title> 
 </rdf:Description> 
 
 <rdf:Description about='' 
  xmlns='http://purl.org/dc/elements/1.1/' 
  xmlns:dc='http://purl.org/dc/elements/1.1/'> 
  <dc:creator>Herbert Jaeger</dc:creator> 
  <dc:title>Exercises for ACS 1, Fall 2003</dc:title> 
 </rdf:Description> 
 
</rdf:RDF> 
 
The Backus-Naur format for grammars employs special characters "<" and ">". This same 
character as used in the target RBF documents, too. This means that we have to use another 
special escape character within the Backus-Naur specification to distinguish the target "<" 
from the Backus-Naur "<". Using \> and \> for the target symbols, a Backus-Naur grammar 
for documents of this kind might look as follows. 
 
<RDFdocument> ::= \<rdf:RDF xmlns:rdf= '<string>' xmlns:iX='<string>'\>  

<descriptions> \</rdf:RDF\> 
<string> ::= <char><string> | <char>  

<char> ::= � | a | b | ... |1 | ... | 9 | 0 | , | .. (same for all ASCII symbols) 
<descriptions> ::= <adobeDescription> <purlDescription> (plus other types of descr.) 
<adobeDescription> ::= \<rdf:Description about=''  

xmlns='http://ns.adobe.com/pdf/1.3/' 
 xmlns:pdf='http://ns.adobe.com/pdf/1.3/'\>  

<adobeFields>  
\</rdf:Description\> 

<adobeFields> ::=  
<adobeCreationDateField><fieldsAfterAdobeCreationDateField> | 
<fieldsAfterAdobeCreationDateField> 

<fieldsAfterAdobeCreationDateField> ::=  
<adobeAuthorField><fieldsAfterAdobeAuthorField> |  
<adobeAuthorField> 

<fieldsAfterAdobeAuthorField> ::=  
<adobeCreatorField><fieldsAfterAdobeCreatorField> |  
<adobeCreatorField> 

<fieldsAfterAdobeCreatorField> ::=  
<adobeTitleField><fieldsAfterAdobeTitleField> |  

<adobeTitleField> | � 
<adobeCreationDateField> ::= \<pdf:CreationDate\> <string>  

\</pdf:CreationDate\> 
... 
<adobeTitleField> ::= \<pdf:Title\> <string> \</pdf:Title\> 
... (same for purlDescription) 
 
This grammar supposes that a RDF document must have descriptions for adobe, purl, and 
possible others in that order, possibly empty. It further supposes that adobe descriptions have 
entries for creation data, ..., title, at most one them, in that order, possibly empty. I don't know 



about the true standards for RDF documents; other assumptions would be reflected in variants 
of such grammars.  
 
b. A DTD for RDF documents, ignoring the xmlns parts, might look as follows (note that ? 
means "zero or one occurrence of"): 
 
<!DOCTYPE RDFdocument [ 
 <!ELEMENT rdf:RDF (rdf:Description)*> 
 <!ELEMENT rdf:Description  

(pdf:CreationDate? pdf:Author? ... pdf:Title? | 
dc:creator? ... dc:title? 
)> 

 <!ELEMENT pdf:CreationDate (\#PCDATA)> 
... 
 
 <!ELEMENT dc:title (\#PCDATA)> 
]> 
 
 



Exercises for ACS 1, Fall 2003, sheet 4: Solutions 
 
Exercise 1. The following grammar generates "prefix" expressions of the kind  
+*
xyxx:   E � +EE | 
EE | *EE | x | y . 
 

a) (10 points) Find a leftmost derivation and a parse tree for +*
xyxx.  
b) (30 points) Prove that this grammar is unambiguous.  

 
Solution. a. Leftmost derivation: E � +EE � +*EEE � +*-EEEE � +*-xEEE � +*-xyEE 
� +*-xyxE � +*-xyxx.   Parse tree:  
 
     E 
 
    + E E 
 
    * E E x 
 
    - E E x  
 
     x y 
 
 
b. First we show that each word in L(G) has a unique leftmost derivation. 
 
General comment: If one has to show a statement of the general form "for every A there exists 
exactly one B such that blabla", then the proof typically has two parts: (a) show that for every 
A there exists a B such that blabla, (b) if for A there exist B such that blabla and B' such that 
blabla, then B 
 B'. This argument is often made by contradiction, that is, assuming B = B' is 
led into a contradiction. 
 
So we here too first have to show that each word w � L(G) has a leftmost derivation. But we 
already know that from a theorem early in the lecture, which said among other things that if a 
word can be derived in a grammar, then it also has a leftmost derivation.  
 
So now assume that for w � L(G) we have two different leftmost derivations, say E =��0  � 
�1 � �2 � ... � �l = w  and E =��0  � �1 � �2 � ...�� �k  = w. For some 0 < n 	 min(k, l) 
it must hold that  �n 
 �n  but �i � �i  for all i < n. �n-1 � �n-1 must contain at least one 
variable because otherwise the derivation couldn't go further to �n. Let �n-1 (� �n-1) be of 
form �E�', where E is the first E in �n-1 from the left. Now, in both derivations, this E must be 
replaced by applying some production, because both derivations are leftmost. But all 
productions that replace E are of the form E � t or E ��tEE, where t is a terminal. 
Importantly, different productions introduce different terminals t. Thus, �n 
 �n implies that 
different rules are used to replace the E in �E�', which means that �n starts with �t and �n 
starts with �t', where t 
  t'. This implies that the two derivations cannot yield the same word, 
a contradiction.  
 
So every word in the language of our grammar has a unique leftmost derivation. Now if the 
grammar would be ambiguous, some word would possess two different parse trees. But if two 



parse trees are different, then also the leftmost derivations obtained by traversing the parse 
tree in a left-first, depth-first way would differ, a contradiction to our previous finding.  
 
it must hold that  
 
Basis. |w| = 1: then w = x or w = y, and in each case there is only one possible derivation, 
which is a leftmost derivation. 
Induction. Assume statement holds for all w � L(G),  |w| 	 n.  
 
 
Exercise 2. (30 points) Design a PDA for the language L of words that contain twice as many 
0's as 1's (including �). Specify your PDA by its transition function, and describe the 
principles behind your design in intuitive terms. You may choose acceptance by empty stack 
or accepting states, whatever you find more convenient.  
 
Solution: Call a word "equilibrated" if it has twice as many 0's as 1's. Use two stack symbols 
X, Y. At any time, the stack either is empty, (then you may accept by empty stack), or 
contains only Z0, or contains only X's on top of Z0, or contains only Y's on top of Z0. 
Semantics of X's: "if there are n X's, the subword that has been read in so far has an excess of 
n/2 1's to become equilibrated". Semantics of Y's: "if there are n Y's on the stack, the subword 
that has been read so far has an excess of n 0's to be equilibrated". [You might also say, each 
Y is "worth" one 0 and each X is "worth" 1/2 1]. If a 1 is read while the top of the stack is X 
or Z0, push XX on the stack. If a 0 is read while the top of the stack is X, pop one X. If a 0 is 
read while the top of the stack is Y or Z0, push Y on the stack. If a 1 is read while the top of 
the stack is Y, pop two Y's. This latter action must be coded as a sequence of two transitions 
that pop two Y's consecutively. Finally, there is one transition that simply pops Z0 on � input, 
leading to empty (=accepting) stack. 
 
The transition function would look as follows (let q0 be starting state, and Q = { q0, q1}. 
 
�(q0, 1, Z0) = {(q0, XXZ0)} 
�(q0, 1, X) = { (q0, XXX) } 
�(q0, 0, Z0) = { (q0, YZ0) } 
�(q0, 0, Y) = { (q0, YY) } 
next line contains the "pop-two-Y" cycle. Note that the case where the cycle hits the stack 
bottom must be caught and one X be pushed worth half the 1 that started the cycle. 
�(q0, 1, Y) = { (q1, �)} �(q1, �, Y) = { (q0, �)} �(q1, �, Z0) = { (q0, XZ0) } 
�(q0, 0, X) = { (q0, �)} 
�(q0, �, Z0) = { (q0, �)} 
 
Exercise 3 (30 points). Show that if P is a PDA accepting by empty stack, then there is a PDA 
P' with only two stack symbols (plus Z0) that accepts the same language, also by empty stack. 
Hint: this is taken from the HMU book. In the book the hint is given to binary-code the 
original stack symbols from P. That is one option, but not the only one. 
 
Solutions (sketch): As an alternative to the suggestion of HMU, code original stack symbols 
by sequences of X's of different length and use the other stack symbol Y as a delimiter. In 
each case, one must install appropriate state sequences in the "control unit" of P' that have to 
be traversed deterministically to detect what coded stack symbol is currently being read or 



written. More precisely, if the original stack alphabet � had n symbols (excluding Z0) X1, ..., 
Xn, code them by stack words YXi. (i = 1, ..., n). For an original stack contents �, denote by 
code(�) the stack word obtained by replacing all Xi in a by YXi.  An original transition rule of 
the form �(q, a, Xi) =  (q', �) is replaced a sequence of rules  
�(q, �, X) = (p1, �), �(p1, �, X) = (p2, �), ..., �(pi-1, �, X) = (pi, �), �(pi, a, Y) = (q', code(��), 
where for every original state q and every original stack symbol Xi, one such sequence is 
installed with new states. An original transition where Z0 is read and some nonempty � that is 
different from Z0 is pushed must be replaced by another transition which is like the original 
one but pushes code(�)  instead of �.  
 
If binary coding is used (as suggested by HMU book), all binary code-stack-symbol-strings 
for original symbols must have equal length, because there is now no delimiter symbol 
available.  
 
Exercise 4 (20 points). Convert the grammar S � aAA, A � aS | bS | a  into a PDA that 
accepts the same language by empty stack.  
 
Solution: Using the construction from theorem 7.2, we get PDA rules for an equivalent PDA 
by using S as the stack start symbol and only a single state q:  
 
�(q, �, S) = {(q, aAA)} 
�(q, �, A) = {(q, aS), (q, bS), (q, a)} 
�(q, a, a) = {(q, �)} 
�(q, b, b) = {(q, �)} 
 
 



Exercises for ACS 1, Fall 2003, sheet 5 
 
Return solutions in paper form on Thursday Nov. 27, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
Remark: the first 5 exercises are simple. 
 
Exercise 1 (5 points) Is the PDA P = {{p, q}, {0,1}, {X, Z0}, �, q, Z0} given by the 
transitions below deterministic? Either show that it meets the definition of a DPDA or find a 
rule / some rules that violate determinism. 
 

1. �(q, 1, Z0) = {(q, XZ0)} 
2. �(q, 1, X) = {(q, XX)} 
3. �(q, 0, X) = {(p, X)} 
4. �(q, �, X) = {(p, �)} 
5. �(p, 1, X) = {(p, �)} 
6. �(p, 0, Z0) = {(q, Z0)} 

 
Solution: It is not deterministic because rules 2. and 4. violate the second condition in the 
definition of DPDAs. 
 
Exercise 2 (10 points) Give a deterministic PDA to accept {0n1m | 1 	�n 	 m}. Describe your 
PDA in words and specify its transition function and give a transition diagram. 
 
Solution: One possible PDA: Accept by final state. Let r be the accepting state. First read in 
0's in starting state q, counting them by putting 0's on the stack. Go to another state p when 
the first 1 is encountered and pop 0's when reading 1's. End dead when the bottom stack 
symbol is seen while there is still a 1. Go to accepting state r when the bottom is seen. In r, 
read in more 1's if there are any, staying in r.  
 
P = {{p, q, r}, {0,1}, {0, Z0}, �, q, Z0} 
 
Transition function and diagram: 

 1, 0/� 
 

1, Z0/Z0 
 

1, 0/� 
 

0, Z0/0Z0 
0, 0/00 

start 
p q 

 
1. �(q, 0, Z0) = {(q, 0Z0)} 
2. �(q, 0, 0) = {(q, 00)} 
3. �(q, 1, 0) = {(p, �)} 
4. �(p, 1, 0) = {(p, �)} 
5. �(p, 1, Z0) = {(r, Z0)} 
6. �(r, 1, Z0) = {(r, Z0)} 

 
 
Exercise 3 (40 points) Convert the following grammar G = (V, T, 
eliminating �-productions, (ii) eliminating unit productions, (iii) e
(iv) putting the resulting grammar in CNF. Each of the steps (i) to
 

S � 0A0 | 1B1 | BB 
A � C 
B � S | A 
1, Z0/Z0

r 

P, S) into CNF, by (i) 
liminating useless symbols, 
 (iv) counts 10 points.  



C � S | � 
 
Solution: (i) a. Finding nullable variables: NULL(1) = {C}, NULL(2) = {C, A}, NULL(3) = 
{C, A, B}, NULL(4) = NULL(5) = {C, A, B, S}. b. For S � 0A0 add {S � 0A0, S � 00} to 
P', for S � 1B1 add {S � 1B1, S � 11} to P', for S � BB add {S � BB, S � B} to P', for A 
� C add { A � C } to P', for the remaining rules add {B � S, B � A, C � S} to P'. This 
gives a new set P'  
 

S � 0A0 | 00 | 1B1 | 11 | BB | B 
A � C 
B � S | A 
C � S  

 
(ii) a. Finding unit pairs: PAIRS(1) = {(A, A), (B, B), (C, C), (S, S)}, PAIRS(2) = {(A, A), (B, 
B), (C, C), (S, S), (S, B), (A, C), (B, S), (B, A), (C, S)}, PAIRS(3) = {(A, A), (B, B), (C, C), (S, 
S), (S, B), (A, C), (B, S), (B, A), (C, S), (S, A), (A, S), (B, C), (C, B)}, PAIRS(4) = PAIRS(5) = 
{(A, A), (B, B), (C, C), (S, S), (S, B), (A, C), (B, S), (B, A), (C, S), (S, A), (A, S), (B, C), (C, B), 
(S, C), (A, B), (C, A)}. An easier way to see that here all pairs are unit pairs is to check the 
following directed graph created by the unit transitions from P' and see that it is cyclic, that is, 
every node is transitively reachable from every other node: 
 
   S A 
 
 
   B C 
 
b. Adding to P'' all productions of the form A � �, where B � � is a non-unit production in 
P' and (A, B) is a unit pair, yields P'' = 
 

S � 0A0 | 00 | 1B1 | 11 | BB  
A � 0A0 | 00 | 1B1 | 11 | BB 
B � 0A0 | 00 | 1B1 | 11 | BB 
C � 0A0 | 00 | 1B1 | 11 | BB 

 
(iii) a. We first detect all generating symbols. GEN(1) = {0,1}, GEN(2) = GEN(3) = {0, 1, A, 
B, C, S}.  
 
b. Deleting from G all nongenerating symbols and productions in which such symbols occur, 
yields G2 = (V, T, P'', S), because there are no non-generating symbols or productions. 
 
c. Next we find all reachable symbols of G2. The graph described in the lecture notes is 
 

 S A 
 
B   C 
 
 0 1 

 
 
 
 
 
 
From this we see that the reachable symbols are {0, 1, S, A, B}. 
 



d. Finally we eliminate from G2 all non-reachable symbols and productions in which such 
symbols occur, to obtain G1 = ({S, A, B }, {0, 1}, P''', S), where P''' = 
 

S � 0A0 | 00 | 1B1 | 11 | BB  
A � 0A0 | 00 | 1B1 | 11 | BB 
B � 0A0 | 00 | 1B1 | 11 | BB 

 
(iv) In the last step, we obtain a CNF grammar by carrying out the two steps given in the 
proof of theorem 8.5 in the lecture notes. 
 
a. Arrange that all bodies of lenght 2 or more consists only of variables. This gives us 
productions P'''' = 
 

S � A0AA0 | A0A0 | A1BA1 | A1A1 | BB  
A � A0AA0 | A0A0 | A1BA1 | A1A1 | BB 
B � A0AA0 | A0A0 | A1BA1 | A1A1 | BB 
A0 ��0 
A1 ��1 

 
b. Break productions with all-variable bodies of length 3 or more into sequences of 
productions of the form A � BC. This gives us the final rule set PCNF =  
 

S � A0A' | A0A0 | A1B' | A1A1 | BB  
A � A0A' | A0A0 | A1B' | A1A1 | BB 
B � A0A' | A0A0 | A1B' | A1A1 | BB 
A'��AA0 
B'��BA1 
A0 ��0 
A1 ��1 

 
Exercise 4 (10 points) In the construction of CNFs, we eliminated �-production, unit pairs, 
and useless symbols. One step in the eliminiation of �-productions was to find all nullable 
variables. This can be done inductively by constructing sets NULL(1), NULL(2) etc. 
Similarly, the eliminiation of unit pairs included a step where all unit pairs of variables had to 
be found. Again, this was done inductively by constructing PAIRS(n). One step in the 
elimination of useless symbols was to find all reachable symbols. In the script, a graph-
theoretical method is sketched. Your task here: describe an inductive procedure for finding all 
reachable symbols of a grammar G, by constructing sets REACH(1), REACH(2), ... and prove 
correctness of your construction. 
 
Solution. Inductive procedure to compute reachable symbols: Let G = (V, T, P, S) be the 
grammar for which we want to find the reachable symbols. Put REACH(1) = {S}. Construct 
REACH(n+1) from REACH(n) as follows. For each variable symbol A from REACH(n) and 
each production A � � from P and each symbol X in �, add X to REACH(n), to make 
REACH(n+1). Terminate when REACH(n+1) = REACH(n).  
 
Proof of correctness: we have to show that this procedure (i) finds all reachable symbols, and 
(ii) that all found symbols are reachable.  



 
(i): Let X be reachable, that is, there exists a sequence of derivations S �* �X� for some �, � 
� (V � T)*, consisting of n-1 single derivation steps, that is, S = �1 � �2 � ... ���n-1 � �n 
= �X���We show by induction on this sequence that all symbols occurring in this sequence are 
found by the algorithm, and more strongly, that all symbols in �1 are contained in REACH(i). 
Basis: all symbols in �1 are found and in REACH(1): clear because these symbols are {S} and 
that's REACH(1). Induction: assume all symbols in �i are in REACH(i). The symbols from 
�i+1 are either kept unchanged from �i, or are generated from some variable symbol A in �i 
by a production from P. In both cases, they are in REACH(i+1). – Thus, the algorithm finds 
all reachable symbols.  
 
(ii) By induction we show that all symbols in REACH(n) are reachable, for all n. Basis n = 1: 
clear. Induction: Assume REACH(n) contains only reachable symbols. Let X be a symbol that 
first appears in REACH(n+1). Then there must be some variable symbol A in REACH(n) and 
a production of the form A � �X���But each variable symbol A in REACH(n) can be derived 
from S by some S �* �A�. Therefore,  S �* ���X���, that is, X is reachable. Thus 
REACH(n+1) contains only reachable symbols.  
�
 
Exercise 5 (20 points) Show that L = {ambmck | k 	 m} is not context-free (use the pumping 
lemma). 
 
Solution: Assume L is context-free. Let n be the PL constant. Consider the word w = anbncn. 
Then anbncn can be written as xuyvz such that  
 

1. |uyv| 	�n,  
2. |uv| ���, 
3. for all i � 0, xuiyviz�� L. 

 
Case 1: uyv fits in the first block an of w. Then by PL, an-|uv|bncn is in L, contradiction. 
Case 2: uyv  strikes both the an block and the bn block of w. It cannot touch the cn block. u 
must contain some a or v must contain some b (non-exclusive or). Then xu0yv0z has less than 
n a's or less than n b's and hence is not in L, contradiction. 
Case 3: uyv fits in the second block bn of w. Then by PL, anbn-|uv|cn is in L, contradiction. 
Case 4: uyv  strikes both the bn block and the cn block of w. It cannot touch the an block. u 
must contain some b or v must contain some c (non-exclusive or). Then xun+1yv n+1z contains 
more b's than a's or more c's than a's (non-exclusive or) and hence is not in L, contradiction. 
Case 5: uyv fits in the last block cn of w. Then xun+1yv n+1z contains more c's than a's (non-
exclusive or) and hence is not in L, contradiction. 
 
 
Exercise 6 (50 points) Let L be a language. Define half(L) = {w | for some x such that |x| = 
|w|, wx � L}. Notice that odd-length words in L do not contribute to half(L). Show that the 
context-free languages are not closed under half. (This is marked a very difficult problem in 
the HMU book, and I must agree; I did not find a solution within two hours. Some fraction of 
the 50 points will also be awarded for attempted but failed solutions, if the attempts are 
clearly explained). 
 



Solution: a solution can be found on the Web, e.g. at 
http://www.cis.ksu.edu/~howell/770s03/protected/sol8.pdf 



Exercises for ACS 1, Fall 2003, sheet 6 
 
Return solutions in paper form on Thursday Dec. 4, in the lecture 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
 
Exercise 1 (very simple, 10 points) Is baaab in the language of the grammar  
S ��AB | BC, A ��BA | a, B ��CC | b, C ��AB | a ? Provide the CYK table and the answer. 
 
Solution: the CYK table is 
 
 
  {S,C} 
  {S, A, C} {S,C} 
  {} {S,C,A} {B} 
  {S,A} {B} {B} {S,C} 
  {B} {A,C} {A,C} { A,C } {B} 
  b a a a b 
 
and the answer is yes. 
 
Exercise 2 (20 points, easy) Give an algorithm to decide whether |L(G)| � 100, for some CFG 
G. 
 
Solution. First decide whether L(G) is finite, using one of the known algorithms from the 
lecture. If not, then |L(G)| � 100 and the decision is done. If yes, transform G to CNF and 
determine the pumping lemma constant n. All words of L(G) must have length shorter than n, 
because any word of length at least n could be pumped into infinitely many different other 
words from L. Construct all parse trees with at most 2(n – 1) – 1  interior nodes. Any word of 
length less than n must have such a parse tree. Check whether among these parse trees there 
are at least 100 that yield different words. If yes, |L(G)| � 100, if no, no.  
 
Exercise 3 (20 points, easy) Give FOL propositions that formally state the following natural-
language sentences about personal relationships. Provide a symbol set S that you use for all 
the sentences, and declare what type each symbol is (constant, predicate/relation, function; 
also state arity). 
 

a. John is the boyfriend of Mary. 
b. John loves Mary. 
c. If John is the boyfriend of Mary, then John loves Mary. 
d. The boyfriend of any person is a man, and the person is a woman. 
e. Everybody loves somebody. 
f. If a man loves a woman, then the woman loves the man, or she doesn't. 

 
Which of your propositions are tautologies, which are contradictions? 
 
Solution. One possibility is to choose S containing constant symbols John, Mary; the unary 
predicates person, man, woman; the binary relation loves; the unary function boyfriend-of. 
We then put 
 



a. boyfriend-of Mary = John 
b. loves John Mary 
c. boyfriend-of Mary = John � loves John Mary 
d. �x�y (person x � ((y = boyfriend-of x ��man y) � (woman x))) 
e. �x (person x � �y loves xy) 
f. �x�y ((man x � woman y � loves xy) ��(loves yx ����loves yx)) 

 
f. is a tautology, none is a contradiction. 
 
Exercise 4 (10 points, easy) For your symbol set S of the previous exercise, describe an S-
structure in which all the statements of Exercise 3 hold. 
 
Put A = {John, Mary}; this set contains two particular persons. Put personA = {John, 
Mary}, manA = {John}, womanA = {Mary}, lovesA = {(Mary, John), (John, Mary)}, 
boyfriend-of A = {(Mary, John)}. 
 
Exercise 5 (10 points, easy). Give a very short S-expression � that is equivalent to your S-
expression ��for Exercise 3f. Explain in words why. (Equivalent means: for every S-structure 
�, it holds that ������ iff �������. "Very short" means: containing at most 3 symbols from S 
and/or FOL generic symbols =,�, �, �, �, �, ��or �.) 
 
Solution. Because 3f. is a tautology, it is equivalent to any other tautology, the shortest of 
which is x = x. 
 
Exercise 6 (20 points, easy to medium). a. (10 points) Show that for any �,  
��x � y ��� � y���x �.  
b. (10 points) Show that for a binary relation symbol R,   � y���x Rxy�� ��x � y Rxy  does not 
hold. 
 
Solution. a. Let (�, �)�����x � y � for some � with domain A. We have to show that  

(�, �)���� y���x �. There exists some a � A, such that (�, �
x
a )����� y �. That is, for all b � 

A, we have (�, (�
x
a )

y
b )�����.  This is equivalent to: (�, (�

y
b )

x
a )����� for all b. This is 

equivalent to: (�, (�
y
b ))�����x ���for all b. This is equivalent to (�, �)���� y���x �. 

 
b. We give a counterexample, that is, an {R}-structure (A, RA) where  
(A, RA) ��� y���x Rxy but not (A, RA) � ��x � y Rxy. There are many such counterexample 
structures. One is to take A = � and choose RA to be the >-relation on �. Then clearly 
(�,>�) ��� y���x x>y but not (�,>�) ����x � y x>y. 
 
 
Exercise 7 (20 points, easy to medium). Consider the empty symbol set S = �. An S-structure 
� is then just a set � = (A), and any set qualifies as an �-structure.  
 

a. (15 points) Find a (possibly infinite) set �=i of �-expressions such that (A) � � iff A 
has i elements, where i is a positive natural number.  



b. (5 points) Find a (possibly infinite) set �=� of �-expressions such that (A) � � iff A is 
infinite. 

 
Solution. a. Let �=i be the proposition 
 
��������x1�x2 ... �xi ((  �x1=x2 � �x1=x3 � ... ���x1=xi��  

����x2=x3 � �x2=x4 � ... ���x2=xi����
... 

������������xi-1=xi�)   
���������xi+1(x1=xi+1 � x2=xi+1 � ... ��xi=xi+1)�) 
 

The first long conjunction states that pairwise different x1, x2,..., xi exist, the second states that 
any xi+1 must be one of the x1, x2,..., xi, so there cannot exist more than i elements in A. Put � 
= {��=i}. 

 
b. Put �=� =  �

�

�

�

��
1

}{
i

i



Solutions to the A group assignments for the ACS1 midterm, Fall 2003 
 
Note: only solutions for group A are provided; the assignments for group B are minor 
variants. 
 
 
1. Design a NFA that accepts all words from {0,1}* that have length at least 5 and whose 

fifth symbol from the right end is a 1 or whose second symbol is a 1 (non-exclusive "or"). 
Present your NFA by a transition diagram.  

 
Solution. One solution is to provide three branches. The first branch is for all words of the 
form 1(0+1)4, the second for words of the form (0+1)+1(0+1)4, the last for all words of the 
form (0+1)1(0+1)3(0+1)*: 
 
 

1 

0,10,10,10,1 

0,1
0,10,10,11 

1 
0,1 

0,1 0,10,1

0,1�

0,1
0,1

Start 

 
 
 
 
 
 
 
 
 
 
 
 
2. Show that the language L = {w1w � {0,1}* |  |w| > 1000} is not regular. 
 
Solution: By pumping lemma, for a regular language L, there exists some n such that for all w 
� L, where |w| � n, we can put w = xyz, where |xy| 	 n and |y| > 0, and all xykz, k � 0, are also 
in L. Put m = min(1000, n). Consider w = 0m10m. Then w � L. Assume L is regular. By 
pumping lemma, we can find a nonempty substring y of 0's in the first zero string of w, such 
that deleting this substring yields another word 0m-|y|10m in L. Contradiction. 
 
 
3. Let A be a DFA with states q0, q1, ..., qn. A has a single accepting state qk. Let a be a 

symbol from its input alphabet. Assume that the a-transitions form a cycle over the states, 
that is, �(qi, a) = qi+1 for i = 0, ..., n – 1, and �(qn, a) = q0. Let L(A) be the language 
accepted by A.  

 
a. Give a formal description of La = L(A) � {a}*.  
b. Prove that the language you described in a. is actually the language accepted 

by A. 
 
Solution. a. La = {am | m = k + in, i � 0}. 
b. (i) We have to show that every ak + in is accepted by the DFA, for every i. This is true for i 
= 0 because obviously (q�̂ 0, ak) = qk. Induction proof: Assume � (qˆ 0, ak+ in) = qk. Then also 

(q�̂ 0, ak+ (i+1)n) = qk because (q�̂ k, a
n) = qk. (ii) Conversely, let w � L(A) � {a}*. Then w is 



a string of all a's and is accepted by A. By induction on length of words am, show that (q�̂ 0, 
am) = qmod(m,n). (For a perfect solution, this induction would have to be done explicitly). That 
is, (q�̂ 0, am) ��qk iff m   k (mod n), that is, m = k + in. 
 
 
4. Design a PDA for the language L of words that contain at most as many 0's as 1's 

(including �). Specify your PDA by its transition function, and describe the principles 
behind your design in intuitive terms. You may choose acceptance by empty stack or 
accepting states, whatever you find more convenient.  

 
Sketch of a solution: Accept by final state. Use two stack symbols + and –. Idea: at any time, 
there are either only +'s or –'s in the stack (plus the start stack symbol Z0). +'s indicate excess 
of 1's over 0's in the input read so far, –'s indicate excess of 0's. Whenever Z0 or + is on top of 
stack, the PDA may go to the accepting state. When a 1 is read and a + or Z0 is on top of 
stack, push a further +. When a 1 is read and a – is on top, pop the –. When a 0 is read and a – 
or Z0 is on top of stack, push a further –. When a 0 is read and a + is on top, pop the +. 
 
5. Consider the CFG S � aS | aSbS | �.  
 

a. Give two different parse trees for aaba. 
b. Prove that this grammar produces all words w over {a, b} such that every prefix of w 

has at least as many a's as b's.  
 
Solution to b. (i) Let w be generated by the grammar. Induction over number # of derivations 
used to derive w. Basis: # = 1 entails w = �, prefix property clear. # = 2: entails w = a, prefix 
property also clear. Induction: Case 1: Let the first step in a derivation of w be S � aS, that is, 
w = av, and v can be derived in fewer steps than w. By induction, v has prefix property. Then 
w has prefix property because a prefix ax of av has one more a than x, which is a prefix of v, 
which already has at least as many a's as b's. Case 2: Let the first step in a derivation of w be S 
� aSbS, that is, w = avbu, and v and u have prefix property. Then every prefix of av has at 
least one more a's as b's, as in case 1; this implies that every prefix of avb has at least as many 
a's as b's; which finally implies that every prefix of avbu has as many a's as b's because u has 
this property. 
 
(ii) Conversely, let w be a word with the prefix property. Induction over length l of w. Basis l 
= 0: then w = �, can be derived in grammar. l = 1: then w = a, can also be derived. Induction: 
Let w have length greater 1. It must start with an a. Case 1: w consists only of a's. Then it can 
obviously be derived by subgrammar S � aS | �. Case 2: w has at least one b. Then w = avbu, 
where u � {a}*, and v has prefix property (because if it hadn't, avb would have more b's than 
a's.) Thus, v and u can be derived in grammar; which entails that avbu can be derived, too, by 
starting with S �  aSbS and inserting the derivations for v and u for the two S's.  
 
 
 



Advanced Computer Science 1    Group A 
Final Exam, December 16, 2003 
 
 
 
 
Note: a maximum of 100 points is accredited for this exam.  
I wish you a happy landing!! 
 
Problem 1 (15 points in total) a. (10 points) Give an �-NFA for the language L = {w � {0,1}* 
| w is a concatenation of i copies of 001, where i � 0} � {w � {0,1}* | w contains at least two 
1's}.  
b. (5 points) Give a regular expression for this language. You may use bracket-saving 
conventions. 
 
Solution: a.  

0,1 0,1 0,1 

��
1 1 

�

1 0 0 �
start 

 
 
 
 
 
 
 
 
 
b. 001* + (0+1)* 1 (0+1)* 1 (0+1)* 
 
Problem 2 (15 points) a. (01 points) Convert the �-NFA shown below into a DFA, using the 
subset construction. Specify the state set of the DFA obtained, the starting state, the accepting 
states, and give a transition table. b. (5 points) Give the equivalent minimal DFA.  
 
 
 

q2 

q1 
q0 

��

1 

0,1 

��

1 
start  

 0 
 
 
 
 
 
 
Solution. Step 1: convert to DFA A = (Q', {0,1}, �', q0', F'). We perform a direct subset 
construction and get  
 
Q' = Pot({q0, q1, q2}) 
q0' = ECLOSE(q0) = {q0} 
F' = {{q0}, {q1}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}} 
the transition table for �' is quite simple, because we find that from the starting point we reach 
state {q0, q1, q2} with 0 and 1: 
 



 0 1 
{q0} {q0, q1, q2} {q0, q1, q2} 
{q0, q1, q2} {q0, q1, q2} {q0, q1, q2} 
 
Step 2 would be to convert this into the minimal DFA. But we see that because all states in A 
are accepting states, the language L is actually {0,1}*, and thus we can directly say that the 
minimal DFA is the single-state DFA with state q (which is both the starting and the 
accepting state) and transitions �(q,0) = �(q,1) = q. 
 
Problem 3 (10 points). Prove that a regular language L over � can be specified by a regular 
expression that does not contain * if and only if L is finite.   
 
Solution: "�": Induction on the structure of regular expressions E without *. Basis: E = � or 
E = � or E = a, where a � �: then L(E) = {�} or L(E) = � or L(E) = {a}, all of which are 
finite. Induction: let E, F be regex's without * and their corresponding languages L(E) and 
L(F) be finite. Then L((E + F)) = L(E) � L(F) and L((E F)) = L(E) L(F), both of which are 
finite.  
"�!": Let L be a finite language with words wi

 = ai
1...ai

Ni, where i = 1, ..., N. Put Fi = 
ai

1...ai
Ni and E = F1... FN. Then E is a regular expression for L without *. 

 
Problem 4 (20 points) Show that L = {ambmck | k � 2m+1} is not context-free.  
 
Solution: Assume L is context-free. Let n be the PL constant. Consider w = anbnc2n+1 � L. By 
PL, w = xuyvz, such that |uyv| 	 n, |uv| � 1, for all i � 0, xuiyviz � L. Case distinction:  
 

1. uyv falls within anbn. Then putting i = 0 changes anbn into something different from 
anbn, say r, and the resulting xuiyviz  = rc2n+1 " L. 

2. uyv touches both bn and c2n+1 (therefore u touches bn and v touches c2n+1), and u " �. 
Then with i = 0, xu0yv0z  = anbn'ck', with n # n', and anbn'ck' 

" L. 
3. uyv touches both bn and c2n+1, and u = �. Then v " �, and with i = 0, xu0yv0z  = 

anbn'ck', with k' 
�n, therefore anbn'ck' 
" L. 

4. uyv falls within c2n+1. Then xu0yv0z  = anbnck, with k 
�2n+1, therefore anbnck
�" L. 

 
Thus, however we may shift uyv within w, by pumping with i = 0 we get a word not in L, 
therefore our assumption that L is context-free must be wrong. 
 
 
Problem 5 (15 points). For the alphabet of terminals T = {x, 1, 0, f, c, d} give a context-free 
grammar G = (V, T, P, S0) in which you can derive exactly those words of terminals that 
correspond to FOL terms over the FOL symbol set S = {c, d, f}, where c and d are constant 
symbols and f is a binary function symbol. Assume that the indices i of the FOL variable set 
are written in binary, that is, the FOL variables are the strings x0, x1, x10, x11, ... .   
 
Solution: Put V = {t, var, index}, S0 = t, and let P be made from the following productions: 
 
t � var | c | d | ftt  
var ��x0 | x1 index 
index  ��0 index | 1 index | � 



 
Problem 6 (20 points). Design a type-0 grammar (that is, an unrestricted grammar where in 
productions you may replace arbitrary substrings by arbitrary substrings, see Definition 9.1 in 
script) for L = {ambmcm | m > 0}. Explain the idea behind your grammar in words and list 
your productions.  
 
Solution. There are many ways to do this. One possibility is to generate in a first stage a 
string 11...1abc of m 1's followed by abc, with m-1 1's (which are variables) and then in a 
second stage use up the 1's from right to left, where for each 1 used the final string of aibici is 
turned into ai+1bi+1ci+1. At the beginning of stage 2, i = 1. The information that some 1 is 
currently processed is transported across the a, b, and c's with special marker variables. 
Concretely, this might look as follows: 
 
Start symbol: S 
Variables: {S, T, 1} 
 
Stage 1: generate 11...1abc, with zero or more 1's. Productions for this stage: 
 
S � Tabc 
T � 1T | � 
 
Stage 2: any rules of stage 2 are only applicable after T has been replaced by �, that is, after 
termination of stage 1. Then, the leading 1's are "sweeped" right across the aibici, such that 
each sweeped 1 leaves behind an extra a, an extra b, and an extra c. The productions are 
desgned such that the 1's, while being sweeped, cannot interfere with each other. That is, if 
some 1 is sweeped while an earlier 1 is still "in the line", and the two meet in a 11 
subsequence, there is no production to continue this.   
 
1aa ��a1a // start moving the rightmost 1 right, in case there are already at least 2 

  a's 
1ab ��a1b  // start moving the rightmost 1 right, in case there was only one a so far 
a1a ��aa1  // continue moving right if a's are still there 
a1b ��aab1  // add one a and start moving the 1 across the b's 
b1b ��bb1  // continue moving right if b's are still there 
b1c ��bbcc  // if the c's are met, add one b and one c 
 
 
Problem 7 (15 points) Recall from elementary algebra that a group is a set A with a special 
neutral element e and a binary operation ° such that the following axioms hold: 
 

1. ° is associative, that is, for all elements x, y, z of A it holds that (x ° y) ° z = x ° (y ° z), 
2. the neutral element satisfies  x ° e = x for all elements x of A, 
3. every element has a right inverse, that is, for all x there exists an y such that x ° y = e. 

 
Using the FOL symbol set S = {e, °}, formulate these three axioms as FOL propositions in the 
correct FOL syntax (that is, use only variables of the form xi, use prefix notation for the 
function symbol °, don't use bracket saving conventions). 
 
Solution.  



 
�x1�x2�x3 ° ° x1 x2 x3 =°  x1 ° x2 x3 
�x1 ° x1 e = x1 
�x1�x2 ° x1 x2 = e 
 
 
1. Consider the CFG S � aS | aSbS | �.  
 

c. (5 points) Give two different parse trees for aaba. 
d. (30 points) Prove that this grammar produces all words w over {a, b} such that every 

prefix of w has at least as many a's as b's.  
 
 
 


