
Exercises for ACS 1, Fall 2005, sheet 1: Solutions 
 
Exercise 1 (30 points): Give a formal definition of the notion of an "alphabetical 
enumeration" of Σ*, which we introduced informally in the lecture. Note: there are many 
ways to formalize this operation of listing all words from Σ*. 
 
Solution: Let Σ = {a1, ..., an}, and let w, v ∈  Σ*. We say that w comes before v in the 
alphabetical enumeration order, written w < v, iff  
 

|w| < |v|  
 
or  
 
|w| = |v| = n > 0 and w = ur and v = us for some u ∈  Σ*, r, s ∈  Σ+, where the first  
symbol of r is ai and the first symbol of s is aj, and i < j. 
 

 
Then a mapping α: Σ* → � is an alphabetical enumeration of Σ* if it is bijective and 
respects alphabetical enumeration order, that is, for all w, v Σ*: w < v ⇔ α(w) < α(v). 
 
Exercise 2 (30 points): Two sets S and T have (by definition) equal cardinality, written | S | = 
| T |, if there exists a bijective mapping between them. Show that  | [0,1] | = | � |, where [0,1] 
is the set of real numbers between 0 and 1, including 0 and 1.  
 
Solution. We first fix a bijective mapping f between (0,1) – the set of reals between 0 and 1, 
excluding 0 and 1 – and �. There are many such mappings, for instance, f(x) = tan(x/π + 1/2). 
Let x1, x2, x3 ... = 1/4, 1/8, 1/16, ... . Transform f into a bijective mapping f ' : [0,1) → � 
(where [0,1) is the set of reals between 0 and 1, including 0 and excluding 1), by putting  
 
f ' (0) = f(x1),  
f ' (xi) = f(xi+1) for i ≥ 1,  
f ' (x) = f(x) for any x not equal to 0 or any of the xi.  
 
By repeating this trick one obtains a bijective mapping f '' : [0,1] → �. 
 
Exercise 3. (a) (10 points) Design an NFA for the language L = {w ∈  {0,1}* | w contains at 
least 2 ones}. Present your NFA by a graph representation (transition diagram). (b) (10 
points) Design an NFA for the language L = {w ∈  {0,1}* | w contains at most 2 ones}. 
 
Solution: (a) One possibility is 
 

q0 q2 q1 
1 1 

0,1 0,1 0,1 
start  

 
 
 
 
(b) 

q0 q2 q1 
0,1 0,1 

0 0 0 start  
 



 
 
Exercise 4 (20 points). Transform your two NFAs from exercise 3 into equivalent DFAs 
(with dead state if appropriate) by the subset construction. Present your solution DFAs 
through their transition graphs. 
 

{q0} {q0,q1,q2} {q0,q1} 
1 1 

0,1 0,1 0,1 
start Solution. (a) 

 
 
 
 

0 

start 

0 

0 

0 

0 

0 

1 

1 
1 

1 1 

{q0,q1,q2} 

{q1,q2} {q0,q1} 

{q2} {q1} {q0} 
(b) 
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Return solutions in paper form on, in the lecture, on Wednesday, September 28 
 
Note: a maximum of 100 points is accredited for this sheet.  
 
 
Exercise 1 (50 points). A word-labelled DFA is a generalization of DFAs in whose transition 
graphs the transition arrows may be labelled by any words from Σ+. An example might look 
like this: 

100 

q0 q2 q1 
01 11 

0,1 111 0 
start 

 
 
 
 
 
 
 

(a) (40 points) Give an analog of the definitions 3.1, 3.2 and 3.3 from the lecture notes 
that capture word-labelled DFAs (there might be several plausible definitions – the 
purpose of this exercise is not to find the "correct" one, but to train writing formal 
definitions). Make sure that your definitions define a mechanism that is actually 
deterministic, that is, on a given input word at most one path through the transition 
graph is possible. Furthermore, make sure that your definition (specifically, for the 
extended transition function) is well-defined. This will require a proof. 

(b) (10 points) Prove the the languages accepted by word-labelled DFAs are the regular 
languages.  

 
 
Solution. (a)  



Def. 1 A word-labelled DFA A is a quintuple A = (Q, Σ, δ, q0, F), where Q = {q0, q1, ..., qn} 

is a finite set of states, Σ is the alphabet of input symbols, δ: Q × Σ+ → Q is a partial function, 
the transition function, q0 is the start state, and F ⊆   Q is the set of accepting states. It must 
hold that  
 

.of  wordinitialproper a not  isdefined are),(and),(:*, wvvqwqvwQq →δδΣ∈∀∈∀  
 
Note: this condition assures determinism. 
 
Def. 2 Let A = (Q, Σ, δ, q0, F) be a word-labelled DFA. Define the extended transition 
function QQ →Σ× *:δ̂  by induction over words through qqQq =∈∀ ),(ˆ: εδ

.d

 and 

define if),),,(ˆ(),(ˆ:* vw Σ∈∀Σ∈ + vwqwvqQq δδ=δ∀∈∀
),(

 Use notation δ(q, w) for 
ˆ wqδ . 

 
Proposition: Definition 2 is well-defined.  
 
Proof: This follows immediately from the following lemma: If  and there exits n such 
that w = v

*Σ∈w

1v2...vn, all vi ∈ , and there exist states q+Σ 0, q1,... qn such that all  

are defined, then the number n and the words v
11),( ++ =δ iii qvq

1,v2,...vn and states q0, q1,... qn are unique with 
this property. 
 
Proof of lemma: Assume that for some  and there exits n such that w = v*Σ∈w 1v2...vn, all vi 

, and there exist states q+Σ∈ 0, q1,... qn such that all  are defined, and 

furthermore, there exits m such that w = v'
11),( ++ =δ iii qvq

+Σ1v'2...v'm, all v'j ∈ , and there exist states q0 = q'0, 
q'1,... q'm such that all  are defined. Then v'11 ')','( ++ =δ iii qvq 1 = v1 or v'1 is a proper initial 

word of v1 or v1 is a proper initial word of v'1. The latter two cases are impossible due to 
Definition 1. Therefore v'1 = v1. An iterated use of this argument yields the statement. 
 
Def. 3 A word-labelled DFA A accepts a word w if δ(q0, w) ∈  F. If δ(q0, w) ∉  F, the word is 

rejected. The set of words L(A) = {w ∈  Σ∗  | A accepts w} is the language accepted by A.  
 
(b) Because the word-labelled DFAs generalize the DFAs, it is clear that every language 
accepted by a word-labelled DFA is also accepted by a DFA. Conversely, let A = (Q, Σ, δ, q0, 
F) be a word-labelled DFA. Construct from A a standard DFA A' = (Q', Σ, δ', q0, F) as 
follows.  
 

1. Put Q* = Q, δ* = {(q, a, p) | δ (q, a) = p, a ∈  Σ }  
2. For all defined transitions δ(p0, w) = pn, w = a1...an, n > 1, ai ∈  Σ, extend Q* by new 

states p1, ..., pn-1, and extend δ* by {(pi, ai, pi+1) | i = 0, ..., n-1}. 
3. Put Q' = Q*, δ' = δ*. 

 
Exercise 2 (20 points). In analogy to the web – ebay example from the lecture, design a 
DFA that finds all occurences of oop, foo, and ps in a text. Present the NFA from which 
you start your construction by a transition diagram (points) and the resulting DFA by a 
transition table (points). Finally, give the state DFA sequence that is yielded by input 



soopsssfoos. Present this state sequence in the format of iterated triples state – (symbol) – 
nextstate  
 
 
 
 

9 8 s p 
o o 

p o 
o 

7 6 5 

4 3 2 

1 
f 

Σ
start 

Solution. We have S = {o, p, s, f}. NFA: 
 
 
 
 
 
DFA transition table: 
 
  o p s f 
 
→1  12 18 1 15 
12  123 18 1 15 
123  123 148 1 15 
148*  12 18 19 15 
15  126 18 1 15 
126  1237 18 1 15 
1237*  123 148 1 15 
18  12 18 19 15 
19*  12 18 1 15 
 
Transition sequence on soopsssfoos: 
 
1 (s) 1 (o) 12 (o) 123 (p) 148* (s) 19* (s) 1 (s) 1 (s) 1 (f) 15 (o) 126 (o) 1237* (s) 1  
 
 
Exercise 3. (20 points) Let Σ be some alphabet and W a finite set of words over Σ. Show that                   
L =  {w ∈ Σ * | w contains no subword v ∈  W} is regular.  
 
Solution. It is easy to construct an NFA A for Lc, the language of all words over Σ that 
contain some subword v ∈  W. (This NFA would have the structure of the NFA given in the 
solution to exercise 6). By the subset construction, one obtains an equivalent DFA A' for Lc. 
Replace the set of accepting states of A' by its complement to obtain a DFA for L. Thus L is 
accepted by some DFA and hence is regular.  
 
 
Exercise 4 (22 points). Design a DFA that accepts the language over S = {b, c} denoted by 
((bb)*(b+c+ε))*, by (a) (10 points) designing first an ε-NFA for this language, using the 
methods from the proof of proposition 3.4, possibly with simplifications that suggest 
themselves, then (b) (10 points) deriving an equivalent DFA from that by the subset 
construction. Represent your automata by transition diagrams. (c) (2 points) Is there a simpler 
DFA than the one obtained from the subset construction? 
 
Solution. (a) Merging pure ε-chains, the methods from the proof of proposition 3.4 yield the 
following ε-NFA: 

1 22 3 4 
b b b,c,ε 

ε 



 
 
 
 
 
(b) The subset construction yields  
 

b 
b 

c 
c 

 1 2 3 4 1 2 4 

 
 
 
 
 
(c) A simpler DFA is  

 

b 
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variables):  
 
(a)   (L1 + L2)*  =Σ   

(b)  (L1 + L2)* L3*   
 
Solution. (a) Claim is true. Us
L((a* b*)* ) for ordinary regex
demonstrate two set inclusions
 

(i) Let w ∈  L((a + b)*)
Because a ∈  L(a*) 
have xi ∈  L(a* b*) 

(ii) Let w ∈ L((a* b*)*
 
(b) Claim is not true. Proof by 
c* , a c* + b c* it would hold t
c*), whereas ε ∉   L(a c* + b c*
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 or disprove the following two claims (Li are language 

1* L2*)*   

Σ   L1 L3* + L2 L3*  

 Corollary 3.7, we have to show that L((a + b)*)  =         
 (a + b)* and (a* b*)* over Σ = {a, b}. We have to 

hen w ∈  { a, b}*, that is, w = x1...xn, n ≥ 0, xi ∈  { a, b}. 
(a*ε) ⊆   L(a* b*)  and b ∈  L(b*) = L(ε b*) ⊆   L(a* b*), we 

d therefore w ∈  L((a* b*)*). 
hen w ∈  { a, b}*, that is, w ∈ L((a + b)*). 

ntradiction. If it were true, then for ordinary regexps (a+ b)* 
t L((a+ b)* c*) = L(a c* + b c*). But clearly ε ∈ L((a+ b)* 
 because any word in this language must start with a or b. So 
d thus the claim is false.  

ge L = {0n | n = pq for two primes p, q} is not regular. 

hen by the pumping lemma, there exists a constant c such 
ritten as uvx, r = |v| > 0, such that uvix ∈ L for all i ≥ 0. Let 
q ∈ L and by the pumping lemma, 0pq+ir ∈ L for all i ≥ 0. 

 0pq(1+r) ∈ L. But pq(1+r) is not the product of two primes, 



so by the definition of L, 0pq(1+r) ∉ L. Contradiction, therefore the assumption that L is regular 
is wrong, therefore L is not regular.  
 
 
Exercise 3. Prove or disprove the following conjecture:  
 
Let M be some regular language over Σ = {0,1}. Define L|M| = {0n ∈ {0}* | n = |v| for some 
word v ∈ M}. Then L is regular.  
 
Solution. The conjecture is true. Consider the (unique!) homomorphism h: {0,1} → {0}. 
Then L|M|  = h(M) and by Proposition 3.11, L|M|  is regular.  
 
 
Exercise 4. Prove or disprove the following conjecture:  
 
Let M, N be regular languages over Σ = {0,1}. Define L = . Then L is regular.  �

Mvvk

kN
∈=  somefor   ||

 
Solution. The conjecture is true. Consider the language L|M| over {0} from Exercise 3, which 
is regular and therefore can be represented by some DFA A whose transitions are labelled by 
0. Let B be an ε-NFA for N, which has a single accepting state, no arcs leading into the 
starting state and no arcs leaving the accepting state (such an ε-NFA exists, see the proof of 
proposition 3.4 in the lecture notes). In A, insert into every transition q  a copy of B 

via two ε-links, as in the figure: 
p→ 0

 
 

B εε 
p q 

 
 
 
 
 
Then make all accepting states from the B copies non-accepting. It is clear that the obtained ε-
NFA accepts L. 
 
 
Exercise 5. Let h be the homomorphism h(a) = 01, h(b) = 0. Find h-1(L), where L = (10+1)*. 
 
Solution.  First, observe that ε ∈  L and thus ε ∈  h-1(L) because by definition of a 
homomorphism, h(ε) = ε. For non-empty w ∈  L, observe that w must begin with a 1. Assume 
w = h(v). If the first symbol of v is an a, then w would begin with 01; if the first symbol of v is 
a b, then w would begin with 0. In neither case does w begin with 1, so the assumption w = 
h(v) cannot hold, so h-1(w) = ∅ . Therefore, h-1(L) = { ε }. 
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Exercise 1 (30 points). Let ε ≠ w = x1...xn ∈ Σ *. Construct the minimal DFA for L = {w}, by 
specifying the equivalence classes [x]RL

 from the Myhill-Nerode theorem (specify them the 



equivalence classes by their extension, that is, for each class describe the set of words that it 
contains. Prove that your equivalence classes exhaust Σ* and satisfy the conditions of RL!). 
Give a graph representation of your DFA.  
 
Solution. The equivalence classes are (obviously...) [ε] = {ε}, [x1]= {x1}, ..., [x1...xn]= 
{x1...xn}, and (for any a ∈ Σ ) [x1...xn a] = Σ* \ ([ε] ∪  [x1] ∪  ... ∪  [x1...xn]). This obviously 
exhausts Σ*. To show that these sets are actually the RL – classes, we first show that all 
members in [x1...xn a]= Σ* \ ([ε] ∪  [x1] ∪  ... ∪  [x1...xn]) are RL – equivalent. This is clear 
because Σ* \ ([ε] ∪  [x1] ∪  ... ∪  [x1...xn]) contains all words u that are not an initial subword of 
w, and therefore any extension uv is not in L. By this we have shown that our classes are a 
refinement of RL. It remains to show that no two of them are subsets of some RL – class. To 
this end, it suffices to show that the representatives we have given are pairwise not RL – 
equivalent. This is straightforward: for each pair of the singleton classes, say [u]  and [v], 
where u ≠ v are initial subwords of w, consider y where w = uy. Then clearly uy ∈  L but vy ∉  
L, so not u RL v.  Furthermore, x1...xn a is not RL – equivalent to any of the initial subwords of 
w, because each of the latter can be right-extended to become an element of L, whereas x1...xn 
a cannot. All in all, we have shown that our sets are indeed the  RL – equivalence classes.  
 
Note: an alternative proof would be to construct the minimal DFA first via the table-filling 
algorithm, then deduce from it the sets [x]RL

. 

 
The minimal DFA is so obvious that I do not draw it here – (but in your solutions you 
should). 
 
Exercise 2 (40 points). What are the Myhill-Nerode equivalence classes of RL for  
L = {0n1n | n ≥ 1}? (Prove your answer!)  
 
Solution. For some word u ∈  {0,1}* let ext(u) = {v ∈  {0,1}* | uv ∈ L} be the extension set of 
of u into words of L. It is clear that u RL v iff ext(u) = ext(v). Call a word u ∈  {0,1}* 
extendable if for some v ∈  {0,1}* it holds that uv ∈ L. It is clear that u is extendable iff ext(u) 
≠ ∅ . Furthermore it is clear that u is extendable iff u is of the form 0a1b, where a ≥ 1, b ≥ 0 
and a ≥ b.  
 
Case 1: u is of the form 0a, where a ≥ 1. Then ext(u) = {0c1d | d = c + a}. For different a, 
these are different extension sets, therefore not 0a RL 0

b for a ≠ b, and these words lie in 
different equivalence classes.  
Case 2: u is of the form 0a1b, where a ≥ 1, b ≥ 1 and a ≥ b. Then ext(u) = {1d | d = a - b}. We 
find that for such words, 0a1b  RL 0

a'1b'  iff a – b = a' – b'. Furthermore, the extension classes 
we get for case 2 words are different from extension classes from case 1, therefore the 
equivalence classes represented by case 2 words are different from case 1 equivalence classes.  
Case 3: u is not extendable. Then clearly u RL v iff v is not extendable, and [u]RL

 is different 

from any of the case 1 or 2 classes.  
 
Assembling, we get the following equivalence classes: 
 

1. [0a]RL
 = {0a},  



2. [0a1b]RL
 = {0a'1b'| a – b = a' – b'},  

3. [1]RL
= {0,1}* minus the union of all classes from 1. and 2. 

 
Because we have infinitely many equivalence classes, L is not regular.  
 
 
Exercise 3 (30 points).  Minimize the DFA shown in the figure by using the table filling 
method. Deliverables: the filling table, the set of states of the minimal DFA, and a graph 
representation of the minimal DFA.   
 

1 

0,1 

0 

0 1 

1 

0 

Start 0 

1 

f 

d 

b 

c 

e 

a 
 
 
 
 
 
 
 
 
 0,1 
 
Solution. Manual labour by accurately following the recipe... 
 
 
Table:     Minimal DFA:  

b 

c 

d 

e 

f 1 
1 

 e 

0 

0 1 

0 

Start 
0

1 

df 

b 

 c 

a  

x3 

x2 

x1 

x1 

x2 x1 

x1 
x2 x1 

x1 x2 

x1 

x1 
x1 

 
 
 
 0,1 
 
 
 a    b   c    d    e    
 
New states: {a}, {b}, {c}, {d, f}, {e} 
 
 
Challenge (no points, for sharpening your claws – really tricky). Show that if L is regular, 
then also H = {u | there exists a word v, |u| = |v|, and uv ∈  L} is regular. Hint: construct an ε-
NFA B for H out of a DFA A for L. Capitalize on the insight that u ∈  H iff some suitable v 
with |u| = |v| can be "guessed" (which is something ε-NFA's can do) such that uv leads to an 
accepting state in A. The difficulty is to ensure that |u| = |v|. Think of an ε-NFA that runs two 
processes in parallel (in a suitable product space of states), one for reading in u, and another 
one for "guessing" a successful continuation run for v in A.  
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Exercise 1 (15 points). Give a CFG for the language of the regular expression (0*10)*. 
 
Solution: A set of production rules that works is the following: 



 
S → ε | SS              comment: this takes care of the outer * 
S → Z10 
Z → ε | ZZ | 0  comment: rules in the last two lines take care of generating the words  

0*10 
 
You could also use the generic method that you are asked for in the next exercise, but the 
resulting grammar would contain more rules and variables.  
 
Exercise 2 (30 points). Describe a generic method by which a CFG for the language L(E) of 
any regular expression E can be constructed from E. Hint: use induction on the structure of E.  
 
Solution. A method to come up with a CFG for any language described by a regular 
expression E over an alphabet Σ (or T, if we think of it from the angle of CFGs) is to combine 
CFG's for subexpressions E' of E, by induction over the structure of E: 
 
Basis:  

For E = ∅ , ε, or a  (where a ∈ Σ ) it is (almost) trivial to find CFGs G∅  = (V∅ , Σ, P∅ , S∅ ), Gε 

= (Vε, Σ, Pε, Sε), Ga = (Va, Σ, Pa, Sa),  that generate the corresponding languages, so I will 
skip this here.  
 
Induction:  
(union) Let E, F be regexps over Σ, with grammars GE = (VE, Σ, PE, SE),  GF = (VF, Σ, PF, 
SF) for the languages of E and F. Without loss of generality, we may assume that VE and VE 
are disjoint. Then we get a obvious grammar for the language of (E + F) by GE+F = (VE 
∪  VE ∪  {S*}, Σ, PE ∪  PF ∪  { S* → SE , S* → SF}, S*), that is, we create a new start 
symbol from which either the old start symbol of the CFG for the language of E or the old 
start symbol of the CFG for the language of F can be produced.  
(concatenation) Similar to union, except the new ruleset is PE ∪  PF ∪  { S* → SE SF}. 
(Kleene star) A grammar for the language of E*, given GE = (VE, Σ, PE, SE), is GE* = (VE, Σ, 
PE ∪  { SE → SE SE , SE → ε }, SE). 
 
Exercise 3 (20 points). Construct a CFG for the language over T = {0,1,2},  
L = {w2wR2 | w is in (0+1)+, wR is the reverse of w}. (For a regexp E, L(E+) is L(E*) – {ε}.) 
 
Solution. One possibility is 
 
S → 1A12 | 0A02  
A → 1A1 | 0A0 | 2 
 
Exercise 4 (50 points)  Let G be a CFG. Show that there exists a constant K (which depends 
on G), such that, if w ∈  L(G), w ≠ ε, then there exists a derivation with at most K |w| steps.  
 
Solution. Showing the claim is easy if G has no ε-productions (that is, productions of the 
form A → ε). Because in this case, consider any parse tree t for w. Its leaves are the symbols 
from w. Generally, a tree with n leaves cannot have more than 2n linear chains (this maximal 
number is attained when the tree is binary). Consider any linear chain in t. It must consist 
solely of variable nodes, with possibly the last node being labelled by a terminal if the chain 
ends in a leaf. Let k = |V| be the number of variables in G. If a chain in t contains more than k 



variable nodes, at least one variable A occurs twice and the chain can be shortend by cutting 
out the segment between the two occurences of A, and joining the two A-nodes, resulting in 
another parse tree for w. So we can shorten all linear chains to a length bounded by k + 1. The 
total number of nodes of the shortened parse tree is therefore bounded by 2(k + 1) |w|. Putting 
K = 2(k + 1) therefore gives us the desired bound, because for any parse tree with m nodes we 
can find a derivation with m-1 steps.  
 
Now assume that G does have ε-productions. Let t be some parse tree for w, with node set N. 
Consider the subset N' of N that consists of all nodes that have a non-ε-labelled leaf beneath 
them or are themselves non-ε-leaves. Consider the labelled tree t' that you get when you take 
away from t all nodes not in N'. This tree has |w| leaves labelled by the symbols from w, from 
left to right. Notice that if n' is a node within a linear chain in t', then within t this node is 
either also occuring in a linear chain, or if not, all branches beneath n' in t that are not in t' end 
in ε leaves. By a similar argument as above (in the case of a grammar with no ε-productions), 
shortening linear chains in t' at repetitions of variable labels gives a tree t'' whose size is 
bounded by K' |w|, where K' is some constant that depends only on |V|. Now re-complete t'' by 
appending, at all nodes n'' that within t had children n not in N', those children n and all their 
descendents. Obtain t'''. All of these children n are nodes beneath which only ε-leaves can be 
found. Let b be the maximum length of any production in G. By re-extending t'' into t''', at 
most K' |w| b such nodes n were added to t'' (plus the descendants of the nodes n). Consider 
any such node n in t beneath which only ε-leaves can be found, and all its descendants. This is 
a subtree tn of t with only ε-leaves. Any branch beneath n that is longer than |V| must contain 
repeated variable nodes and can be shortened. So we can condense tn into a tree tn' of depth at 
most |V|. If b is the maximum length of any production in G, then the number of nodes of tn' is 
bounded by b|V|. If we replace all subtrees beneath nodes n in t''' by the condensed trees tn', we 
get a tree t'''' that has at most K' |w| + b|V| K' |w| b =: K |w| nodes. But t'''' is a parse tree for w, 
and thus we have procured a derivation of w in G with at most K |w| steps.  
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Exercise 1. Give a formal definition of something like a "context-free graph grammar" 
(CFGG), where the result of a derivation is not a word, but an undirected graph (whose nodes 
or links are not labelled). Like in ordinary CFGs, a derivation should start with a start variable 
S. You are essentially free to invent your personal brand of a CFGG – this exercise aims only 
at sharpening your skills to compose rigorous definitions, not at finding the "correct" 
definition. However, to make your task not too simple, your CFGG should be expressive 
enough to allow grammars that can generate (i) all binary trees, and (ii) all fully connected 
finite graphs.  
 
Note: Feel invited to become inventive! don't stick too closely to the definitions of ordinary 
CFGs. Anything goes ... as long as you make it formal and precise, and as long as your 
grammar can derive the languages (i) and (ii). 
 
Deliverables: (a, 70 points): An CFGG definition, including a notion of derivations and of 
accepted graph languages, analog to Definitions 4.1, 4.2, 4.3 from the lecture notes. (b, 20 
points): A specific graph grammar whose language is the set of all finite binary trees. 
Demonstrate your grammar by an illustrative derivation. (c, 20 points): A specific graph 
grammar whose language is the set of all fully connected finite graphs. Demonstrate your 
grammar by an illustrative derivation. 



 
Use the following definition and terminology for undirected (finite) graphs:  
 
Definition. An undirected graph is a pair U = (N, E), where N is a finite, nonempty set of 
nodes and E ⊆  N × N is the set of edges. E must be symmetric (that is, (n, n') ∈  E � (n', n) ∈  
E) and antireflexive (that is, (n, n) ∉  E for all nodes n). We write [n, n'] ∈  E as a shorthand for 
(n, n') ∈  E ∧  (n', n) ∈  E. An undirected graph is connected if for any pair (n, n') of nodes, 
there exists a path in the graph that leads from n to n'. An undirected, connected graph is a 
binary tree if either U = ({n0}, ∅ ) or, if | N | > 1, there exists exactly one nroot ∈ N that has 
exactly two neighbors, and any other node has either exactly one neighbor (then it is a leaf 
node) or three neighbors (then it is an internal node). An undirected graph is fully connected if 
for any pair (n, n') of nodes, it holds that [n, n'] ∈  E.  
 
If (N, E) is a graph, A and B are sets, then any mapping ν: N → A is called a node labelling 
(with label set A). For a graph with a node labelling ν we write (N, E, ν). 
 
 
Solution. (a) One possibility would be the following:  
 
Definition. (CFGG) A context-free graph grammar (CFGG) is a quadruple G = (V, T, P, S), 
where  
 
1. V is a finite set of variables (also called nonterminals),  
2. T ∉  V is the terminal symbol,  
3. S ∈  V is a start symbol, and  
4. P is a finite set of productions (also rules), each of the form A → α, where A is a variable 

and α = (N, E, ν, π) consists of the following parts: 
1. an undirected, node-labelled graph (N, E, ν), with labels from V ∪  {T}, called the 

heart of the rule, 
2. for each node n ∈  N of the heart a finite (possibly empty) set π(n) of graph matching 

patterns. A graph matching pattern is itself an undirected graph (N', E'), where |N'| ≥ 2, 
where there is a specifically marked reference node r ∈  N', and a match node m∈  N', 
with r ≠ m. Thus, π(n) consists of a finite set of structures of the form ((N', E'), r, m). 

 
Definition. (derivations). Let G = (V, T, P, S) be a CFGG. Let (N, E, ν), (N', E', ν') be two 
node-labelled graphs, with label set V ∪  {T} each. Then (N', E', ν') is derived from (N, E, ν) 
via G,  written (N, E, ν)  �G  (N', E', ν'), if there exists a rule A → α in P, such that  
 

1. there exists a node n ∈  N, ν(n) = A,  
2. (N', E', ν') can be obtained from (N, E, ν) through the following steps:  

a. delete from (N, E, ν) the node n (including its connecting links and label 
information), to obtain (N*, E*, ν*),  

b. add to (N*, E*, ν*) the heart (Nα, Eα) of α (making Nα is disjoint from N*), 

obtaining (N**, E**, ν**) = (N* ∪ Nα, E* ∪ Eα, ν* ∪ ν  α),  

c. for each node nα in Nα, and for each ((Nπ, Eπ), r, m) ∈  π(nα), and for each n* 

∈  N*, add [nα, n*] to E** if ((Nπ, Eπ), r, m) matches r with n and m with nα, 

that is, if there exists an injective map ι : Nπ → N with ι(r) = n and ι(m) = n* 



which is a subgraph map, that is, connections in (Nπ, Eπ) are mapped on 
existing connections in (N, E). 

 
Let �*G denote the transitive closure of �G.  
 
Definition (language of a CFGG). Let G = (V, T, P, S) be a CFGG. Then an undirected 
graph (N, E) is in the language of G if there exists a derivation ({S}, ∅ ) �*G (N, E, ν), where 
ν labels all nodes from N by the terminal symbol T. 
 
(b). Put V = {S, F} and for the productions set put 
 
1. S → ({n}, ∅,  ν, π), with ν(n) = T and π(n) = ∅ . [This rule generates the trivial single-

node tree] 
2. S → ({a, b, c}, {[a, b], [a, c]} , ν , π), where ν(a) = T and ν(b) = ν(c) = F, and π(a) = π(b) 

=  π(c) =  ∅ .  [This rule generates a "seed" tree of one root and two descendants]. 
3. F → ({a, b, c}, {[a, b], [a, c]} , ν , π), where ν(a) = T and ν(b) = ν(c) = F, and π(a) = ({r, 

m}, {[r, m]}, r, m), π(b) =  π(c) =  ∅ . [This rule extends a "frontier" node a labelled by F 
by appending two siblings. a is relabelled by T, the siblings become new "frontier" nodes 
by labelling them with F.  

4. F → ({a}, ∅,  ν, π), where ν(a) = T and π(a) = ({r, m}, {[r, m]}, r, m). [This rule changes 
the status of a frontier node into a terminal node by relabelling to T. ] 

 
(c). Put V = {S, A} and for the production set put  
 
1. S → ({n}, ∅,  ν, π), with ν(n) = A and π(n) = ∅ . [This rule generates the trivial single-

node tree]  
2. A → ({a, b}, {[a, b]} , ν , π), where ν(a) = ν(b) = A, and π(a) = π(b) = ({r, m}, {[r, m]}, r, 

m). [This rule adds a new node and connects it to all nodes in the old graph, assuming that 
the node that is replaced using this rule is already connected to all nodes in the old graph.] 

3. A → ({a}, ∅,  ν, π), where ν(a) = T and π(a) = ({r, m}, {[r, m]}, r, m). [This rule changes 
the status of an "active" node into a terminal node by relabelling to T. ] 

 
(for (b) and (c), you should also furnish an illustrative derivation – omitted here). 
 
 

Group A Midterm Advanced CS 1, Fall 2005: Solutions 
 
 
Problem 1.  
(a, 10 points) Construct an ε-NFA for the language  
L = {w ∈ {0,1}* | w = uv, u ∈ {0,1}*, v is a string of n repeated substrings 010, where n ≥ 1}.  
Present your automaton by a transition graph. 
(b, 10 points) Represent L by a regular expression. Adhere strictly to the syntax of regexps as 
introduced in the lecture (no parenthesis saving conventions) 
(c, 10 points) Give a CFG for L.  

 
Solution. (a) One possible ε−NFA is  

  ε

  0   1   0   ε 
0,1 

start 
 
 
 



 
 
 
(b) (((0 + 1)*)(((01)0)*)) 
(c) One possible grammar: S → UV, U → ε | U1 | U0 , V → W010, W → ε | V 
 
 
Problem 2 (15 points): Prove or disprove the following conjecture: 
 
Let Σ be some alphabet. If for a language L ⊆  Σ*, all k-initial languages are regular (k ≥ 1), 
then L is regular. (For a language L, the k-initial language of L is the set {v ∈  Σ*| |v| = k and 
there exists a word vu ∈  L}.) 
 
Solution. Conjecture is very wrong. By definition of a k-initial language, a k-initial language 
is finite and therefore regular. So for any language L all k-initial languages are regular – 
regardless of whether L is regular or not.  
 
 
Problem 3 (20 points): Show that the language L = {0k10l | k ≥ 0, l ≥ k } is not regular.  
 
Solution:  a clear job for the pumping lemma, what else... Assume L is regular. Let n be a 
pumping lemma constant. Consider the word w = 0n10n. By the PL, it can be written as w = 
xyz, where |xy| ≤ n, (which implies y consists solely of 0's and falls into the first 0n of w) and 
|y| ≥ 1. By "pumping" y once and using the statement of the PL, we obtain w' = 0n+|y|10n∈ L, 
which is a contradiction to the definition of L. Therefore the assumption that L is regular must 
be false, that is, L is not regular.  
 
 
Problem 4 (20 points) Prove that if L (over Σ) is regular, then the prefix language of L,  
Pre(L) = {w ∈ Σ *| wu ∈  L for some u ∈ Σ *} is also regular.  
 
Solution: Let A be some DFA for L. First determine all accessible states q in A from which 
there exists some path leading to an accepting state, or which are themselves accepting. Add a 
new state p to the state set of A, and connect all states q to p by an ε-transition. Make p 
accepting and make all original states of A non-accepting. The automaton thus obtained 
clearly accepts Pre(L).  
 
Note: the suffix language from group B can be dealt with in a similar way, by inserting ε-
transitions into A from the start state into all states q.  
 
Problem 5 (30 points) Disprove the following variant of the pumping lemma: 
 
L is a regular language iff there exists a constant n, such that ∀ w ∈  L, |w| ≥ n, we can find a 
partition w = xyz, such that (1) y ≠ ε, (2) |xy| ≤ n, and (3) ∀ k ≥ 1, xykz ∈  L.  
 
Note: this claim differs from the PL in two respects. First, it has an "iff" where the PL only 
has a "�", second, condition (3) is stated for ∀ k ≥ 1, whereas the PL as ∀ k ≥ 0. 
 
Solution: We construct a non-regular L for which the rhs. of the iff claim holds. Let M be 
some non-regular language over ΣM (which must be infinite because all finite languages are 



regular), where ΣM. does not contain 0. Let N be some infinite regular language over ΣN  = 
{0} with ε ∉  L and with PL constant n.  and let N>n be the subset of N of all words longer than 
n (this is also regular because N>n = N ∩ ΣN

0 ∩ ΣN
1 ∩ ... ∩ ΣN

n). Consider the language L = 
N>n M over ΣM  ∪  ΣN. Then by construction, the rhs. of the iff statement holds for L (use same 
n and  But L is not regular, which can be seen by considering the homomorphism h: ΣM  ∪  ΣN 
→ ΣM , h(0) = ε, h(a) = a for all a ∈ Σ M . It holds that h(L) = M. If L were regular, then by 
closure under homomorphisms M would also be regular, contradiction.  
 
 

Group A Final Advanced CS 1, Fall 2005 
 
A maximum of 100 points is accredited.  
 
Problem 1.  
(a, 5 points) Describe the language accepted by the ε-NFA A from Fig. 1 in a "mathematical 
set description" of the kind L = {w ∈  {0,1,2,3}* | ... < your specification goes here > }. 
(b, 5 points) Represent L(A) by a regular expression. Adhere to the syntax of regexps as 
introduced in the lecture (you may use parenthesis saving conventions) 
(c, 5 points) Give a CFG for L.  
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Solution. (a) L = {w ∈  {0,1,2,3}* | w is a (possi
1200, 123000} 
(b) (01 + 1200 + 123000)* 
(c) S → ε | SS | 01 | 1200 | 123000 
 
Problem 2 (25 points). How many states does a
the ε-NFA A from Figure 1 have? Prove your an
 
Solution. The following DFA clearly accepts L: 
We use the table-filling algorithm to show that 
it is actually minimal. Here is the table that we g
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The table shows that all states are pairwise distinguishable and therefore the DFA is minimal; 
that is, the minimal number of states is 7. 
 
Problem 3. (a, 15 points) Under the homomorphism operation, each symbol a from a word w 
over Σ1 is replaced by some word h(a) over Σ2. This is a deterministic operation: h(w) is 
uniquely determined. Your task: define a non-deterministic version of homomorphisms, 
where each symbol a from a word w over Σ1 is replaced by any word from a finite set of 
words over Σ2 that depends on a. Re-formulate the original definition 3.13. (1.) of a 
homomorphism for the non-deterministic case. (b, 20 points) Show that the context-free 
languages are closed under non-deterministic homomorphisms.  
 
Solution. (a) Let Σ1, Σ2 be two alphabets. A non-deterministic homomorphism h is any 
function h: Σ1 → Pot0(Σ2*), where Pot0(X) is the set of finite subsets of X. Such h induces 
another function (also called h) from Σ1* to Σ2*, by putting h(ε) = ε and h(x1...xn) = {w1... wn | 
wi ∈ h(xi)}.  For L ⊆  Σ1*, h(L) = {h(w) ∈  Σ� 2* | w ∈  L}. 

 
(b) Let G = (V, Σ1, P, S) be a grammar for L ⊆  Σ1* in CNF. Define a grammar G' = (V', Σ1, P', 
S') for L' as follows:  
 
1. V' = V ∪ Σ .    2. S' = S.    
3. Let P' consist of all rules from P (with the rules of the form A → a now interpreted in G' as 
variable-variable replacements), plus for each a ∈ Σ 1, w ∈ h(a) a rule a → w (now interpreted 
as a variable-terminal_word replacement).  
 
It is clear that G' is a grammar for L' = h(L). 
 
Problem 4 (20 points). A language L over Σ is called recursively enumerable, if L = , 

where A(n) is a finite (possibly empty) set of words from Σ*, and there exists an algorithm 
that computes the function A: � → Pot (Σ*). That is, on input n, the algorithm prints out the 
finite number of words contained in A(n). Show that every context-free language L is 
recursively enumerable, by describing such an algorithm in words. Explain why L = �  

when your algorithm is used. 
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Solution. There are many ways to achieve such an algorithm. Somehow the algorithm must 
exhaustively construct all possible derivations (or parse trees). Here, for concreteness, I sketch 
one possible realization. Let G be a grammar for a CFL L, and let G have k rules. On input n, 
the algorithm constructs all possible derivations of length less or equal than n. For each of 
these derivations which ends in an all-terminal sequential form, that is, produces a word w ∈  
L, the word w is added to the output A(n). It is clear that  ⊆  L. Conversely, if w ∈  L, 

the word has a derivation of some length n, and therefore w ∈ A(n), thus w ∈ � , thus L 

⊆  . 
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Problem 5. Formulate the following natural language statements in PL1, using the syntax 
from Michael Kohlhase's slides. Freely use parentheses if it makes things clear. 

(a, 9 points) Every dog has exactly one mother.  (Use signature Σp
1 = {Dog}, Σp

2 = 
{Mother, =}, where "=" is intended to denote identity of two individuals; you may use 
infix notation if you wish) 
(b, 6 points) Two sets are equal iff they contain the same elements. (Use signature Σp

1 = 
{Set}, Σp

2 = {∈ , =}; you may use infix notation if you wish) 
 
Solution. (a) ∀ X . (Dog X � ∃ Y. (Mother(Y, X) ∧  ∀ Z . (Mother(Z, X) � Z = Y))) 
(b) ∀ X . ∀ Y . (Set(X) ∧ Set(Y) � ( X = Y ⇔ ∀ Z . (Z ∈  X ⇔ Z ∈  Y)) ) 
 
Problem 6 (10 points). For the PL1 formula A: ∀ X . (p(X) � ∃ Y. q(Y, X)), where p is a unary 
and q a binary predicate symbol, design two models �i= <��ι, �i >  (where i = 1, 2), each 

over �ι.= {1, 2, 3}, such that �1 � A and not �2 � A. Explain in words in each case why 
your model satisfied the requirements �1 � A and not �2 � A. 
 
Solution. We have to define two interpretations �i, one which makes A hold and the other 

not. For i = 1, put (for example) �1(p) = ∅ , and �1(q) anything. Then <��ι , �1 >  � A, 
because the premise of the implication in A is then void and therefore the implication trivially 
true. For i = 2, put (for example) �2(p) = �ι , and �2(q) = ∅ . Then not <��ι , �2 >  � A, 

because the premise of the implication holds for every element of �ι , but the consequence for 
none; the implication is therefore not true for any element of the carrier.  
 
Problem 7 (10 points). Using the rules from the sequent version of natural deduction 
(Michael Kohlhase's slide 51) derive Γ A ∧ ¬ A � B (for any Γ, A, B).  
 
Solution. One possible derivation is: 
 
(1) Γ A ∧ ¬ A����A ∧ ¬ A  Ax 
(2) Γ A ∧ ¬ A����A   ∧  El on (1) 
(3) Γ A ∧ ¬ A����¬ A   ∧  Er on (1) 
(4) Γ A ∧ ¬ A����Fo   Fo I on (2), (3) 
(5) Γ A ∧ ¬ A����B   Fo E on (4) 
 
 
 
 


