Exercisesfor ACS 1, Fall 2005, sheet 1: Solutions

Exercise 1 (30 points): Give aformal definition of the notion of an "alphabetical
enumeration” of Z*, which we introduced informally in the lecture. Note: there are many
ways to formalize this operation of listing all words from Z*.

Solution: Let & ={ay, ..., an}, and let w, v I 2*. We say that w comes beforevin the
alphabetical enumeration order, written w<, iff

W < M

or

W==n>0andw=ur andv=usforsomeul2*,r,s[] 5", where the first
symbol of r is a; and the first symbol of sisa;, and i <j.

Thenamapping a: 2* - Nisan alphabetical enumeration of Z* if it is bijective and
respects alphabetical enumeration order, that is, for all w, vZ*: w<v < a(w) < a(v).

Exercise 2 (30 points): Two sets Sand T have (by definition) equal cardinality, written | S| =
| T, if there exists a bijective mapping between them. Show that |[0,1] | =|R |, where[0,1]
isthe set of real numbers between 0 and 1, including O and 1.

Solution. We first fix a bijective mapping f between (0,1) —the set of reals between 0 and 1,
excluding 0 and 1 — and R. There are many such mappings, for instance, f(x) = tan(x/tt+ 1/2).
Let X1, X2, X3 ... = 1/4, 1/8, 1/16, Transform f into a bijective mappingf': [0,1) - R
(where[0,1) isthe set of reals between 0 and 1, including 0 and excluding 1), by putting

f*(0) = f(x),
' (%) =f(xi+2) fori =1,
f' (x) =f(x) for any x not equal to O or any of the x;.

By repeating this trick one obtains a bijective mapping f " : [0,1] - R.

Exercise 3. (a) (10 points) Design an NFA for the language L = {w 1 {0,1}* | w contains at
least 2 ones}. Present your NFA by a graph representation (transition diagram). (b) (10
points) Design an NFA for the language L = {w [{0,1}* | w contains at most 2 ones} .
Solution: (a) One possibility is

Ol

start @ @
— O—>@)—(®)

Exercise 4 (20 points). Transform your two NFAs from exercise 3 into equivalent DFAS
(with dead state if appropriate) by the subset construction. Present your solution DFAS
through their transition graphs.

— @G > @

v
See

Exercisesfor ACS 1, Fall 2005, sheet 2

Solution. (a)

Return solutions in paper form on, in the lecture, on Wednesday, September 28

Note: a maximum of 100 pointsis accredited for this sheet.

Exercise 1 (50 points). A word-labelled DFA is a generalization of DFAs in whose transition

graphs the transition arrows may be labelled by any words from 5. An example might look
likethis:

start @ @ 01

—> (O—@—®)
N Y

100

() (40 points) Give an analog of the definitions 3.1, 3.2 and 3.3 from the lecture notes
that capture word-labelled DFAs (there might be several plausible definitions — the
purpose of this exercise is not to find the "correct” one, but to train writing formal
definitions). Make sure that your definitions define a mechanism that is actually
deterministic, that is, on a given input word at most one path through the transition
graph is possible. Furthermore, make sure that your definition (specifically, for the
extended transition function) is well-defined. Thiswill require a proof.

(b) (10 points) Prove the the languages accepted by word-labelled DFASs are the regular
languages.

Solution. (a)

Def. 1 A word-labelled DFA Aisaquintuple A=(Q, Z, d, go, F), where Q = {qo, qu, ..., On}
isafinite set of states, 2 is the alphabet of input symbols, &: Q x) Qisapartial function,

the transition function, qg isthe start state, and F [Q isthe set of accepting states. It must
hold that

OgOQ Ow,vOZ*: 8(q,w)and &(q,V) aredefined — visnot aproper initial wordof w.
Note: this condition assures determinism.

Def. 2Let A= (Q, Z, d, qo, F) be aword-labelled DFA. Define the extended transition
function o QxZ* - Q by induction over wordsthrough CqO0Q: 5(q £)=q and

OgOQ OwOs* OvOs" : &(q,wv) = 8(8(q,w),v), if defined. Use notation &(q, w) for
5(a,w) .

Proposition: Definition 2 is well-defined.

Proof: This follows immediately from the following lemma: If wOX* and there exits n such
that w = vivp...v, al v OZ", and there exist states qo, qy,... g Such that al &(q,v.,;) =q.,

are defined, then the number n and the words vy, vs,...v,, and states qg, qy,... gn are unigue with
this property.

Proof of lemma: Assume that for some wX* and there exits n such that w=vyvo...vy, dl v
0%", and there exist states qo, ds,..- g such that al &(q,v.,,) = q,, aredefined, and

furthermore, there exits msuch that w=Vv'1V'...Vy, al v OX", and there exist states go = g,
J'1,... dmsuchthat al &(q',,v',,) =q',, aredefined. Thenv'1 = vy or V'1 isaproper initial
word of vy or vy isaproper initial word of v'1. The latter two cases are impossible due to
Definition 1. Therefore V1 = v4. An iterated use of this argument yields the statement.

Def. 3 A word-labelled DFA A accepts aword wif 8(qo, W) O F. If 3(qo, W) O F, theword is
regjected. The set of words L(A) ={w ZD| A acceptsw} isthe language accepted by A.

(b) Because the word-labelled DFAs generalize the DFAS, it is clear that every language
accepted by aword-labelled DFA is also accepted by a DFA. Conversely, let A= (Q, Z, &, t,

F) be aword-labelled DFA. Construct from A a standard DFA A' = (Q', 2, &, qo, F) as
follows.

1L PitQ =Q38 ={(q,ap)|3(qa=pals})

2. For aIIdefinedtransitions6(po, W) = Pp, W=az...an, N> 1,3 0 %, extend Q by new
states py, ..., Pn-1, andextend6 by {(pi, &, pi+1) [1 =0, ..., n-1}.

3. PLQ=Q,5=35.

Exercise 2 (20 points). In analogy to theweb — ebay example from the lecture, design a
DFA that finds all occurences of oop, f 00, and ps in atext. Present the NFA from which
you start your congtruction by atransition diagram (points) and the resulting DFA by a
transition table (points). Finally, give the state DFA sequence that is yielded by input

soopsssf 0os. Present this state sequence in the format of iterated triples state — (symbol) —
nextstate

start

— @\—r@? ©>@
T @%0)

Solution. We have S={o0, p, s, f}. NFA: {zj/ov@—OP P

DFA transition table:
0 p S f

-1 12 18 1 15
12 123 18 1 15
123 123 148 1 15
148* 12 18 19 15
15 126 18 1 15
126 1237 18 1 15
1237+ 123 148 1 15
18 12 18 19 15
19+ 12 18 1 15

Transition sequence on soopsssf 0os:

1(9) 1(0) 12 (0) 123 (p) 148* (9) 19* (9 1 (9 1 (9 1 (f) 15 (0) 126 (0) 1237* (3 1

Exercise 3. (20 points) Let 2 be some alphabet and W a finite set of words over Z. Show that
L= {w[Xx * | wcontains no subword v [J W} isregular.

Solution. It is easy to construct an NFA A for L, the language of all words over ¥ that
contain some subword v [0 W. (This NFA would have the structure of the NFA given in the
solution to exercise 6). By the subset construction, one obtains an equivalent DFA A’ for L.
Replace the set of accepting states of A" by its complement to obtain aDFA for L. ThusL is
accepted by some DFA and hence is regular.

Exercise 4 (22 points). Design a DFA that accepts the language over S = {b, c} denoted by
((bb)* (b+c+¢€))*, by (a) (10 points) designing first an e-NFA for this language, using the
methods from the proof of proposition 3.4, possibly with simplifications that suggest
themselves, then (b) (10 points) deriving an equivalent DFA from that by the subset
construction. Represent your automata by transition diagrams. (c) (2 points) Isthere asimpler
DFA than the one obtained from the subset construction?

Solution. (a) Merging pure e-chains, the methods from the proof of proposition 3.4 yield the
following e-NFA: e

ST
—>®_>@_>_@ _i@

(b) The subset construction yields

<o
_’T’D

(c) A simpler DFA is @
—C

Exercisesfor ACS 1, Fall 2005, sheet 3: Solution sheet

Exercise 1. Let = ={0,1}. Prove or disprove the following two claims (L; are language
variables):

(@ (L1+L2)* == (L* Lo*)*
(b) (L1+Lop* L3 =5 Lpls* +LoLs*

Solution. (a) Claim istrue. Using Corollary 3.7, we have to show that L((a + b)*) =
L((a* b*)*) for ordinary regexps (a + b)* and (a* b*)* over = ={a, b}. We have to
demonstrate two set inclusions:

() LewOL((@a+b)*). Thenw{ a, b}*, that is, w=X1...X,, N =20, x, O { a, b}.
Becausea [0 L(a*) = L(a*€) O L(a* b*) and b O L(b*) =L(e b*) O L(a* b*), we
have x; [L(a* b*) and therefore w O L((a* b*)*).

(i) LetwL((a* b*)*). Thenw O { a, b}*, that is, w [L((a + b)*).

(b) Claim is not true. Proof by contradiction. If it were true, then for ordinary regexps (a+ b)*
c* ,ac* + bc* it would hold that L((a+ b)* c*) =L(ac* + b c*). But clearly € [L((a+ b)*
c*), wherease [1 L(ac* + b c*), because any word in this language must start with a or b. So
L((a+ b)* c*) #ZL(ac* + bc*), andthusthe claimis false.

Exercise 2. Prove that the language L = {0" | n = pq for two primes p, g} is not regular.

Solution. Assume L is regular. Then by the pumping lemma, there exists a constant ¢ such
that, if w O L, W > ¢, wcan be written as uvx, r = |v| > 0, such that uv'x OLforali>0.Let
p, g such that n = pg > c. Then 0°¥ 0 L and by the pumping lemma, 0O°™'" O L for all i = 0.
Specifically, for i = pqwe obtain 0P [L. But pg(1+r) is not the product of two primes,

so by the definition of L, oM gy Contradiction, therefore the assumption that L is regular
iswrong, therefore L is not regular.

Exercise 3. Prove or disprove the following conjecture:

Let M be some regular language over = = {0,1}. Define Ly = {0"O{o}* | n=|v| for some
word v 0 M}. Then L isregular.

Solution. The conjecture istrue. Consider the (unique!) homomorphism h: {0,1} — {0}.
Then Ljy; = h(M) and by Proposition 3.11, Ly isregular.

Exercise 4. Prove or disprove the following conjecture:

Let M, N be regular languages over 2 = {0,1}. DefineL = U N* . ThenL isregular.

k=|v| for somevOM

Solution. The conjecture istrue. Consider the language L over {0} from Exercise 3, which
isregular and therefore can be represented by some DFA A whose transitions are labelled by
0. Let B be an e-NFA for N, which has a single accepting state, no arcs leading into the
starting state and no arcs leaving the accepting state (such an e-NFA exists, see the proof of
proposition 3.4 in the lecture notes). In A, insert into every transitionq [p acopy of B

viatwo e-links, as in the figure:

O30 Or=®

Then make all accepting states from the B copies non-accepting. It is clear that the obtained -
NFA acceptsL.

Exercise 5. Let h be the homomorphism h(a) = 01, h(b) = 0. Find h'l(L), where L = (10+1)*.

Solution. First, observethat € [L and thus e [h'l(L) because by definition of a
homomorphism, h(€) = €. For non-empty w [L, observe that w must begin with a 1. Assume
w = h(v). If the first symbol of v isan a, then wwould begin with 01; if the first symbol of v is
ab, then wwould begin with 0. In neither case does w begin with 1, so the assumption w =

h(v) cannot hold, so h™(w) = O. Therefore, (L) ={ €}.

Exercisesfor ACS 1, Fall 2005, sheet 4: Solution sheet

Exercise 1 (30 points). Let € #w = X1...x, [X *. Construct the minimal DFA for L ={w}, by
specifying the equivalence classes []r_from the Myhill-Nerode theorem (specify them the

equivalence classes by their extension, that is, for each class describe the set of wordsthat it

contains. Prove that your equivalence classes exhaust 2* and satisfy the conditions of R !).
Give a graph representation of your DFA.

Solution. The equivalence classes are (obviously...) [€] ={&}, [xa]={X4}, ..., [X1...Xn] =
{X1..Xn}, and (forany a [X) [X1..Xn @] = Z* \ ([€] T [x1] O ... O [X1...Xn]). This obviously
exhausts 2*. To show that these sets are actually the R_ — classes, we first show that al
membersin [X1...X, al= Z* \ ([€] O [X1] O ... O [X1...Xn]) are R_ —equivalent. Thisis clear
because Z* \ ([€] O [X1] O ... O [X1...Xn]) contains all words u that are not an initial subword of
w, and therefore any extension uv isnot in L. By this we have shown that our classes are a
refinement of R,. It remains to show that no two of them are subsets of some R, —class. To

this end, it suffices to show that the representatives we have given are pairwise not R —
equivalent. Thisis straightforward: for each pair of the singleton classes, say [u] and [V],
where u # v areinitial subwords of w, consider y where w = uy. Then clearly uy O L but vy [

L, so not u R_v. Furthermore, X1...X, aisnot R_ — equivalent to any of the initial subwords of
w, because each of the latter can be right-extended to become an element of L, whereas X;...Xn
a cannot. All in all, we have shown that our sets are indeed the R_ — equivalence classes.

Note: an alternative proof would be to construct the minimal DFA first viathe table-filling
algorithm, then deduce from it the sets[Xg .

The minimal DFA is so obvious that | do not draw it here — (but in your solutions you
should).

Exercise 2 (40 points). What are the Myhill-Nerode equivalence classes of R, for
L ={0"1" | n= 1} ? (Prove your answer!)

Solution. For someword u [{0,1}* let ext(u) = {v I {0,1}* |uv O L} be the extension set of
of u into wordsof L. It isclear that u R_ v iff ext(u) = ext(v). Call aword u [J {0,1} *
extendable if for somev [01{0,1}* it holdsthat uv (I L. It is clear that u is extendable iff ext(u)
[. Furthermore it is clear that u is extendable iff u is of the form Oalb, wherea=>1,b>0
andaz=b.

Case 1: uisof the form 0%, where a> 1. Then ext(u) = {0°1% | d = ¢ + a} . For different a,
these are different extension sets, therefore not 0% R o°for az b, and these words lie in
different equivalence classes.

Case 2: uisof theformOalb, wherea=1,b>1anda=b. Thenext(u) = {1OI |d=a-b}. We
find that for such words, 0%1° R_0%1” iff a—b = a' —b'. Furthermore, the extension classes
we get for case 2 words are different from extension classes from case 1, therefore the
equivalence classes represented by case 2 words are different from case 1 equivalence classes.

Case 3: uisnot extendable. Then clearly u R_ viff v is not extendable, and [u]r,_is different
from any of the case 1 or 2 classes.

Assembling, we get the following equivalence classes:

1 [07r ={0%,

2. [0 ={0"1°|a-b=a -b},
3. [1]r ={0,1}* minusthe union of al classes from 1. and 2.

Because we have infinitely many equivalence classes, L is not regular.

Exercise 3 (30 points). Minimize the DFA shown in the figure by using the table filling
method. Déeliverables: the filling table, the set of states of the minimal DFA, and a graph
representation of the minimal DFA.

Solution. Manual labour by accurately following the recipe...

Table: Minimal DFA:
Star
b |x; —>
C |X3|X1
d [X1|X2[X1
e [X2|Xy|X2]xq 0,1
| X1| X2 X1 X1

a bc d e

New states: {a}, {b}, {c}, {d, f}, {€}

Challenge (no points, for sharpening your claws — really tricky). Show that if L isregular,
thenalso H = {u | there existsaword v, |u| = |v|, and uv [J L} isregular. Hint: construct an -
NFA B for H out of a DFA A for L. Capitalize on the insight that u [0 H iff some suitable v
with Ju| = |v] can be "guessed” (which is something e-NFA's can do) such that uv leadsto an
accepting state in A. The difficulty isto ensure that |u| = |v|. Think of an e-NFA that runs two
processes in parallel (in asuitable product space of states), one for reading in u, and another
one for "guessing” a successful continuation run for vin A.

Exercisesfor ACS 1, Fall 2005, sheet 5: Solution sheet
Exercise 1 (15 points). Give a CFG for the language of the regular expression (0* 10)*.

Solution: A set of production rules that works is the following:

S- €SS comment: this takes care of the outer *
S - Z10

Z - ¢€|2Z]|0 comment: rules in the last two lines take care of generating the words
0*10

Y ou could also use the generic method that you are asked for in the next exercise, but the
resulting grammar would contain more rules and variables.

Exercise 2 (30 points). Describe a generic method by which a CFG for the language L(E) of
any regular expression E can be constructed from E. Hint: use induction on the structure of E.

Solution. A method to come up with a CFG for any language described by a regular
expression E over an alphabet Z (or T, if we think of it from the angle of CFGs) isto combine
CFG's for subexpressions E' of E, by induction over the structure of E:

Basis:
ForE=10, ¢, ora (wherealLX) it is(amogt) trivial to find CFGs G = (V, Z, Po, 1), G

= (Ve, 2,Pe, S), Ga= (Va 2, Py, S), that generate the corresponding languages, so | will
skip this here.

Induction:

(union) Let E, F be regexps over 2, with grammars Ge = (Vg, Z, Pe, &), G = (VR, Z, Pr,
S) for the languages of E and F. Without loss of generality, we may assume that Vg and Vg
are disjoint. Then we get a obvious grammar for the language of (E + F) by Ge+r = (VE

O VelO {S},Z,PEOPEO {S - &,S - &}, S), that is, we create a new start
symbol from which either the old start symbol of the CFG for the language of E or the old
start symbol of the CFG for the language of F can be produced.

(concatenation) Similar to union, except the new ruleset isPe O P 0 { SF - S &}
(Kleene star) A grammar for the language of E*, given Gg = (VE, Z, Pg, &), iISGex = (VE, Z,
PEO{SE-SS,.S-¢}, %)

Exercise 3 (20 points). Construct a CFG for the language over T ={0,1,2},
L= {V\QV\FZ |wisin (O+1)+, w? isthe reverse of w}. (For aregexp E, L(E+) isL(E)—-{€}.)

Solution. One possibility is

S - 1A12| 0AO2
A - 1A1|0A0|2

Exercise 4 (50 points) Let G be a CFG. Show that there exists a constant K (which depends
on G), such that, if w L(G), w# €, then there exists a derivation with at most K [w| steps.

Solution. Showing the claimis easy if G has no e-productions (that is, productions of the
form A - €). Because in this case, consider any parsetreet for w. Its leaves are the symbols
from w. Generally, atree with n leaves cannot have more than 2n linear chains (this maximal
number is attained when the tree is binary). Consider any linear chain int. It must consist
solely of variable nodes, with possibly the last node being labelled by aterminal if the chain
endsin aleaf. Let k = |V] be the number of variablesin G. If achain int contains more than k

variable nodes, at least one variable A occurstwice and the chain can be shortend by cutting
out the segment between the two occurences of A, and joining the two A-nodes, resulting in
another parse tree for w. So we can shorten all linear chainsto alength bounded by k + 1. The
total number of nodes of the shortened parse treeis therefore bounded by 2(k + 1) [wj. Putting
K = 2(k + 1) therefore gives us the desired bound, because for any parse tree with m nodes we
can find a derivation with m-1 steps.

Now assume that G does have e-productions. Let t be some parse tree for w, with node set N.
Consider the subset N' of N that consists of all nodes that have a non-¢-labelled leaf beneath
them or are themselves non-¢-leaves. Consider the labelled tree t' that you get when you take
away fromt all nodes not in N'. This tree has |w| leaves labelled by the symbols from w, from
left to right. Notice that if n' isanode within a linear chain in t', then within t thisnode is
either also occuring in alinear chain, or if not, all branches beneath n' int that are not int' end
in € leaves. By asimilar argument as above (in the case of a grammar with no €-productions),
shortening linear chainsint' at repetitions of variable labels gives atree t” whose size is
bounded by K' |w|, where K' is some constant that depends only on |V|. Now re-complete t™ by
appending, at al nodes n" that withint had children n not in N', those children n and all their
descendents. Obtaint'™'. All of these children n are nodes beneath which only €-leaves can be
found. Let b be the maximum length of any production in G. By re-extending t" into t"', at
most K' |[w| b such nodes n were added to t"* (plus the descendants of the nodes n). Consider
any such node n in t beneath which only e-leaves can be found, and all its descendants. Thisis
asubtree t,, of t with only e-leaves. Any branch beneath n that is longer than |V| must contain
repeated variable nodes and can be shortened. So we can condense t, into atreet,’ of depth at
most |V]. If b isthe maximum length of any production in G, then the number of nodes of t,' is
bounded by bV 1f we replace all subtrees beneath nodes n int™' by the condensed treest,’, we

get atreet"" that has at most K' |w| + bV k: W b =: K |w| nodes. But t'"" is a parse tree for w,
and thus we have procured a derivation of win G with at most K |w steps.

Exercisesfor ACS 1, Fall 2005, sheet 6: Solution sheet

Exercise 1. Give aformal definition of something like a " context-free graph grammar”
(CFGG), where the result of a derivation is not aword, but an undirected graph (whose nodes
or links are not labelled). Like in ordinary CFGs, a derivation should start with a start variable
S You are essentially free to invent your personal brand of a CFGG — this exercise aims only
at sharpening your skills to compose rigorous definitions, not at finding the "correct”
definition. However, to make your task not too simple, your CFGG should be expressive
enough to allow grammars that can generate (i) all binary trees, and (ii) all fully connected
finite graphs.

Note: Feel invited to become inventive! don't stick too closely to the definitions of ordinary
CFGs. Anything goes ... aslong as you make it formal and precise, and as long as your
grammar can derive the languages (i) and (ii).

Deliverables. (a, 70 points): An CFGG definition, including a notion of derivations and of
accepted graph languages, analog to Definitions 4.1, 4.2, 4.3 from the lecture notes. (b, 20
points): A specific graph grammar whose language is the set of all finite binary trees.
Demonstrate your grammar by an illustrative derivation. (c, 20 points): A specific graph
grammar whose language is the set of all fully connected finite graphs. Demonstrate your
grammar by an illustrative derivation.

Use the following definition and terminology for undirected (finite) graphs:

Definition. An undirected graph isapair U = (N, E), where N is a finite, nonempty set of
nodes and E [N x N isthe set of edges. E must be symmetric (that is, (n, ") D E= (n', n) O
E) and antireflexive (that is, (n, n) O E for al nodes n). We write [n, n'] [E as a shorthand for
(n,n) O EO(n', n) OE. An undirected graph is connected if for any pair (n, n') of nodes,
there exists a path in the graph that leads from n to n'. An undirected, connected graph isa
binary tree if either U = ({ng}, O) or, if | N | > 1, there exists exactly one nyoo; O N that has
exactly two neighbors, and any other node has either exactly one neighbor (then it is aleaf
node) or three neighbors (then it is an internal node). An undirected graph is fully connected if
for any pair (n, n') of nodes, it holdsthat [n, n'] O E.

If (N, E) isagraph, A and B are sets, then any mapping v: N - Ais called anode labelling
(with label set A). For a graph with a node labelling v we write (N, E, v).

Solution. (a) One possibility would be the following:

Definition. (CFGG) A context-free graph grammar (CFGG) isaquadrupleG=(V, T, P, S),
where

Visafinite set of variables (also called nonterminals),

T O Visthe terminal symbol,

SO Visadart symbol, and

P isafinite set of productions (also rules), each of the form A - o, where Aisavariable

and a = (N, E, v,) consists of the following parts:

1. anundirected, node-labelled graph (N, E, v), with labels fromV [{ T}, called the
heart of therule,

2. for each node n [0 N of the heart afinite (possibly empty) set 1i(n) of graph matching
patterns. A graph matching pattern isitself an undirected graph (N', E'), where |[N'| = 2,
where there is a specifically marked reference node r O N', and a match node mJ N/,
withr # m. Thus, T(n) consists of a finite set of structures of the form ((N', E'), r, m).

Ao

Definition. (derivations). Lee G=(V, T, P, S beaCFGG. Let (N, E, v), (N, E', V') be two
node-labelled graphs, with label set V 01 { T} each. Then (N, E', v") isderived from (N, E, v)
viaG, written (N, E,v) =g (N, E, V'), if thereexistsarule A - a in P, such that

1. thereexistssanoden O N, v(n) = A,
2. (N, E', v') can be obtained from (N, E, v) through the following steps:
a. deletefrom (N, E, v) the node n (including its connecting links and label
information), to obtain (N*, E*, v*),
b. addto (N*, E*, v*) the heart (Ng, Eq) of a (making Ny is digoint from N*),
obtaining (N**, E**, v**) = (N* [0 Ny, E* 0 Eg, V¥ 1V),
c. for each node ny in Ny, and for each ((Ny, Erp, r, m) O 1(ny), and for each n*
O N*, add [ng, n*] to E** if (N, Er), r, m) matchesr with n and mwith nq,
that is, if there exists an injective map 1: Ny - Nwith1(r) = nand 1(m) = n*

which is a subgraph map, that is, connections in (N, Er) are mapped on
existing connections in (N, E).

Let =* s denote the transitive closure of =¢.

Definition (language of a CFGG). Let G=(V, T, P, S be a CFGG. Then an undirected
graph (N, E) isin the language of G if there exists aderivation ({S}, 0) =*g (N, E, v), where
v labels all nodes from N by the terminal symbol T.

(b). Put V={S F} and for the productions set put

1. S ({n}, 0 v, m,withv(n)=Tand1(n) = . [Thisrule generates the trivial single-
node tree]

2. S- ({abc},{[ab],[ac]},v, m wherev(a) =T and v(b) =v(c) = F, and 11(a) = 1(b)
= 1(c) = 0. [Thisrule generates a"seed" tree of one root and two descendants].

3. F- ({abc,{[ab],[ac},v,nm wheev(a=Tandv(b) =v(c) =F, and (a) = ({r,
m}, {[r, m|}, r, m), (b) = (c) = O. [Thisrule extends a "frontier" node a labelled by F
by appending two siblings. a is relabelled by T, the siblings become new "frontier" nodes
by labelling them with F.

4. F > ({a},] v, m, wherev(a) =T and (@) = ({r, m}, {[r, M|}, r, m). [This rule changes
the status of afrontier node into aterminal node by relabellingto T.]

(c). Put V={S A} and for the production set put

1. S- ({n}, 0 v, m, withv(n)=Aand ri(n) = 0. [Thisrule generates the trivial single-
node tree]

2. A- ({a b}, {[a b]},v, m, wherev(a) =v(b) = A, and (@) = Tib) = ({r, m}, {[r, M|}, r,
m). [This rule adds a new node and connectsit to al nodes in the old graph, assuming that
the node that is replaced using thisrule is already connected to all nodes in the old graph.]

3. A- ({a},] v, m, wherev(a) =T and (@) = ({r, m}, {[r, M}, r, m). [This rule changes
the status of an "active' node into aterminal node by relabellingto T.]

(for (b) and (c), you should also furnish an illustrative derivation — omitted here).

Midterm Advanced CS 1, Fall 2005: Solutions
Group A

Problem 1.

(a, 10 paints) Construct an e-NFA for the language

L={wO{0,1}* |w=uv,uJ{0,1}*, visastring of n repeated substrings 010, where n > 1}.
Present your automaton by a transition graph.

(b, 10 points) Represent L by aregular expression. Adhere strictly to the syntax of regexps as
introduced in the lecture (no parenthesis saving conventions)

(c, 10 points) Give a CFG for L.

Solution. (a) One possible e-NFA is

ﬂ@as@?o?é?@

(b) (((0 + 1)*)(((01)0)*))
(c) One possiblegrammar: S - UV, U - ¢|U1|UO0,V - WO10,W - €|V

Problem 2 (15 points): Prove or disprove the following conjecture:

Let > be some alphabet. If for alanguage L [*, all k-initial languages are regular (k = 1),
then L isregular. (For alanguage L, the k-initial language of L isthe set {v 0 2*| |v| = kand
there existssaword vu [J L}.)

Solution. Conjecture is very wrong. By definition of a k-initial language, a k-initial language
is finite and therefore regular. So for any language L al k-initial languages are regular —
regardless of whether L isregular or not.

Problem 3 (20 points): Show that the language L = {0"10I |k=0,1=k} isnot regular.

Solution: aclear job for the pumping lemma, what else... Assume L isregular. Let nbea
pumping lemma constant. Consider the word w= 0"10". By the PL, it can be written as w =
xyz, where |xy| < n, (which impliesy consists solely of O's and falls into the first 0" of w) and

[yl = 1. By "pumping" y once and using the statement of the PL, we obtain w = oMo' L,
which is a contradiction to the definition of L. Therefore the assumption that L is regular must
be false, that is, L is not regular.

Problem 4 (20 points) Provethat if L (over %) isregular, then the prefix language of L,
Pre(L) ={w[X *|wu L for someu [X *} isalso regular.

Solution: Let A be some DFA for L. First determine all accessible states g in A from which
there exists some path leading to an accepting state, or which are themselves accepting. Add a
new state p to the state set of A, and connect all states q to p by an e-transition. Make p
accepting and make all original states of A non-accepting. The automaton thus obtained
clearly accepts Pre(L).

Note: the suffix language from group B can be dealt with in a similar way, by inserting &-
transitions into A from the start state into al states g.

Problem 5 (30 points) Disprove the following variant of the pumping lemma:

L isaregular language iff there exists a constant n, such that Ow O L, [w| = n, we can find a
partition w = xyz, suchthat (1) y# €, (2) [xy|<n, and (3) Ok =1, x3}<z OL.

Note: this claim differs from the PL in two respects. First, it has an "iff" where the PL only
hasa"=", second, condition (3) is stated for [1k = 1, whereas the PL as [Ik > 0.

Solution: We construct anon-regular L for which therhs. of the iff claim holds. Let M be
some non-regular language over Xy, (which must be infinite because all finite languages are

regular), where 2. does not contain 0. Let N be some infinite regular language over 2y =

{0} withe O L and with PL constant n. and let N>, be the subset of N of all words longer than
n (thisis also regular because N>p = N n ZNO N ZNl N ... n =N"). Consider the language L =
N>n M over 2y O Zn. Then by construction, the rhs. of the iff statement holds for L (use same
nand But L is not regular, which can be seen by considering the homomorphism h: 2y O 2y

- 2m, h(0) =¢, h(@) =aforal alX y . It holdsthat h(L) = M. If L wereregular, then by
closure under homomorphisms M would also be regular, contradiction.

Final Advanced CS1, Fall 2005
Group A

A maximum of 100 pointsis accredited.

Problem 1.

(a, 5 points) Describe the language accepted by the e-NFA A from Fig. 1 in a"mathematical
set description” of thekind L ={w [{0,1,2,3}* | ... < your specification goes here > }.

(b, 5 points) Represent L(A) by aregular expression. Adhere to the syntax of regexps as
introduced in the lecture (you may use parenthesis saving conventions)

(c, 5 points) Give a CFG for L.

—+Q*0¥0+¥0
) 4 YO0 60 Fig. 1: the e-NFA A for
O O problems 1 and 2
YO VYO
O O
v O
O

Solution. (a) L ={w{0,1,2,3}* | wisa(possibly empty) concatenation of subwords 10,
1200, 123000}

(b) (01 + 1200 + 123000)*

(c) S- €|SS|01]1200 | 123000

Problem 2 (25 points). How many states does a minimal DFA for the language accepted by
the e-NFA A from Figure 1 have? Prove your answer.

Solution. The following DFA clearly accepts L: e (©) S ¥ Q)P
We use the table-filling algorithm to show that Vo/® ©o @o
it isactually minimal. Here is the table that we get: ' '¥—O é‘aé
b Xy \®K his dead state,
C |xq[X transitionsinto it
1 not shown in detail
d [X1]|X2| X3
e |Xi|Xz2| XgX3
h [X1|Xo | X3| Xa| X3| X2

a bcd e f

The table shows that all states are pairwise distinguishable and therefore the DFA is minimal;
that is, the minimal number of statesis 7.

Problem 3. (a, 15 points) Under the homomorphism operation, each symbol a from aword w
over 21 isreplaced by some word h(a) over Z,. Thisis adeterministic operation: h(w) is
uniquely determined. Y our task: define a non-deterministic version of homomorphisms,
where each symbol a from aword w over Z; isreplaced by any word from afinite set of
words over 2, that depends on a. Re-formulate the original definition 3.13. (1.) of a
homomorphism for the non-deterministic case. (b, 20 points) Show that the context-free
languages are closed under non-deterministic homomorphisms.

Solution. (a) Let 21, 2 be two alphabets. A non-deterministic homomorphism h is any
function h: Z; — Potg(Z2*), where Potg(X) is the set of finite subsets of X. Such h induces
another function (also called h) from Z1* to 25*, by putting h(€) = € and h(x1...Xn) = {wW1... Wy, |
w; O h(x)}. For L OZy*, h(L) = U {h(w) O Zo* [wOL}.

(b) Let G=(V, 21, P, § beagrammar for L Z1* in CNF. Defineagrammar G' = (V', 21, P,
S) for L' asfollows:

1L.V=VIE. 2S=S

3. Let P' consist of all rules from P (with the rules of theform A - a now interpreted in G' as
variable-variable replacements), plus for eacha [X 1, w h(a) arulea - w (now interpreted
as avariable-terminal_word replacement).

It isclear that G' isagrammar for L' = h(L).

Problem 4 (20 points). A language L over X iscalled recursively enumerable, if L = U A(n),

n>0
where A(n) is afinite (possibly empty) set of words from Z*, and there exists an algorithm
that computes the function A: N - Pot (Z*). That is, on input n, the algorithm prints out the
finite number of words contained in A(n). Show that every context-free language L is
recursively enumerable, by describing such an algorithm in words. Explain why L = U A(n)

n>0

when your algorithm is used.

Solution. There are many ways to achieve such an algorithm. Somehow the algorithm must
exhaustively construct all possible derivations (or parse trees). Here, for concreteness, | sketch
one possible realization. Let G be agrammar for aCFL L, and let G have k rules. On input n,
the algorithm constructs all possible derivations of length less or equal than n. For each of
these derivations which ends in an all-terminal sequential form, that is, produces aword w [J

L, the word w is added to the output A(n). It is clear that UA(n) O L. Conversely, if w L,

n>0

the word has a derivation of some length n, and therefore w O A(n), thus w [U A(n), thus L

0 JAM). "

n>0

Problem 5. Formulate the following natural language statementsin PL 1, using the syntax
from Michael Kohlhase's slides. Freely use parentheses if it makes things clear.
(a, 9 points) Every dog has exactly one mother. (Use signature =1 = {Dog}, =", =
{Mother, =}, where "=" is intended to denote identity of two individuals, you may use
infix notation if you wish)
(b, 6 points) Two sets are equal iff they contain the same elements. (Use signature =°; =
{Set}, =P, = {0, =}; you may use infix notation if you wish)

Solution. (a) OX . (Dog X = L. (Mother(Y, X) OOZ . (Mother(Z, X) = Z=Y)))
(b) OX.OY.(Sa(X) OSet(Y) > (X=Y = 0Z.(ZOX = Z20OY)))

Problem 6 (10 points). For the PL1 formula A: OX . (p(X) = 0. q(Y, X)), where p isa unary
and g a binary predicate symbol, design two models M= <D,, I; > (wherei =1, 2), each
over D,.={1, 2, 3}, suchthat M; £ A and not Mz E A. Explain in words in each case why
your model satisfied the requirements Mi E A and not Mo E A.

Solution. We have to define two interpretations 7, one which makes A hold and the other

not. For i = 1, put (for example) 71(p) = 0, and 71(q) anything. Then<D,, 71> EA,
because the premise of the implication in A isthen void and therefore the implication trivially

true. For i = 2, put (for example) 7(p) = D,, and I2(q) =0. Thennot <D, 12> EA,

because the premise of the implication holds for every element of D,, but the consequence for
none; the implication is therefore not true for any element of the carrier.

Problem 7 (10 points). Using the rules from the sequent version of natural deduction
(Michael Kohlhase's slide 51) derivel’ A = A+ B (forany ', A, B).

Solution. One possible derivation is:

O)TFARAFAHA AX

QT ALRAFA DE on (1)
T ALR A F-A DE; on (1)
(ATAR AR Fol on(2), (3)

(5)FTAC- A+B Fo E on (4)

