
Collected Exercises and Exams (with Solutions), ACS 1,
Fall 2004

Exercises for ACS 1, Fall 2004, sheet 1 – Solution sheet

Exercise 1 (a) (5 points) How many words exist over the symbol set S = {1}? and over the
symbol set S = {a, b}? (b) (2 points) How many words of length n exist over a symbol set of
size k? (c) (5 points) How many languages exist over the symbol sets from (a)? (d) (3 points)
How many languages of words of length n exist over a symbol set of size k?

Solution: (a) The words over S = {1} are ε, 1, 11, 111, ... – that is, as many as there are
integers, that is, countably many. The words over S = {a, b} can be listed in a sequence,
shortest first, sorted alphebetically for same size: ε, a, b, aa, ab, ba, bb, aaa, aab, ... – that is,
again countably many. (b) kn many. (c) In both cases, |Σ*| = �, that is, there are 2�� many
languages over these alphabets – indeed, over any finite alphabet there are 2�� languages. (d)

Since there are kn many words of length n over a symbol set of size k, there are)(2
nk many

such languages.

Exercise 2 (10 points). Design a DFA for the language L = {w ∈ {0,1}* | w contains an
uneven number of 0's}. Present your DFA by a graph representation (transition diagram).

Solution. One solution is to take the DFA shown after Def. 3.3. in the script, redefining the
set of accepting states to be {q1, q3}.

Exercise 3 (50 points). A 2-level-NFA over a symbol set Σ is a generalization of NFAs.
Informally, in a graph representation of a 2-level-NFA, transitions are labelled not by symbols
but by ordinary NFAs (each over Σ). A transition graph of a 2-level-NFA might look like this:

Start

B

C

A

B

In this graph, A, B, C correspond to three ordinary NFAs over Σ. (a) (25 points) Give a formal
definition of 2-level-NFAs and their accepted languages. (b) (25 points) Prove that the
languages accepted by 2-level NFAs are the regular languages.

Solution. (a) Definition of 2-level-NFAs:

Definition 1. Let Σ be an alphabet. Let Σ1 = {A1,...,Am}, where Ai is an NFA over Σ (i =
1,...,m). A 2-level-NFA is a quintuple (Q, Σ , Σ1, δ, q0, F), where Q = {q0, q1, ..., qn} is a
finite set of states, Σ1 is the set of edge NFAs, δ: Q × Σ1 → Pot(Q) is the transition function,
q0 is the start state, and F ⊆ Q is the set of accepting states.

 1

Definition of languages accepted by 2-level-NFAs: First define the extended transition
function for 2-level-NFAs like for ordinary NFAs, then proceed to the "2nd-level language"
accepted by 2-level-NFAs, then proceed to the language accepted by a 2-level-NFA.
Altogether this makes 3 definitions:

Definition 2. The extended transition function for a 2-level-NFA

(Q, Σ , Σ
)(*:ˆ

1 QPotQ →Σ×δ
}{),1, δ, q0, F) is defined by (ˆ: qQq ∈∀ δ

� ,(ˆ)

q=ε

)
),(

 and

11 ,(ˆ:* qAwQq δΣ∈∀Σ∈∀∈∀
wqp

wA
δ∈

= Apδ .

Definition 3. The 2nd-level language accepted by a 2-level-NFA (Q, Σ , Σ1, δ, q0, F) is the set

of all words w over Σ1 for which (qδ̂ 0, w) ∩ F ≠ ∅ .
Definition 4. The language accepted by a 2-level-NFA B = (Q, Σ , Σ1, δ, q0, F) is the set set
of all words w over Σ which can be written as w = v1v2...vk, where vj ∈ L(Aij) and Ai1... Aik is
in the 2nd-level language accepted by B.

(b) We have to show that the set of regular languages is included in the set of languages
accepted by 2-level-NFAs (part A) and vice versa (part B).

Proof of part A: Let A = (Q, Σ , δ, q0, F) be an ordinary NFA with language L(A). For each a
∈ Σ , let Aa be a ordinary NFA with L(Aa) = {a}. Put Σ1 = {Aa | a ∈ Σ }. Then the 2-level NFA
B = (Q, Σ , Σ1, δ, q0, F) obviously accepts L(A).

Proof of part B: Let the 2-level NFA B = (Q, Σ , Σ1, δ, q0, F) accept the language L(B), where
Σ1 = {A1,...,Am} and where Ai = (Qi, Σ , δi, q0i, Fi). We may assume that the Qi are pairwise
disjoint. Idea: replace any transition of B by the complete set of transitions from

A

pAq i =δ),(

i, linking q to the start state of Ai by an ε-transition and all accepting states from Ai to p by ε-
transitions. Formally, define an ε-NFA C = (Q', Σ , δ', q0', F') by putting Q' = Q ∪ Q1
∪ ... ∪ Qm, q0' = q0, F' = F and

δ' = δ1 ∪ ... ∪ δm ∪ {(q,ε, q0i) | (q, Ai , p) ∈ δ} ∪ {(pi,ε, p) | (q, Ai , p) ∈ δ and pi ∈ Fi}.

(Note that we interpret transition functions here as sets of transitions). It is obvious that C
accepts the same language as B.

Exercise 4 (15 points). Give a regular expression that tries to catch in an electronic ad
newspaper all ads where someone sells a car, like "Wanted: Mercedes model C, built 1999 or
later", or "Want to buy: pickup in driveable condition, any make, cheap". As symbol set Σ,
use the standard symbols that appear in newspapers (including interpunctuation and space).
Minimal requirement for a solution: Your regexp should match the above two examples and
at least 1000 others, but it should not match "For sale: Mercedes model C, built 1999" or
"Want to pick up a friend". You may assume that some preprocessor has segmented the
newspaper text into separate ads; your regexp should match complete car offer ads and reject
other ads. Use the regexp syntax from the lecture. You don't have to use boldface for the
regexps denoting single symbols. Full points are awarded to solutions that display some effort
toward a useful regexp.

Solution. This calls for creativity. Let's use shorthand S for the regexp
(a+b+...+A+...+Z+...+9+0) that matches any one symbol from our symbol set, and let � be

 2

the regexp denoting the space symbol. A minimalistic solution (which would meet the
minimal requirements but would disappoint me and get few points) would be

(ε+S)* (Wanted:��Mercedes�+ driveable).

Exercise 5. Give a DFA [by way of its transition diagram] (10 points) and a regexp (10
points) for the language L of words over {a,b,c} that do not contain ac as a subword. Explain
by an informal description why your automaton and your regexp work.

Solution. The DFA drawn below (left) obviously accepts all words that do contain the
subword ac. By exchanging the set {q2} of accepting states for its complement {q0, q1}, one
obtains a DFA (right) that accepts L.

a a

b a,b,c

c

b,c

a
q2 q1 Start q0

b a,b,c

c

b,c

a
q2 q1 Start q0

An equivalent regexp could be constructed from the solution DFA by the method from the
lecture. Here is another one that is hand-crafted from the solution DFA, observing that L
consists of all words whose state paths stay in states q0, q1; the regexp describes these paths in
a way that is very similar to the regexp Ei = (R + SU*T)* SU* given in the proof of prop. 3.3
in the lecture notes:

((b+c) +(a(b+a)))*a + ((b+c) +(a(b+a)))* [same as ((b+c) +(a(b+a)))*(a+ε)]

Exercise 6 (25 points). Design a DFA that accepts the language denoted by (((ε+a)bb)*)a*,
by (i, 10 points) designing first an ε-NFA for this language (inspired by the methods from the
proof of proposition 3.4, possibly with simplifications that suggest themselves), then (ii, 15
points) deriving an equivalent DFA from that by the subset construction. Represent your
automata by transition diagrams.

Solution. The left diagram shows an ε-NFA for our language, the right the DFA derived
from it by the subset construction.

b
b

b

a a

a

3

5 2 5 1 2 4 5
ε

ε

b ε
5 4 Start

a

b a,ε
3 2 Start 1

 3

Exercises for ACS 1, Fall 2004, sheet 2 – Solution sheet

Exercise 1. Let Σ = {0,1}. Prove or disprove the following two claims (R, S are language
variables):

(a, 5 points) (L1 + L2)* L2 =Σ (L1* L2)*

(b, 20 points) (L1 L2 + L1)* L1 = Σ L1 (L2 L1 + L1)*

Solution. (a) Claim is false. Consider an interpretation I that assigns the language {0} to L1
and {1} to L2 . Then every word in LI((L1 + L2)* L2) must end with 1, but the word ε is in
LI((L1* L2)*). Thus, the two regexps with language variables are not equivalent.

(b) Claim is true. Using Corollary 3.7, we have to show that L((ab + a)* a) = L(a(ba + a)*).

First we show that for any k ≥ 0, (ab + a)k a = a(ba + a) k (note that "=" here denotes
equivalence of regexps). For k = 0 this is obvious. For other k, use distributivity from
Proposition 3.5:

(ab + a)k a = (ab + a)k-1(ab + a) a
 = (ab + a)k-1(aba + aa)
 = (ab + a)k-1a (ba + a)
 = (ab + a)k-2(ab + a)a (ba + a)
 = (ab + a)k-2a (ba + a) 2
 = ...
 = a (ba + a)k

Now if w ∈ L((ab + a)* a), then w ∈ L((ab + a)k a) for some k. Using our insight just derived,
we conclude w ∈ L (a (ba + a)k) ⊆ L(a(ba + a)*). Thus L((ab + a)* a) ⊆ L(a(ba + a)*). The
reverse direction follows analogically.

Exercise 2 (10 points). Prove that the language L = {0n | n is a power of 2} is not regular.

Solution. A clear case for the pumping lemma. Assume L is regular. Let m be a pumping

lemma constant. Then 02m
 ∈ L. The P.L. implies that also 02m+k ∈ L, where 1 ≤ k ≤ m. But

2m+k is not a power of 2, so 02m+k ∉ L, a contradiction.

Exercise 3 (15 points). Let L be a regular language specified by a DFA, NFA, ε-NFA, or
regexp. Show that it is decidable whether L = Σk for some k > 0.

Solution. There are many ways of how this can be decided. One elegant way is to first
construct the minimal DFA A for L. Then obviously L = Σk for some k iff A has the form

Note. The use of the word "obviously" in mathematical proofs is a delicate affair. One never
knows what the reader is ready to accept as obvious. Here I think we have a borderline case,

qk
Σ

...
Σ

q1
Σ

Start
q0

 4

and one might feel the need to prove that if L = Σk then the minimal automaton actually has
the given form (it is really obviously obvious that this kind of DFA accepts L = Σk, so the only
possibly questionable claim is its minimality). Minimality of DFAs of the shown form could
be proven by going through the table-filling algorithm and showing that all the shown states
are distinguishable. This would be a case for extra grading points.

Exercise 4 (5 points). Is the class of regular languages closed under infinite union?

Solution. Heaven, no!!!! Let L be a non-regular language (the pumping lemma has provided
us with examples of non-regular langugages – and we also know that L must be infinite).
Then L = � . But each {w} is a regular language, so the regular languages cannot be

closed under infinite union.
Lw

w
∈

}{

Exercise 5 (15 points) Minimize the DFA shown in the figure by using the table filling
method. Deliverables: the filling table, the set of states of the minimal DFA, and a graph
representation of the minimal DFA.

1

0,1

1

1 1

0

0

Start 0

0

f

d

b

c

e

a

0,1

Solution. Manual labour by accurate following of the recipe...

Table: Minimal DFA:

b

c

d

e

f

x1

x1

x2 x1

x1 x2
x2 x1

x1 x2

x1

x1
x1

1

1 1

0

Start
0

0

df

b

ce

a

a b c d e 0,1

New states: {a}, {b}, {c,d}, {e,f}

Exercise 6 (a, 10 points) Describe a general method by which one may transform any DFA A
into an equivalent ε-NFA that has only a single accepting state. (b, 10 points) Transform your
result minimal DFA from exercise 1 into a single-accepting-state ε-NFA, either using the
general method you described in part (a) or by using insight.

 5

Solution (a) First transform A into an equivalent regexp, then transform that into an
equivalent ε-NFA using the method from the proof of proposition 3.4 from the script – which
yields an ε-NFA with only one accepting state. (b) By insight: add an ε to the transition from
state a to state ce in the minimal DFA shown in the solution of exercise 1. Then make state a
non-accepting. The resulting ε-NFA clearly accepts the same language.

Exercise 7 (30 points). Consider a minimal DFA A that works on an alphabet Σ. Assume that
you are told that it has m states, but you know nothing more about A – it is a "black box" and
your only way of getting information about A is to feed in words and observe whether they are
accepted. Give an algorithm for determining the transition diagram of A from (any finite
number of) such observations. One extremely expensive method would be to first construct all
possible minimal DFAs of size m, [a HUGE number of DFAs this would give you!] then start
testing all words from Σ* in alphabetical enumeration, weeding out all DFAs that on some
word behave different from your black box. Then at some point only one of your DFAs is left,
--> problem solved. Don't do it this way, but reconstruct RL from the Myhill-Nerode theorem
– that gives a much faster reconstruction.

One possible solution. We know that RL has m classes. First observe that in order to check
whether for any words u,v it holds that uRLv, one only has to check whether uw ∈ L(A) ⇔ vw
∈ L(A) for all words w of length ≤ m (two words u,v are not equivalent iff they can be
distinguished by a word w of length ≤ m, that is, uw ∈ L(A) but vw ∉ L(A) or vice versa – this
is the idea of the table-filling algorithm). So it is possible to determine whether uRLv by at
most Σm many checks.

We next procure representatives r1, ..., rm of the RL-equivalence classes, such that we may
write them as [r1],..., [rm]. We may assume that these representatives have length at most m.
Choose r1, ..., rm among all words u,v of length ≤ m such that the chosen ri are pairwise not
equivalent. Without loss of generality choose r1 = ε.

Identify the states of the DFA you are about to reconstruct with [r1],..., [rm]. Assign [r1] = [ε]
to be the starting state, according to the construction in the proof of the Myhill-Nerode
proposition, and choose as accepting states all [ri] where ri ∈ L(A). Finish your construction
by putting

for i = 1,...,m, a ∈ Σ: δ([ri], a) = [ri a] = [rj],

where you use the method to decide uRLv to find out to which representative rj the word ri a is
equivalent.

 6

Exercises for ACS 1, Fall 2004, sheet 3: Solutions

Exercise 1. (10 points) Give a CFG for all words over the terminal alphabet T = {a, b, +,
*,(,),ε, ∅ } that are regular expressions over Σ = {a, b}.

Solution. Put V = {E} (which automatically makes E the start variable). Then simply
replicate the inductive definition of regexps:

E → a | b | ε | ∅ | (EE) | (E+E) | (E*)

Exercise 2. (a, 10 points) Give a CFG for the language L = {w ∈ {a, b}* | w = anb2n for
some n > 0}. (b, 20 points) Prove with a proof similar to the one from example 4.5. in the
lecture notes that your grammar really generates the language L.

Solution. (a) Put V = {S, R}, then the following grammar G does the trick:
S → aRbb
R → ε | aRbb

(b) We show that w = anb2n iff w ∈ L(G).
" � " Let w = anb2n. We show w ∈ L(G) by induction on n. Basis: n = 1: w = abb is in L(G)
because S � aRbb � a ε bb = abb. Induction: Let anb2n ∈ L(G). We show that
an+1b2(n+1) ∈ L(G). There must be a derivation for anb2n , which must start with S � aRbb,
and be continued by R � * an-1b2(n-1). If we replace the first derivation S � aRbb by S �
aRbb � aaRbbbb, and continue to replace R by an-1b2(n-1), we end up with an+1b2(n+1).

" ⇐ " Let w ∈ L(G), and let w have a derivation of length n. We show by induction on n that
w = an-1b2(n-1) . Basis: The shortest possible derivation has length n = 2 and is S � aRbb �
a ε bb, which yields a word of the required form. Induction: Let w have a derivation of length
n+1, where n ≥ 2. The derivation of w must have the form S � aRbb � aaRbbbb �... � w =
aaγbbbb, where γ is a word of terminals derived from R in n-1 steps. This implies S �
aRbb �... � aγbb in n steps. By induction hypothesis, aγbb = an-1b2(n-1) , that is,
γ = an-2b2(n-2). Therefore, aaγbbbb = anb2n.

Exercise 3. (a, 15 points) Give a CFG for the language L over the the terminals T = {a, b}
whose words contain exactly twice as many b's as a's. (b, 20 points) Prove that your grammar
actually generates exactly the words from L.

Solution. (a) The following grammar G does it:

S → ε | SaSbSbS | SbSaSbS| SbSbSaS

(b) (sketch) It is obvious that G generates only words whith twice as many b's as a's. To show
that every such word w can be generated by G, we proceed by induction on the length of w. If
|w| = 0 or |w| = 3, it is clear that w can be generated by G. If w has length 3n greater than 3,
observe that w must contain at least one subword v of the form abb or bab or bba (because
otherwise all subwords of length 3 would contain more a's than b's, which would make it
impossible for w to contain more b's than a's.) Replace this subword within w by ε, to obtain a
word w' = w''εw''' of length 3(n-1), which can be generated by G by induction hypothesis, and

 7

where the ε marks the place where the subword has been cut out. Conclude by arguing that
the parse tree of w' must have had a final branch S → ε to obtain the highlighted ε. This
branch can be replaced by a derivation of v.

Exercise 4. The grammar E → E+E | E*E | (E) | id generates the arithmetic expressions with
+, *, parentheses and id. The grammar is ambiguous because id + id * id has two different
parse trees. (a, 5 points) Construct an equivalent unambiguous grammar. (b, 25 points)
Construct an unambiguous grammar for all arithmetic expressions with no redundant
parentheses. A pair of parentheses is redundant if its removal does not algebraically change
the expression, e.g., the parentheses are redundant in id + (id * id) or id * (id) but not in (id +
id) * id. Explain the idea behind your grammar in words. Give derivations for (id + id) * id
and id * (id + id).

Solution. (a) We follow closely the recipe from Example 4.3. in the lecture notes:

E → T | E + T
T → F | T * F
F → id | (E)

(b)

E → T | E + T (1)
E' → E + T (2)
T → id | T' * F (3)
T' → F | T' * F (4)
F → id | (E') (5)

Explanation: Parentheses can be redundant for three reasons: (i) they embrace a product or an
atomic id, or (ii) they embrace the entire expression, or (iii) they embrace a sum that is not
preceded or followed by a *. Our grammar precludes all three possibilities: (i) parentheses can
only be introduced with rule (5), which leads to rule (2), which enforces a + inside
parentheses. (ii): Parentheses can only be introduced by rule (5), which needs a prior
derivation of F, which can only be introduced together with a * by (3) or via T', which itself
comes with a * in (3). (iii): same argument as for (ii); ensures that a * must come before or
after parentheses.

Derivation of (id + id) * id: E � T � T' * F � F * F �* (E') * id �* (id + id) * id
Derivation of id * (id + id): E � T � T' * F � F * F �* id * (E') �* id * (id + id)

Exercise 5. (15 points) Design a PDA for the language L of words over the terminal alphabet
T = {(,)} that belong to the language of the grammar S → S S | (S) | ε. (This is the language of
all "balanced parenthesis" words). The PDA should accept by going into an accepting state.
Specify your PDA by its transition function, and describe the principles behind your design in
intuitive terms.

Solution. Intuitive description: the PDA may, at any time and regardless of top stack symbol,
read in an opening "(" and memorizes the opening by pushing one ")" on the stack. It may
read in a ")" only if an ")" is the top stack symbol, which is then deleted. When the bottom
stack symbol Z0 is seen, the PDA may enter an accepting state with ε input.

 8

The state set is {q,p}, where q is the start state and p the accepting state. The stack symbols
are {Z0,)}. Here is the transition function:

δ(q, ε, Z0) = {(p, Z0)}
δ(q, (, #) = {(q,)#)} for any stack symbol #
δ(q,),)) = {(q, ε)}

Exercises for ACS 1, Fall 2004, sheet 4: Solutions

Return solutions in paper form on Friday Nov. 12, in the lecture

Note: a maximum of 100 points is accredited for this sheet.

Exercise 1. (20 points) Give a PDA to accept L = {0n1m2k | n, m, k ≥ 1 and (n ≠ m or m ≠ k)}
by accepting state. Describe the idea behind your PDA in words and specify its transition
function.

Solution (partial). L is the union of L1 = {0n1m2k | n, m, k ≥ 1 and n ≠ m} with L2 = {0n1m2k |
n, m, k ≥ 1 and m ≠ k }. If we have PDAs P1 and P2 for L1 and L2, where the state and stack
symbol sets of P1 and P2 are disjoint and have start states q1 and q2 and top stack symbols Z1
and Z2, we can combine them into a single PDA P for L by joining all states and rules,
declaring some new state q0 and new top stack symbol Z as start state for P and add the
transition rule δ(q0, ε, Z) = {(q1, Z1), (q2, Z2)}. Then P initially takes a random choice
between P1 and P2, after which it carries out a run of the chosen PDA. Obviously P accepts L.

It remains to provide PDAs for L1 and L2. Here I only describe the first case. Idea: The PDA
for L1 always ends dead when the input is not of the form 0n1m2k, where n, m, k ≥ 1. This can
be achieved by ensuring that the set S0 of states that are entered after reading 0 are disjoint
from the set S1 of states that are entered after reading 1, and again both sets are disjoint from
the 2-reachable states S2. Furthermore, states from S1 can only be reached from states of S0 or
S1, and states from S2 only from S1 or S2 states. Accepting states are all in S2. To check the
conditions n ≠ m, the PDA first memorizes the number of read 0's by copying them on the
stack. When it starts reading 1's, it cancels 0's from the stack until one of the following
occurs:

(i) It reads a 1 but the stack has no more 0's. Then n ≠ m. The PDA enters a mode
where it only checks whether the rest of the word is of form 1m'2k, where m' ≥ 0, k
≥ 1.

(ii) It reads the first 2 but the stack still has 0's. Then again n ≠ m. The PDA enters a
mode where it only checks whether the rest of the word is of form 2k', where k'
≥ 0.

(iii) It reads the first 2 exactly after it has deleted the last 0 from the stack. Then n = m
and the PDA is halted in a dead end.

 9

Here is a list of the required transitions. The stack top symbol is Z1, and the start state is q1.
The single accepting state is qaccept.

1. δ(q1, 0, Z1) = {(q1, 0Z1)}
2. δ(q1, 0, 0) = {(q1, 00)}
3. δ(q1, 1, 0) = {(q2, ε)} ; entering the downcounting of 0's
4. δ(q2, 1, 0) = {(q2, ε)}
5. δ(q2, 1, Z1) = {(q3, Z1)} ; entering mode (i)
6. δ(q3, 1, Z1) = {(q3, Z1)} ; continue reading 1's
7. δ(q3, 2, Z1) = {(qaccept, Z1)}
8. δ(qaccept, 2, #) = {(qaccept, #)} ; # is any stack symbol
9. δ(q2, 2, 0) = {(qaccept, ε)} ; entering mode (ii)
10. δ(q2, 2, Z1) = {} ; case (iii)

Exercise 2 (20 points) The PDAs that we use (and everybody else) have a single stack
memory. One might wish to increase the power of PDAs by adding more such memories.
Give a formal definition of an "n-stack PDA", its configurations, and the languages accepted
by them (by final state). Follow the definitions 4.9 – 4.12 of the lecture notes. Your definition
should be so general as to include the special cases where n = 0 (and then your definition
should be equivalent to an NFA); for n = 1 your n-stack PDA should be equivalent to our
familiar PDAs. Note: there isn't a unique "correct" such definition. n-stack PDAs can be
defined in various ways, not necessarily equivalent. The purpose of this exercise is that you
train writing clean definitions, not to find the "correct" definition. Hint: to cover the case n = 0
without any extra case distinctions, you may use the convention that for any set X, X0 is {∅ }.

Solution. (1) (one possible definition of n-stack PDAs) Let n ≥ 0. An n-stack PDA is a 7-
tuple P = (Q, Σ, Γ, δ, q0, Z0, F), where

• Q is a finite set of states,
• Σ is a finite set of input symbols,
• Γ is a finite stack alphabet,
• δ: Q × (Σ ∪ {ε}) × Γn → Pot0(Q × (Γ*)n) is the transition function,
• q0 ∈ Q is the start state,
• Z0 ∈ Γ is the start stack symbol,
• F ⊆ Q is the set of accepting states.

(2) (configuration) A configuration of an n-stack PDA (Q, Σ, Γ, δ, q0, Z0, F) is triple (q, w,
γ), where

• q ∈ Q is the current state of the PDA,
• w ∈ Σ* is the remaining input word,
• γ ∈ (Γ*) n is the n-tuple of current stack contents (i-th word of γ = i-th stack).

(3) (move)) For an n-stack PDA P = (Q, Σ, Γ, δ, q0, Z0, F), all q, q' ∈ Q, a ∈ Σ ∪ {ε}, w ∈
Σ*, (X1,..., Xn) ∈ Γ n, and (α1,..., αn), (β1,..., βn) ∈ (Γ*) n define

 (q, aw, (X1 β1,..., Xn βn)) �P (q', w, (α1 β1,..., αn βn)) iff

 10

(q', (α1,..., αn)) ∈ δ(q, a, (X1,..., Xn)).

As usual, define by �P* the transitive-reflexive closure of �P (that is, zero or any number of
moves).

(4) (languages accepted by final state) Let P = (Q, Σ, Γ, δ, q0, Z0, F) be an n-state PDA. Then
the language accepted by P by final state is

L(P) = {w ∈ Σ* | (q0, w, (Z0,..., Z0)) �P* (q, ε, (α1,..., αn)), where q ∈ F and (α1,..., αn)
∈ (Γ*)n }.

Exercise 3. (20 points) Show that the language L = {0n1n2n | n ≥ 1 } can be accepted by a 2-
stack PDA, by specifying the transition function and explaining the working principle in
words. Note: this language is not a CFL (can be shown via the CFL pumping lemma). Thus,
introducing 2-stack PDAs properly extends the class of recognizable languages.

Solution. Idea: while reading 0's, the first stack is filled with 0's to count them. When reading
1's, the first stack is successively emptied in order to check that there are as many 1's as 0's; at
the same time, the second stack is filled with 1's. Finally, when reading 2's, their number is
checked using the 1's from the second stack. The stack alphabet is Γ = {Z0, 0,1}; q3 is the only
accepting state. Here is a possible transition function:

δ(q0, 0, (X, Y)) = {(q0, (0X, Y), (q1, (0X, Y))} for any X, Y ∈ Γ;
δ(q1, 1, (1, Y)) = {(q1, (ε, 1Y))} for any Y ∈ Γ;
δ(q1, 2, (Z0, 1)) = {(q2, (Z0, ε))}
δ(q2, ε, (Z0, Z0)) = {(q3, (Z0, Z0))}

Exercise 4 (30 points) Convert the following grammar G = (V, T, P, S) into CNF, by (i)
eliminating ε-productions, (ii) eliminating unit productions, (iii) eliminating useless symbols,
(iv) putting the resulting grammar in CNF. Each of the steps (i) to (iv) counts 10 points.

S → 0A0 | 1B1 | AB
A → C
B → S | A
C → S | ε

Solution: (i) a. Finding nullable variables: NULL(1) = {C}, NULL(2) = {C, A}, NULL(3) =
{C, A, B}, NULL(4) = NULL(5) = {C, A, B, S}. b. For S → 0A0 add {S → 0A0, S → 00} to
P', for S → 1B1 add {S → 1B1, S → 11} to P', for S → AB add {S → AB, S → B, S → A } to
P', for A → C add { A → C } to P', for the remaining rules add {B → S, B → A, C → S} to P'.
This gives a new set P'

S → 0A0 | 00 | 1B1 | 11 | AB | B | A
A → C
B → S | A
C → S

 11

(ii) a. Finding unit pairs: PAIRS(1) = {(A, A), (B, B), (C, C), (S, S)}, PAIRS(2) = {(A, A), (B,
B), (C, C), (S, S), (S, B), (S, A), (A, C), (B, S), (B, A), (C, S)}, PAIRS(3) = {(A, A), (B, B), (C,
C), (S, S), (S, B), (S, A), (A, C), (B, S), (B, A), (C, S), (S, C), (A, S), (B, C), (C, A), (C, B)},
PAIRS(4) = PAIRS(5) = {(A, A), (B, B), (C, C), (S, S), (S, B), (A, C), (B, S), (B, A), (C, S), (S,
A), (A, S), (B, C), (C, B), (S, C), (A, B), (C, A)}. An easier way to see that here all pairs are
unit pairs is to check the following directed graph created by the unit transitions from P' and
see that it is cyclic, that is, every node is transitively reachable from every other node:

 S A

 B C

S → 0A0 | 00 | 1B1 | 11 | AB | B | A
A → C
B → S | A
C → S

b. Stripping from P' all unit productions and then adding all productions of the form A → α,
where B → α is a non-unit production in P' and (A, B) is a unit pair, yields P'' =

S → 0A0 | 00 | 1B1 | 11 | AB
A → 0A0 | 00 | 1B1 | 11 | AB
B → 0A0 | 00 | 1B1 | 11 | AB
C → 0A0 | 00 | 1B1 | 11 | AB

(iii) a. We first detect all generating symbols. GEN(1) = {0,1}, GEN(2) = GEN(3) = {0, 1, A,
B, C, S}.

b. Deleting from G all nongenerating symbols and productions in which such symbols occur,
yields G2 = (V, T, P'', S), because there are no non-generating symbols or productions.

c. Next we find all reachable symbols of G2. The graph described in the lecture notes is

 S A

B C

 0 1

From this we see that the reachable symbols are {0, 1, S, A, B}.

d. Finally we eliminate from G2 all non-reachable symbols and productions in which such
symbols occur, to obtain G1 = ({S, A, B }, {0, 1}, P''', S), where P''' =

S → 0A0 | 00 | 1B1 | 11 | AB
A → 0A0 | 00 | 1B1 | 11 | AB

 12

B → 0A0 | 00 | 1B1 | 11 | AB

(iv) In the last step, we obtain a CNF grammar by carrying out the two steps given in the
proof of theorem 4.10 in the lecture notes.

a. Arrange that all bodies of lenght 2 or more consists only of variables. This gives us
productions P'''' =

S → A0AA0 | A0A0 | A1BA1 | A1A1 | AB
A → A0AA0 | A0A0 | A1BA1 | A1A1 | AB
B → A0AA0 | A0A0 | A1BA1 | A1A1 | AB
A0 → 0
A1 → 1

b. Break productions with all-variable bodies of length 3 or more into sequences of
productions of the form A → BC. This gives us the final rule set PCNF =

S → A0A' | A0A0 | A1B' | A1A1 | AB
A → A0A' | A0A0 | A1B' | A1A1 | AB
B → A0A' | A0A0 | A1B' | A1A1 | AB
A'→ AA0

B'→ BA1

A0 → 0
A1 → 1

Exercise 5. (30 points) Write an unrestricted grammar for L = {0(2n) | n > 0}, and explain in
words how it functions.

Solution. This is a classic. Here I copy the solution from an old edition of the HMU book
(then only a HU book). Here's the grammar:

1. S → AC0B
2. C0 → 00C
3. CB → DB
4. CB → E
5. 0D → D0
6. AD → AC
7. 0E → E0
8. AE → ε

And here is how it works. The idea is that A and B serve as end markers for strings of 0's
which are iteratively doubled in length by a "cursor" C that moves through the strings of 0's
between A and B, doubling their number by production 2. When C hits the right end marker B,
it becomes a D or E by productions 3 or 4. If a D is chosen, it migrates left by production 5
until the left endmarker A is reached. At that point D becomes a C again by production 6 and
the process starts again. If an E is chosen, the right end marker is consumed (in 4.) and the E
wanders left by production 7 until it hits the left endmarker, which is consumed along with E

in production 8. By that time, a word of the desired form 0(2n) is left.

 13

Exercises for ACS 1, Fall 2004, sheet 5 – Solution sheet

Return solutions in paper form on Wednesday Nov. 24, in the lecture

Note: a maximum of 100 points is accredited for this sheet.

Exercise 1. (30 points) Give FOL propositions that formally state the following natural-
language sentences about personal relationships. Provide a symbol set S that you use for all
the sentences, and declare what type each symbol is (constant, predicate/relation, function;
also state arity). Use the exact FOL syntax as introduced in class.

a. Scott is the author of Waverley.
b. Waverley is a famous classical English novel.
c. A novel is a novel.
d. A novel is a special type of written art.
e. If I am the author of Waverley, and the author of Waverley is Scott, then I am Scott.
f. I like Waverly better than any other novel.
g. There exist at least two men by the name of "Scott".

Which of your propositions are tautologies, which are contradictions?

Solution. (not unique - - there are always many ways to formalize natural language
statements) Symbol set: constants Scott_The_Author, Waverley, I, Scott_Name; unary
predicate symbols: Famous, Classical, English, Novel, Written_Art; ternary relation
symbols: Who_Likes_What_Better_Than; unary function symbols: Author_of, Name_of.

a. Author_of Waverley = Scott_The_Author
b. Famous Waverley ∧ Classical Waverley ∧ English Waverley ∧ Novel Waverley
c. ∀ x1 (Novel x1 → Novel x1)
d. ∀ x1 (Novel x1 → Written_Art x1)
e. (I = Author_of Waverley ∧ Scott = Author_of Waverley → I = Scott)
f. ∀ x1 (Novel x1 ∧ ¬ x1 = Waverley → Who_Likes_What_Better_Than I x1

Waverley)
g. ∃ x1 ∃ x2(¬ x1 = x2 ∧ (Name_of x1 = Scott_Name ∧ (Name_of x2 = Scott_Name))

c and e are tautologies, none is a contradiction.

Exercise 2 (20 points) For your symbol set S of the previous exercise, describe an S-structure
in which all the statements of Exercise 1 hold.

Solution. Put A = {Scott, Waverley, I, Scott-the-name }; this set contains two
persons, a novel, and a name. Put FamousA = Classical A = NovelA = EnglishA =
Written_ArtA = {Waverley}, Who_Likes_What_Better_ThanA = ∅ , Author_ofA =
{(Waverley, Scott)}, Name_ofA = {(Scott, Scott-the-name)}.

Exercise 3 (20 points) Let S = {<}, where < is a binary relation symbol. Characterize in
words the class of all S-structures � which are models of

 14

ϕ = ∀ x1∀ x2∀ x3(((((¬ x1 = x2 ∧ ¬ x2 = x3) ∧ ¬ x1 = x3) ∧ < x1 x2) ∧ < x2 x3) → ¬ < x3 x1)

and give two concrete S-structures, one of which is a model of ϕ and the other isn't. Present
your structures (i) in an intuitive graph-like representation, (ii) formally as sets. How many
non-isomorphic models does ϕ have?

Solution. The models of ϕ are exactly those {<}-structures that contain no <-cycle of length
3. The simplest S-structure that is a model of ϕ is given by a singleton set A and empty <, that
is, A = {a} and < A = ∅ (graph-like representation: a single point). The simplest S-structure
that is not a model of ϕ is an isolated 3-cycle of <, that is, A = {a, b, c} and < A = {(a,b), (b,c),
(c,a)}:

a

c

b

<

<

<

Exercise 4 (20 points) For S = {<} design a proposition ϕ such that any model of ϕ is
isomorphic to the 3-cycle ��= (A, < A) = ({a, b, c}, {(a,b), (b,c), (c,a)}). Note: Questions of
this kind – find propositions that characterize structures up to isomorphism – are
quintessential in the analysis of mathematical axiom systems; an entire, highly active
 field of logics called "model theory" is mainly concerned with questions of this kind.

Solution: ϕ is the conjunction of a proposition ϕ1 that states that any model has exactly three
elements, and of a proposition ϕ2 that states that there exist three elements that occur in a <-
cycle:

ϕ1 = ∃ x1∃ x2∃ x3(((¬ x1 = x2 ∧ ¬ x2 = x3) ∧ ¬ x1 = x3) ∧ ∀ x4((x4 = x1 ∨ x4 = x2) ∨ x4 = x3))
ϕ2 = ∃ x1∃ x2∃ x3((((((((< x1 x2 ∧ < x2 x3) ∧ < x3 x1) ∧ ¬ < x1 x1) ∧ ¬ < x1 x3) ∧ ¬ < x2 x2)

∧ ¬ < x2 x1) ∧ ¬ < x3 x3) ∧ ¬ < x3 x2)

Exercise 5 a. (20 points) Show that for any S and any S-expression ϕ, ∀ x ϕ � ¬ ∃ x ¬ ϕ.
b. (20 points) Show that for a ternary relation symbol R, ∀ x ∀ y ∃ z Rxzy � ∃ z ∀ x ∀ y Rxzy
does not hold.

Solution. a. . Let (�, β)���∀ x ϕ for some � with domain A. We have to show that

(�, β)��� ¬ ∃ x ¬ ϕ. For all a ∈ A it holds that (�, β
x

a
) � ϕ. That implies that for no a ∈ A

it holds that not (�, β
x

a
) � ϕ, that is, there exists no a ∈ A such that (�, β

x

a
) � ¬ ϕ, that is,

it does not hold that there exists some a ∈ A such that (�, β
x

a
) � ¬ ϕ, that is, it does not

hold that (�, β)���∃ x ¬ ϕ, that is, (�, β)��� ¬ ∃ x ¬ ϕ.

b. We give a counterexample, that is, an {R}-structure (A, RA) where
(A, RA) ��∀ x ∀ y ∃ z Rxzy but not (A, RA) � ∃ z ∀ x ∀ y Rxzy. There are many such
counterexample structures. One is to take A = � and choose R� to be the relation R� = {(k,l,n)
∈ �3 | k ≤ l ≤ n or k ≥ l ≥ n}, that is, Rkln means that l lies between k and l. Then clearly
(�,R��) ��∀ x ∀ y ∃ z Rxzy but not �(�,R��) ��∃ z ∀ x ∀ y Rxzy (because there exists no natural

 15

number that lies between all possible choices of two natural numbers – for instance, 1 does
not lie between 6 and 8.)

Exercises for ACS 1, Fall 2004, sheet 6

Return solutions in paper form on Friday Dec. 03, in the lecture

Note: a maximum of 100 points is accredited for this sheet.

Exercise 1. Here is a famous photo1:

(a, 15 points) Imagine you would
have to describe this picture to a
blind friend in 5 sentences. Write
these 5 sentences down in FOL.
You don't have to specify the type
and arity of your symbols; for
simplicity and clarity, use
"xyz_of" for function symbols; all
other symbols are constants or
relations.
(b, 15 points) This photo invites
aesthetic and philosophical
thinking (take a look at the
website it was taken from!).
Think of one such "deep" thought
and argue why it can't be
formalized in FOL.
(Alternatively, argue that all
aesthetic and philosophical
thoughts can be expressed in
FOL). You think this is a strange exercise?
Well, it has been tried to formalize legal
reasoning in FOL, for juridical expert
systems... and legal reasoning is "deep".

No solution given, because possible solutions are extremely varied.

Exercise 2. You know many facts that can easily be expressed in FOL. A base fact is a fact
that is not logically entailed by other facts that you know. (a, 10 points) Give one example of
a base fact from your personal knowledge and argue informally that it is a base fact. (b, 20
points) Give an estimate of the number of base facts that you know, and explain the reasoning
behind your estimate. [Background of this exercise: in Artificial Intelligence, knowledge
bases for expert systems are essentially large collections of base facts from some specific
domain of expertise]

No solution given, because possible solutions are extremely varied.

 16

1 http://www.dienes-and-dienes.com/Cartier-Bresson.html

http://www.dienes-and-dienes.com/Cartier-Bresson.html

Exercise 3. (20 points) Consider the following propositions which express that the binary
relation R is an equivalence relation:

ϕ1 = ∀ x Rxx ϕ2 = ∀ x∀ y (Rxy → Ryx) ϕ3 = ∀ x∀ y∀ z ((Rxy ∧ Ryz) → Rxz)

Show that none of these propositions is entailed by the others by presenting {R}-structures
that are models of two of the propositions, but not of the third.

Solution. Here is one possibility.
(i) A model of ϕ2 and ϕ3 but not of ϕ1: � = ({1}, ∅)
(ii) A model of ϕ1 and ϕ3 but not of ϕ2: � = ({1,2}, {{1,1},{1,2},{2,2}})
(iii) A model of ϕ1 and ϕ2 but not of ϕ3:

� = ({1,2,3}, {{1,1},{2,2},{3,3},{1,2},{2,1},{2,3},{3,2}})

Exercise 4. (30 points) A DFA can be seen as a structure � = (A, SA, QA, FA, δA, q0

A), where
the carrier A consists of the states and symbols, S is a unary predicate (intention: S denotes the
symbols), Q is a unary predicate (denoting the statesF is a unary predicate (denoting the
accepting states),), δ is a binary function (denoting the transition function), and q0 is a
constant symbol (denoting the start state). Give a collection Φ of FOL propositions such that
every finite S-structure � is a model of Φ iff � corresponds to a DFA. In other works,
axiomatize the DFAs in FOL. Explain each of your propositons in words.

Solution. Here is one possibility:

∀ x ((Sx ∨ Qx) ∧ ¬ (Sx ∧ Qx)) every thing must be either a state or a symbol
(∃ x Sx ∧ ∃ x Qx) state and symbol sets are not empty
Qq0 the start state is actually a state
∀ x (Fx → Qx) the accepting states are actually states
∀ x∀ y∀ z (((Qx ∧ Sy) ∧ δxy = z) → Qz) δ maps state-symbol pairs on states

Note: because in FOL we only know total functions, in any S-structure � the function δA is
totally defined. For the purposes of interpreting � as a DFA, it is not relevant which type of
values δA has on argument pairs that are not of type (state, symbol).

Exercise 5. (10 points each) Give a rigorous derivation of the following sequence rules:

 Γ ϕ ¬ ϕ Γ ϕ ¬ ψ
a. (ϕ ∨ ¬ ϕ) b. Γ ¬ ϕ c. Γ ψ ¬ ϕ

in the sequence calculus! (Notes: b. is the easiest. The sequence a. has empty antecedent Γ =
∅).

Solution: a.

1. ϕ ϕ (Pre)
2. ϕ (ϕ ∨ ¬ ϕ) (∨ Con a.) on 1.
3. ¬ ϕ ¬ ϕ (Pre)
4. ¬ ϕ (ϕ ∨ ¬ ϕ) (∨ Con b.) on 3.

 17

5. (ϕ ∨ ¬ ϕ) (Cas) on 2. and 4.

b.

1. Γ ϕ ¬ϕ (premise)
2. Γ ¬ϕ ¬ϕ (Pre)
3. Γ ¬ ϕ (Cas) on 1. and 2.

c.

1. Γ ϕ ¬ ψ (Premise)
2. Γ ψ ϕ ψ (Pre)
3. Γ ψ ϕ ¬ ψ (Ant) on 1.
4. Γ ψ ϕ ¬ ϕ (Con) on 2. and 3.
5. Γ ψ ¬ ϕ ¬ ϕ (Pre)
6. Γ ψ ¬ ϕ (Cas) on 4. and 5.

__

Advanced Computer Science 1 Group A
Midterm, October 13, 2004

Solution sheet

1. (15 points) Design a DFA that accepts L = {w ∈ {0,1}* | w = 00(13n) for some n ≥ 0}.
Present your DFA by a transition diagram.

Solution.

1

1

1
0 0 start

(all transitions that remain are not shown, they lead to dead state, likewise not shown)

2. (5 points) Give a regexp for the language from problem 1.

Solution. 00(111)*

3. (20 points) Show that the language L = {0n12n23n ∈ {0,1,2}* | n ≥ 0} is not regular.

Solution. Pumping lemma! Assume L is regular with pumping constant k. Consider w =
0k12k23k ∈ L. By PL, w = xyz, with |xy| ≤ k, |y| > 0. Because |xy| ≤ k, y must consist entirely
of 0's. By PL, then also 0k-|y|12k23k ∈ L, a contradiction.

4. (20 points) Show that if L ⊆ {0,1}* is regular, then also L' = {w ∈ L | |w| ≤ 1 or the
second symbol of w is 1} is regular.

 18

Solution. L' = L ∩ L1 ∩ L2, with L1 = {w ∈ {0,1}* | |w| ≤ 1} and L2 = {w ∈ {0,1}* | |w|
> 1 and the second symbol of w is 1}. L1 is finite and thereby regular. L2 can clearly be
represented by the regexp (0+1)1(0+1)* and is thus also regular. Thus L' is the
intersection of three regular languages and thereby regular.

5. (10 points) Give a CFG for the language from problem 1.

Solution. One possibility is S → 00T, T → 111T | ε.

6. (30 points) Consider the toy shown in the figure below. A marble or a marshmallow can
be dropped in at A. At the junctions there are levers x1, x2 which guide the dropped object
to the left or to the right. When a (heavy) marble passes a lever, it flips direction after the
object has passed, while a (leight) marshmallow doesn't affect the lever. Initially the levers
are directed as in the figure. Denote a marble into A as input 0 and a marshmallow as input
1. A winning sequence of inputs is one where the last object dropped in comes out at C.
Model this toy by a DFA that accepts the language of all winning 0/1-sequences. Specify
your DFA by a transition table.

x2

x1

D C B

A

Solution. The important idea is to code DFA states by the possible flipstates of the two levers.
Let ll code the situation where both levers direct objects to the left (as in the figure), lr code
the situation where the first lever points left and the second right, and rl and rr accordingly.
Furthermore, we must also code whether the previous input came out at C: we write, for
instance, ll+ for a toy state where currently both levers point left and the previous drop ended
in C, an ll- if it came out elsewhere. ll- is also the start state. Here is the transition table:

state input 0 input 1
ll- rr- ll-
ll+ rr- ll- ; inaccessible from start state, superfluous
lr- rl+ lr+
lr+ rl+ lr+
rl- ll- rl-
rl+ ll- rl-
rr- lr- rr-
rr+ lr- rr- ; inaccessible from start state, superfluous

 19

Among these states, only ll- rr- lr- rl+ rl- lr+ are accessible from the start state, the remaining
two states are superfluous. The "+"-states are the accepting states.

__

Advanced Computer Science 1 Group A

Solutions Final, December 14, 2004

Note: points per problem reflect
expected difficulty.

Problem 1. Show that the language L = {0n ∈ {0}* | n is not of the form n = aa for some
integer a} is not regular.

Solution. Assume L is regular. Then Lc = {0n ∈ {0}* | n = aa for some integer a} is also
regular, because the regular languages are closed under complement. Let m be a pumping

lemma constant for Lc. Then 0mm
 ∈ L. The P.L. implies that also 0m +km

 ∈ L, where 1 ≤ k ≤ m.

But mm+k is not of the form aa, bceause mm < mm+k < (m+1)(m+1), so 0m +km

 ∉ Lc, a
contradiction. Thus Lc is not regular and thereby neither is L. Note: for group B, similarly use
the PL on the complement language.

Problem 2. Design an automaton (DFA, NFA or ε-NFA) A over the alphabet {0,1} such that
(i) L(A) ∩ {0,1}4 = {0101} and (ii) L(A) ∩ L((10)*) is infinite.

Solution. The following DFA accepts only the word 0101 in its upper branch and the inifinite
sublanguage L(101010(01)*) of L((10)*) in its lower.

1

0
1 0 1 0 1

1 0 1 0

Problem 3. Give a CFG for the language of the regexp 101010(11)*.

Solution. S → 101010 | 101010A, A → 11 | 11A does it.

Problem 4. Let Σ be an alphabet. An ordered Σ-tree is a (possibly empty) finite ordered2 tree
whose nodes are labelled by symbols from Σ. Let ΣT denote the set of all ordered Σ-trees. A

 20

2 A tree is ordered if a linear ordering is declared for the childs of any node, that is, if they can be uniquely listed
"from left to right".

tree language3 over Σ is a subset of ΣT. Invent a generalization of context-free grammars that
can describe tree languages and formally define the grammar and the tree language denoted
by such a grammar. Demonstrate your definition by giving a concrete example of a tree
grammar and a simple derivation of an ordered Σ-tree in that grammar. Note. The purpose of
this problem is not to find "the correct" definition of tree grammars – you are free to invent
what you find intuitive – but to demonstrate that you can distil intuitive concepts into formal
definitions.

Solution. Here is one possibility:

Definition (tree grammars) A tree grammar is a quadruple G = (V, Σ, P, S), where V is a finite
set of variables, Σ is a set of terminals, P is a finite set of rules of the form A → (α, a) where
α ∈ (V + Σ)* and a ∈ Σ, and S ∈ V is the start symbol. P must include at least one rule whose
l.h.s. is S. V and Σ are disjoint.

Definition. (derivations and tree languages). For a tree grammar G, define a binary relation
 �G ⊆ (V + Σ)T × (V + Σ)T by t �G s iff t has a leaf node n labelled with a variable A,
and A → (α, a) ∈ P, such that s is the same tree as t except that the node n is re-labelled with
a and has as many new child nodes (each a leaf in s) as the length of α, and these child nodes
are labelled with the symbols from α, from left to right. Let �*G be the transitive closure of
�G. If t �*G s, we say that s can be derived from t. We identify S with the single-node tree
labelled by S and define the tree language of G by L(G) = {t ∈ ΣT | S �*G t}.

Example: Let V = {S}, Σ = {a, f}, P = {S → (SS, f), S → (ε, a)}. Then

 f f
 S �G �*G
 S a S a

is a derivation of a Σ-tree in G.

Problem 5. List all subformulas and terms that occur in

((Qx ∨ ∃ x ∀ y (¬ Pffxa → Qa)) ∨ Rxxa),

where Q is a unary predicate symbol, P is a binary predicate symbol, f is a unary function
symbol, a is a constant symbol and R is a ternary predicate symbol. Determine for each
occurrence of a variable whether it is free or bound.

Solution. The terms that occur are a, x, y (arguably, not rigoroously covered by our
definitions), fx, and ffx. The subexpressions are Qx, Pffxa, ¬ Pffxa, Qa, (¬ Pffxa → Qa), ∀ y
(¬ Pffxa → Qa), ∃ x ∀ y (¬ Pffxa → Qa), (Qx ∨ ∃ x ∀ y (¬ Pffxa → Qa)), Rxxa, ((Qx ∨ ∃ x ∀ y
(¬ Pffxa → Qa)) ∨ Rxxa). Free/bound occurrence, from left to right: x free, x bound [in Pffxa],
x twice free [in Rxxa]. y does not occur at all according to our definition!

3 Tree languages are an important field of theoretical computer science with many applications; the concept of
tree languages used in that field is slightly more involved (it uses symbols with arity) than the simplistic concept
used here.

 21

Problem 6. Prove or disprove the following claims, where < is a binary relation symbol, f a
unary function symbol and a a constant symbol (shorthand and infix notation is used):

1. { ∀ x y z ((x < y ∧ y < z) → x < z)} � ∃ x ∀ y x < y
2. {∀ y fa < y } � ∃ x ∀ y x < y

If you feel the need to describe an S-structure, explicitly present the carrier and the
interpretation of the symbols as sets. If you feel the need to invoke derivation in the sequence
calculus, rigorously follow the scheme from the lecture notes (as in the derivation of the chain
rule).

Solution. 1. is false. A simple counterexample is, for instance, the S-structure A = ({0}, <A, fA,
aA) = ({0}, ∅ , {(0,0)}, 0). Clearly A ��∀ x y z ((x < y ∧ y < z) → x < z), because the antecedent
of the implication is void, but likewise clearly not A ��∀ x ∃ y x < y.
2. is true, as can be proven with our sequence calculus:

1. ∀ y fa < y ∀ y fa < y (Pre)
2. ∀ y fa < y ∃ x ∀ y x < y (∃ Con) applied on 1.

(Note: ∀ y fa < y = ∀ y x < y
x

fa
)

 22

