
Exercises for Computability and Complexity, Spring 2019, Sheet 8 – Solutions

Please return your solutions in the Tuesday lecture on April 9

For this exercise sheet please prepare your solutions with a text processor and submit a
printout!

Exercise 1 (easy) Design a l-expression LISTSUM, which applied to a list whose entries are
Church numerals returns the sum of the list elements, and returns 0 if the list is empty.

Solution. The intuitive recursion equation is

LISTSUM l = if (null l) 0 (add (head l) (LISTSUM (tail l))).

Using the fixed point operator, this becomes

LISTSUM º Y (l gl. (if (null l) 0 (add (head l) (g (tail l)))))

Problem 2 (medium) Design a l-expression sortincreasing, which applied to a list whose
entries are Church numerals returns a list of the same length with the same entries, but sorted
in ascending order. You may assume that you already have combinators <, >, ≤, ≥, which
when applied to two Church numerals reduce to true or false in the obvious fasion. Also you
may use all the combinators for Boolean logic, list processing and arithmetics introduced in
the lecture notes. Example of what your l-expression should do: sortincreasing
(1::3::2::1::nil) ®* (1::1::2::3::nil). I suggest to lean on bubblesort in your construction. You
will find it necessary (or at least, helpful) to lean on a modular programming style, where you
first define lambda expressions for useful subroutines, which you then can use in your main
function.

Solution. There are many ways to do this. One solution that leans on bubblesort goes as
follows. We first write down "naïve self-referential" pseudo-definitions of a predicate
ordered that checks whether a list is already ordered:

ordered l = if (or (null l)(null (tail l)))
 true
 (and (≤ (head l)(head (tail l))) (ordered l))

We then use this ordered combinator in the design of sortincreasing:

sortincreasing l = if (ordered l)
 l
 if (and (> (head l) (head (tail l)))
 (ordered (cons (head l) (tail (tail l)))))
 cons (head (tail l)) (cons (head l) (tail (tail l)))
 if (> (head l) (head (tail l))
 sortincreasing (cons (head (tail l)) (cons (head l) (tail (tail l))))
 sortincreasing (cons (head l) (sortincreasing (tail l)))

The naïve pseudo-definition of ordered is turned into a valid l-expression:

ordered º Y (l gl. if (or (null l)(null (tail l)))
 true
 (and (≤ (head l)(head (tail l))) (g l)))

Likewise for sortincreasing:

sortincreasing º
 Y (l gl. if (ordered l)
 l
 if (and (> (head l) (head (tail l)))
 (ordered (cons (head l) (tail (tail l)))))
 cons (head (tail l)) (cons (head l) (tail (tail l)))
 if (> (head l) (head (tail l))
 g (cons (head (tail l)) (cons (head l) (tail (tail l))))
 g (cons (head l) (g (tail l))))

What remains to be done is to insert the valid l-expression obtained for ordered verbatim
into the valid l-expression obtained for sortincreasing (where variables can but need not be
renamed for better readability):

sortincreasing º
 Y (l gl. if (Y (l hk. if (or (null k)(null (tail k)))
 true
 (and (≤ (head k)(head (tail k))) (h k))) l)
 l
 if (and (> (head l) (head (tail l)))
 (ordered (cons (head l) (tail (tail l)))))
 cons (head (tail l)) (cons (head l) (tail (tail l)))
 if (> (head l) (head (tail l))
 g (cons (head (tail l)) (cons (head l) (tail (tail l))))
 g (cons (head l) (g (tail l))))

