Exercises for Computability and Complexity, Spring 2019, Sheet 5 – Solutions

Please return on Tuesday, March 12, in class. As usual you are invited but not requested to work in teams of size at most 2.

Exercise 1 (rather easy) Prove that $H_2 = \{ <M > ;x \mid Code(<M >) \text{ and } Standard(x) \text{ and there exists some } y \text{ with } Standard(y) \text{ such that } M(x) = y \}$ from Proposition 6.3 is undecidable.

Solution. Take any word $\langle N \rangle$ with *Code*($\langle N \rangle$). We can effectively construct a TM $K_{\langle N \rangle}$ with tape alphabet $\{0, 1, \#\}$ which, for all inputs $x \in \{0, 1, \#\}^*$, yields the following result:

 $K_{<N>}(x)$ = if N(x) halts then $K_{<N>}(x) = 1$, else $K_{<N>}(x) = \nearrow$

 $(K_{<N>}$ simply simulates N(x), and if this halts, $K_{<N>}$ erases its tape and writes a 1, then halts). It clearly holds that N(x) halts iff there exists some y such that $K_{<N>}(x) = y$. (namely, y = 1), which in turn is equivalent with $< K_{<N>}>;x \in H_2$. If H_2 were decidable, so would H, mission impossible.

Exercise 2 (medium difficult) Show that the language

 $L = \{ \le M \ge \{0, 1, \#\} \}$ | *M* halts on no input $\}$

is not recursively enumerable. *Hint: in addition to a reduction argument, you might wish to also work in Proposition 3.1 from the lecture notes.*

Solution. First consider the complement language

 $L^{c} = \{w \in \{0, 1, \#\}^{*} | w \text{ is not a codeword } w = <M> \text{ for any TM } M, \text{ or } w \text{ is a codeword } w = <M> \text{ for some TM } M, \text{ and } M \text{ halts on some input} \}$

 L^{c} is recursively enumerable: it can be accepted by a TM N which first checks whether w is a valid TM codeword. If no, N immediately accepts. If yes, that is, if $w = \langle M \rangle$, N simulates M on all input words $\langle x_1 \rangle$, $\langle x_2 \rangle$, ... in a "dovetailing" fashion, that is, N first simulates M on input x_1 for k steps, then on inputs x_1 and x_2 for 2k steps each, then on inputs x_1 , x_2 and x_3 for 3k steps, etc. If in one of these stages M is found to halt, N accepts.

Now if *L* would be recursively enumerable too, then *L* would be decidable. This can be seen, e.g., by reducing the language $H_0 = \{ <M > | Code(<M >) \text{ and } M \text{ halts on the empty input} \}$ from the lecture notes to *L*: assume *L* is decidable. Modify *M*, obtaining *M'* such that *M'* behaves like *M* on the empty input and runs into infinity on any nonempty input. Then, $<M'> \in L$ iff $<M > \in H_0$, thus we could decide H_0 , contradiction.

Challenge problem (optional, not easy) Prove the following claim: If L is recursively enumerable but not recursive, then there exists another language L' which is likewise r.e. but not recursive, such that $L \cup L'$ is recursive.

Solution (the one that I found; if you find a simpler one I'd be happy to learn about it). Let $L \subset \Sigma^*$ be recursively enumerable but not recursive, and *M* a Turing machine that accepts it. From *M* we construct another TM *M'* which accepts a language *L'* such that *L'* is r.e. but not recursive, and furthermore $L \cup L' = \Sigma^*$, i.e. this is recursive.

Let $(w_n)_{n=1,2,...}$ be the alphabetical enumeration of Σ^* , and for $w \in \Sigma^*$, let I(w) be the index of w in this enumeration.

We first show that there is a totally defined, recursive function $f: \mathbb{N} \to \mathbb{N}$, such that there exist infinitely many $v \in L$ where *M* needs at most f(I(v)) steps to accept *v*. One way to obtain such *f* goes like this:

Initialize p = 0.

By a dovetailing scheme, simulate *M* first for 1 step on w_1 , then for 2 steps on w_1 and w_2 , ... etc, – in the *k*-dovetail run, for *k* steps on w_1 to w_k . Whenever this simulation finds that *M* accepts w_l in *m* steps, and *l* is greater than *p*, set f(n) = m for all $p \le n \le l$. Update *p* to *l*.

It is straightforward to show that *f* is total recursive and there exist infinitely many $v \in L$ where *M* needs at most f(I(v)) steps to accept *v*.

Using *f* we construct *M*' as follows. On input *w*, *M*' simulates *M* for at most f(I(w)) steps. If *M* does not accept *w* within this time, then *M*' accepts *w* (from this it follows that $L \cup L' = \Sigma^*$). If *M* accepts *w* within this time, *M*' first computes the number $k(w) = |\{i \le I(w) \mid \text{runtime of } M \text{ on input } w_i \text{ is at most } f(i)\}$ (in order to compute *k*, *M*' has to simulate *M* on all words *v* that come before *w* in the alphabetical enumeration, but only up to f(I(v)) steps). Then *M*' simulates *M* on input w_k . It is easy to see that in this way, *M*' simulates *M* on all words $u \in \Sigma^*$, ultimately running the simulation of *M* on u_i when *M*' is started on that *w* that has k(w) = i. When *M* accepts input w_k , *M*' accepts too (namely its original input *w*); otherwise *M*', simulating *M*, runs forever. The language *L*' thus accepted by *M*' is not recursive, because if it would be, then *L* could be decided with the use of *M*' (how? an extra little sub-exercise).