
Exercises for Computability and Complexity, Spring 2019, Sheet 5 – Solutions 
 
Please return on Tuesday, March 12, in class. As usual you are invited but not requested to 
work in teams of size at most 2.  
 
 
 
Exercise 1 (rather easy) Prove that H2 = {<M>;x | Code(<M>) and Standard(x) and there 
exists some y with Standard(y) such that M(x) = y} from Proposition 6.3 is undecidable. 
 
Solution. Take any word <N> with Code(<N>). We can effectively construct a TM K<N> with 
tape alphabet {0, 1, #} which, for all inputs x Î {0, 1, #}*, yields the following result: 
 
  K<N> (x)  =  if N(x) halts then K<N> (x) = 1, else K<N> (x) =  â 

 
(K<N>  simply simulates N(x), and if this halts, K<N>  erases its tape and writes a 1, then halts). 
It clearly holds that N(x) halts iff there exists some y such that K<N> (x) = y. (namely, y = 1), 
which in turn is equivalent with < K<N> >;x Î H2. If H2 were decidable, so would H, mission 
impossible.  
 
Exercise 2 (medium difficult) Show that the language  
 

L = {<M> Î {0, 1, #}* | M halts on no input}  
 
is not recursively enumerable. Hint: in addition to a reduction argument, you might wish to 
also work in Proposition 3.1 from the lecture notes.  
 
Solution. First consider the complement language 
 
     Lc = {w Î {0, 1, #}* | w is not a codeword w = <M> for any TM M, or w is a codeword 

w = <M> for some TM M, and M halts on some input} 
 
Lc is recursively enumerable: it can be accepted by a TM N which first checks whether w is a 
valid TM codeword. If no, N immediately accepts. If yes, that is, if w = <M>, N simulates M 
on all input words <x1>, <x2>, … in a "dovetailing" fashion, that is, N first simulates M on 
input x1 for k steps, then on inputs  x1 and x2 for 2k steps each, then on inputs x1, x2  and x3 for 
3k steps, etc. If in one of these stages M is found to halt, N accepts.  
 
Now if L would be recursively enumerable too, then L would be decidable. This can be seen, 
e.g., by reducing the language H0 = {<M> | Code(<M>) and M halts on the empty input} 
from the lecture notes to L: assume L is decidable. Modify M, obtaining M' such that M' 
behaves like M on the empty input and runs into infinity on any nonempty input. Then,  
 <M'> Î L iff <M> Î  H0, thus we could decide H0, contradiction. 
 
Challenge problem (optional, not easy) Prove the following claim: If L is recursively 
enumerable but not recursive, then there exists another language L' which is likewise r.e. but 
not recursive, such that L È L' is recursive.  
 
Solution (the one that I found; if you find a simpler one I'd be happy to learn about it). 
Let L Ì S* be recursively enumerable but not recursive, and M a Turing machine that accepts 



it. From M we construct another TM M' which accepts a language L' such that L' is r.e. but not 
recursive, and furthermore L È L' =  S*, i.e. this is recursive.  
 
Let (wn)n = 1, 2, ... be the alphabetical enumeration of S*, and for w Î S*, let I(w) be the index of 
w in this enumeration.  
 
We first show that there is a totally defined, recursive function f: N → N, such that there exist 
infinitely many v Î L where M needs at most f(I(v)) steps to accept v. One way to obtain such 
f goes like this:  
 
Initialize p = 0.  
 
By a dovetailing scheme, simulate M first for 1 step on w1, then for 2 steps on w1 and w2, ... 
etc, – in the k-dovetail run, for k steps on w1 to wk. Whenever this simulation finds that M 
accepts wl in m steps, and l is  greater than p, set f(n) = m for all p ≤ n ≤ l. Update p to l.  
 
It is straightforward to show that f is total recursive and there exist infinitely many v Î L 
where M needs at most f(I(v)) steps to accept v.  
 
Using f we construct M' as follows. On input w, M' simulates M for at most f(I(w)) steps. If M 
does not accept w within this time, then M' accepts w (from this it follows that L È L' =  S*). 
If M accepts w within this time, M' first computes the number k(w) = | {i ≤ I(w) | runtime of M 
on input wi is at most f(i)}  (in order to compute k, M' has to simulate M on all words v that 
come before w in the alphabetical enumeration, but only up to f(I(v)) steps). Then M' 
simulates M on input wk. It is easy to see that in this way, M' simulates M on all words u Î S*, 
ultimately running the simulation of M on ui when M' is started on that w that has k(w) = i. 
When M accepts input wk, M' accepts too (namely its original input w); otherwise M', 
simulating M, runs forever. The language L' thus accepted by M' is not recursive, because if it 
would be, then L could be decided with the use of M' (how? an extra little sub-exercise).  
 
 


