Exercises for FLL, Fall 2018, sheet 5 – Solutions

Return Thursday Oct 18, in class

Exercise 1. Give a CFG for all words over the terminal alphabet $T = \{a, b, +, *, (,), \varepsilon, \emptyset\}$ that are regular expressions over $\Sigma = \{a, b\}$. Adhere to the strict syntax of regular expressions that was given in Definition 3.13 in the lecture notes.

Solution. Put $V = \{E\}$ (which automatically makes *E* the start variable). Then simply replicate the inductive definition of regexps:

 $E \rightarrow a \mid b \mid \varepsilon \mid \emptyset \mid (EE) \mid (E+E) \mid (E^*)$

Exercise 2. Give a CFG for the language of the regular expression $(0*10)^*$, where your grammar uses at most two variables.

Solution: A set of production rules that works is the following:

$S \rightarrow \varepsilon \mid SS$	comment: this takes care of the outer *
$S \rightarrow Z10$	
$Z \to \varepsilon \mid ZZ \mid 0$	comment: rules in the last two lines take care of generating the words
	0*10

Exercise 3. Give a *right-linear* CFG for the language of the regular expression $(0*10)^*$.

Solution. The mechanical straightforward way to get such a grammar is to (i) find an epsilon-NFA for the language L((0*10)*), then (ii) turn this into a DFA, then (iii) transform the DFA to a right-linear grammar using the recipe from Prop. 4.3 in the LN. Here are the three substeps:

(iii) For convenience we rename the DFA states $\{q_0,q_1\} \rightarrow S$, $\{q_1\} \rightarrow T$, $\{q_2\} \rightarrow U$, $\emptyset \rightarrow V$. Then the recipe from Prop. 4.3 gives the following grammar:

$$\begin{split} S &\rightarrow 0T \mid 1U \mid \varepsilon \\ T &\rightarrow 0T \mid 1U \\ U &\rightarrow 0S \mid 1V \mid 0 \\ V &\rightarrow 0V \mid 1V \end{split}$$