Exercises for Computability and Complexity, Spring 2019, Sheet 4 – Solutions

Please return on Tuesday March 5 in class. As usual you are invited but not requested to work in teams of size at most 2.

Exercise 1 Consider the set T of all single-tape TMs with tape alphabet $\Sigma = \{0, 1, \sqcup, \triangleright\}$. Design a coding scheme by which every TM M in T becomes coded by a codeword $\langle M \rangle \in \{0, 1, \#\}^*$. Describe your coding scheme in formal notation and use it to encode the the ultra-simple TM M with tape alphabet $\Sigma = \{0, 1, \sqcup, \triangleright\}$ and states $\{s, yes, no\}$ that has the following transition table:

$p \in K$	$\sigma \in \Sigma$	$\delta(q, \sigma)$
S	0	(yes,0, -)
S	1	$(s,1,\rightarrow)$
S	Ц	(<i>no</i> , ⊔, −)
S	⊳	$(s, \triangleright, \rightarrow)$

Solution. Here is one of a zillion of possibilities: Let $M \in T$ have l states $s_1, s_2, ..., s_l$ (including the h, yes, no states). Encode a state s_i by $\langle s_i \rangle := \#bin(i)$, where bin(i) is the binary representation of the number i. Encode the three cursor move directions by $\langle \rightarrow \rangle = \#01, \langle \leftarrow \rangle = \#10, \langle -\rangle = \#00$, and tape symbols by $\langle 0 \rangle = \#0, \langle 1 \rangle = \#1, \langle \Box \rangle = \#00, \langle D \rangle = \#11$. Let $R = s_i \sigma(s_j, \sigma, d)$ be a row in a transition table Tab(M) of M, where d is one of \rightarrow , \leftarrow , -. Code R by $\langle R \rangle = \langle s_i \rangle \langle \sigma \rangle \langle s_j \rangle \langle \sigma \rangle \langle d \rangle$. Let $R_1, ..., R_m$ be the rows of Tab(M). Code the transition table by $\langle Tab(M) \rangle = \langle R_1 \rangle ... \langle R_m \rangle$ and we are done, because the TM is uniquely specified by this table. For the example, put $s_1 = s$, $s_2 = h$, $s_3 =$ "yes", $s_4 =$ "no", leading to $\langle s \rangle = \#1, \langle h \rangle = \#2$, etc. Then the four rows given in the table in Exercise 1 translate to