Exercises for Computability and Complexity, Spring 2019, Sheet 3

Please return your solutions in class, in the Tuesday lecture on February 26. You may (like always in this course) work in teams of 2.

Exercise 1. Consider the ultra-simple TM *M* with tape alphabet $\Sigma = \{0, 1, \sqcup, \triangleright\}$ and states $\{s, yes, no\}$ that has the following transition table:

$p \in K$	$\sigma \in \Sigma$	$\delta(q, \sigma)$
S	0	(yes,0, -)
S	1	$(s,1,\rightarrow)$
S	Ц	$(no, \sqcup, -)$
S	⊳	$(s, \triangleright, \rightarrow)$

What is the language L(M) decided by M? Describe that language in plain English. Write a RAM program that decides the same language, in the following sense. Your RAM should compute a string function $f: \Sigma^* \to \{0,1\}$, such that f(w) = 1 iff w is in L(M).

Problem 2 (easy) Show that the function $plus 2: \mathbb{N} \to \mathbb{N}$, plus 2(n) = n + 2, is primitive recursive.

Problem 3 (a little easier than medium) Show that the function *minus1*: $\mathbb{N} \to \mathbb{N}$, *minus1(n)* = max(0, *n* - 1) is primitive recursive. Hint: there is a very compact way of doing this, exploiting the fact that the primitive recursion scheme condition h(n + 1, x) = g(n, h(n, x), x) has the "minus 1" operation already built in the first arguments *n* +1 and *n* passed to *h* and *g*.

Challenge problem (a bit demanding; optional) Show that the function *evensquare*: $\mathbb{N} \to \mathbb{N}$, defined by *evensquare*(*n*) = *n* if *n* is uneven, else *evensquare*(*n*) = n^2 , is primitive recursive. You may assume that *square*: $\mathbb{N} \to \mathbb{N}$, *square*(*n*) = n^2 , is primitive recursive. Hint: you may find it helpful to construct *evensquare* from a number of helper functions which you construct before assembling *evensquare*.