
Exercises for Computability and Complexity, Spring 2019, Sheet 3 – Solutions 
 
Please return your solutions in class, in the Tuesday lecture on February 26. You may (like 
always in this course) work in teams of 2.  
 
 
Exercise 1. Consider the ultra-simple TM M with tape alphabet S = {0, 1, +, @} and states {s, 
yes, no} that has the following transition table:  
 
p Î K   s Î S   d(q, s) 
s 0 (yes,0,  -) 
s 1 (s,1, ®) 
s + (no, +,  -) 
s @ (s, @, ®) 

 
What is the language L(M) decided by M? Describe that language in plain English. Write a 
RAM program that decides the same language, in the following sense. Your RAM should 
compute a string function f: S* ® {0,1}, such that f(w) = 1 iff w is in L(M).  
 
Solution. M decides the language of all words that contain at least one 0.  
 

1 read 
2 if c(0)= 0 goto 5 
3 if c(0)= 1 goto 1 
4 if c(0)= + goto 7 
5 print 1 
6 end 
7 print 0 
8 end 

 
Problem 2 (easy) Show that the function plus2: N ® N, plus2(n) = n + 2, is primitive 
recursive.  
 
Solution. From rule 2 we know that the successor function s is p.r. By rule 4, using r = 1 and 
m = 1, and setting f = g = s, we get that h(n) = s( s(n)) is p.r., but obviously h is just the 
desired function that adds 2. 
 
Problem 3 (a little easier than medium) Show that the function minus1: N ® N, minus1(n) 
= max(0, n – 1) is primitive recursive. Hint: there is a very compact way of doing this, 
exploiting the fact that the primitive recursion scheme condition h(n + 1, x) = g(n, h(n, x), x) 
has the "minus 1" operation already built in in the first arguments n +1 and n passed to h and 
g.  
 
Solution. We use the rule 5. of primitive recursion with r = 0, put f  = 0 and g = p2

1. Then h  
= minus1. 
 
Challenge problem (a bit demanding; optional) Show that the function evensquare: N ® N, 
defined by evensquare(n) = n if n is uneven, else evensquare(n) = n2, is primitive recursive. 
You may assume that square: N ® N, square(n) = n2, is primitive recursive. Hint: you may 



find it helpful to construct evensquare from a number of helper functions which you construct 
before assembling evensquare.  
 
Solution. There are many ways to do this – and I would say this task has a "programming" 
flavour. Here is one way to do it.  
 
We first procure a p.r. function flip: N ® N that satisfies flip(0) = 1 and flip(1) = 0. Using the 
rule 5., put r = 0, f = s ◦ 0 (i.e., f is the constant 1), g =  p2

1. Then put flip = h. 
 
Next, create a p.r. function even: N ® N, even(n) = 1 if n is even, else = 0. Again we do this 
by using the recursion rule 5., putting r = 0, f = s ◦ 0, and g = flip ◦ p2

2, which yields h = even. 
 
Next, create a conditional function cond: N 3 ® N, which satisfies cond(0, n, m) = m and 
cond(1, n, m) = n (remark: cond can be seen as implementing an if-then-else operator.) Again 
using the rule 5., put f = p2

2 and g = p5
4 to obtain cond = h.  

 
Finally, put evensquare = cond(even(·), square(·), id(·))  --  which is an obvious shorthand for 
an application of rule 4. 
 
 


