
Exercises for Computability and Complexity, Spring 2019, Sheet 2 -- Solutions

Please return in class on Tuesday Feb 19

Exercise 1 Show that L = {w Î {1}* | |w| is a power of 2} Î TIME(O(n log n)), by
describing in words (and maybe sketches of interesting configurations) a TM (with possibly
several tapes) that does this job.

Solution. Set up a 2-tape TM, as follows. The first tape contains the input word, is read-only,
and the cursor here never moves left. While the first cursor moves right, on the second tape a
binary-coded count of the number of 1's visited is constructed. Whenever the first cursor
moves to the right, the count on tape 2 is updated (which may take some operations where the
first cursor does not move). The update is a combination of the add-1 and shift-right, single-
tape TMs from the lecture notes, which per add-1 operation may require 2 full back-and-forth
traversals of the word b written on tape 2 up to that point, that is, 4 |b| TM cycles. When the
last 1 on tape 1 has been processed, our TM enters a final round of checking whether the 2nd
tape word b is of the form 10....0. If yes, the input is accepted, if no, not. This final check can
be clearly effected in another |b| steps. Since |b| £ log2(|w|), we find that our TM uses at most
log2(|w|)(4 n) + log2(|w|) = O(n log n) steps.

Exercise 2 (a) Are the functions f(n) = exp(n) and g(n) = exp(2n) polynomially related? (b)
What about f(n) = exp(n) and g(n) = exp(n2)? Prove your answers.

Solution. (a) Yes, by the quadratic polynomial p(n) = n2. We clearly have f(n) £ p(g(n)), and
conversely, g(n) = (exp(n))2 = p(f(n)).
(b) No. Assume there were a polynomial p(n) = na such that g(n) = exp(n2) = £ p(f(n)) =
exp(na). Then for m > a, we would have g(m) = exp(mm) ³ exp(ma), contradiction.

Challenge problem (optional) Let Sn = {1,..., n} and Ln = {12...n} (i.e. the language that
contains only the word 12...n). Prove or disprove: a single-tape TM deciding Ln must have at
least n states.

One solution (by Corneliu-Claudiu Prodescu, copied here verbatim; simpler solution
sketched at end):

I believe the # of states is actually constant (with respect to n). Here is my sketch of a proof. I
might have some slip overs, but I think the main argument is right. The MAIN idea:

 Step 1: Test if the last non-empty slot of the tape contains "n" (easily 2 states).
 Step 2: Go through the tape from end of input to the beginning of the tape, checking if
adjacent entries are consecutive (i.e. | X |X+1|)).
 Step 3: One reached |_>_| X |, check if X = 1, then YES, else NO.

Also, if any of the Steps 1 or any point of 2 fails, a halt with NO is implied.

LEMMAS:
I'll state a few actions, each of which can be done by a constant (with respect to "n") number
of states.

 Lemma 1:

 We can shift a cell item left or right by one cell (the acceptor cell was empty before).
 Ex: | X |___| => |____| X |

 Dem:
 We'll use a decrement and an increment state to basically move X one by one. Here is a
sketch of the transitions of these states (We start in DecrState and finish in "Some next
state"):
 IncrState:
 - symbol k => k+1, L, DecrState
 - symbol ___ => 1, L, DecrState
 DecrState:
 - symbol k => k - 1, R, IncrState
 - symbol 1 => ___, R, Final_IncrState
 Final_IncrState:
 - symbol k => k+1, L, Some next state
 - symbol ___ => 1, L, Some next state

 Lemma 2:
 We can compare adjacent values for "consecutivity"
 Ex: | X | Y | => |___|___|, if Y = X + 1
 => Halt with NO otherwise

 Dem:
 We'll use a state to increment X (if it is "n" we halt with NO) and then start a Decrement
left, Decrement right race (using 2 states) until one (or both) are blank and proceed
accordingly.
 We are going to use some additional states to couple the events, but this will clearly be still
constant.

 Lemma 3:
 We can do a "double move" of a cell value into two adjacent empty cells
 Ex: | X |___|___| => |___| X | X |

 Dem:
 This will be similar to Lemma 1, just that we'll use 1 decrementer, 2 incrementers and
another dummy state to bring back the cursor to position 1. An additional number of 2 states
may be necessary to bring back the cursor to pos 1 in the end, but the number remains
constant.

BACK to the MAIN IDEA:

 Phase 1 is easy:
 One state walks blindly until an ___ is encountered and then moves one Left and goes to
state 2.
 State 2 halts with NO if the input is not "n" and otherwise the cursor is moved to the
Right and phases 2-3 start.

 Phase 2 and 3 will be described using the lemmas:
 We will be generally in the position:
 ... | X | Y |___|___|

 ^
and first we use 4 states to go to the cell with X and check if it is _>_. If it is indeed _>_, we
have reached the beginning of the tape and we only need to check phase 3. We move to Y
check if it is 1, halt with YES or NO accordingly.
 Now, if it is not _>_, we want to check if X and Y are consecutive and then somehow
reduce Y. Here is what will happen on the tape, during a few sets of moves (a move will
actually be a lemma usage)

 ... | X | Y |___|___| => (1 - move Y right)
 ... | X |___| Y |___| => (1 - move Y right)
 ... | X |___|___| Y | => (3 - double move X right)
 ... |___| X | X | Y | => (1 - move X left)
 ... | X |___| X | Y | => (1 - move X left)
 ... | X | X |___| Y | => (1 - move Y left)
 ... | X | X | Y |___| => (2 - compare X and Y for
"consecutivity")
 ... | X |___|___|___| (on success of Y = X+1)

and we continue the recursion, as desired.

Using a main idea of this proof, another (shorter) proof comes to mind: run the cursor
backwards and forward across the input (set a delimiter at its end in a preparation phase),
decrementing every symbol found by 1 at each pass. If symbol 1 is read, decrement to empty
cell symbol. Fail if in any of these passes a condition different from "find only empties at
beginning, followed by non-empty cells, followed by right delimiter" is encountered, else
accept. If I remember correctly, this solution was suggested by Josip Djolonga.

