
Exercises for Computability and Complexity, Spring 2019, Sheet 2 -- Solutions 
 
Please return in class on Tuesday Feb 19 
 

Exercise 1 Show that L = {w Î {1}* | |w| is a power of 2} Î TIME(O(n log n)), by 
describing in words (and maybe sketches of interesting configurations) a TM (with possibly 
several tapes) that does this job.  
 
Solution. Set up a 2-tape TM, as follows. The first tape contains the input word, is read-only, 
and the cursor here never moves left. While the first cursor moves right, on the second tape a 
binary-coded count of the number of 1's visited is constructed. Whenever the first cursor 
moves to the right, the count on tape 2 is updated (which may take some operations where the 
first cursor does not move). The update is a combination of the add-1 and shift-right, single-
tape TMs from the lecture notes, which per add-1 operation may require 2 full back-and-forth 
traversals of the word b written on tape 2 up to that point, that is, 4 |b| TM cycles. When the 
last 1 on tape 1 has been processed, our TM enters a final round of checking whether the 2nd 
tape word b is of the form 10....0. If yes, the input is accepted, if no, not. This final check can 
be clearly effected in another |b| steps. Since |b| £ log2(|w|), we find that our TM uses at most 
log2(|w|)(4 n) + log2(|w|) = O(n log n) steps.  
 
Exercise 2 (a) Are the functions f(n) = exp(n) and g(n) = exp(2n) polynomially related? (b) 
What about f(n) = exp(n) and g(n) = exp(n2)? Prove your answers.  
 
Solution. (a) Yes, by the quadratic polynomial p(n) = n2. We clearly have f(n) £ p(g(n)), and 
conversely, g(n) = (exp(n))2 = p(f(n)). 
(b) No. Assume there were a polynomial p(n) = na such that g(n) = exp(n2) = £ p(f(n)) = 
exp(na). Then for m > a, we would have g(m) = exp(mm) ³ exp(ma), contradiction.  
 
Challenge problem (optional) Let Sn = {1,..., n} and Ln = {12...n} (i.e. the language that 
contains only the word 12...n). Prove or disprove: a single-tape TM deciding Ln must have at 
least n states.  
 
One solution (by Corneliu-Claudiu Prodescu, copied here verbatim; simpler solution 
sketched at end): 
  
I believe the # of states is actually constant (with respect to n). Here is my sketch of a proof. I 
might have some slip overs, but I think the main argument is right. The MAIN idea:  
 
 Step 1: Test if the last non-empty slot of the tape contains "n" (easily 2 states).  
 Step 2: Go through the tape from end of input to the beginning of the tape, checking if 
adjacent entries are consecutive (i.e. | X |X+1| ) ).  
 Step 3: One reached |_>_| X |, check if X = 1, then YES, else NO.  
 
Also, if any of the Steps 1 or any point of 2 fails, a halt with NO is implied.  
 
LEMMAS:  
I'll state a few actions, each of which can be done by a constant (with respect to "n") number 
of states.  
 
 Lemma 1:  



    We can shift a cell item left or right by one cell (the acceptor cell was empty before).  
    Ex:    | X |___|    =>   |____| X |  
 
 Dem:  
    We'll use a decrement and an increment state to basically move X one by one. Here is a 
sketch of the transitions of these states (We start in DecrState and finish in "Some next 
state"):  
        IncrState:  
            - symbol  k   => k+1, L, DecrState  
            - symbol ___ =>    1, L, DecrState  
        DecrState:  
            - symbol  k   => k - 1, R, IncrState  
            - symbol  1   => ___, R, Final_IncrState  
        Final_IncrState:  
            - symbol  k   => k+1, L, Some next state  
            - symbol ___ =>    1, L, Some next state  
 
 Lemma 2:  
    We can compare adjacent values for "consecutivity"  
    Ex:    | X | Y |    => |___|___|, if Y = X + 1  
                            => Halt with NO otherwise  
 
 Dem:  
    We'll use a state to increment X (if it is "n" we halt with NO) and then start a Decrement 
left, Decrement right race (using 2 states) until one (or both) are blank and proceed 
accordingly.  
    We are going to use some additional states to couple the events, but this will clearly be still 
constant.  
 
 Lemma 3:  
    We can do a "double move" of a cell value into two adjacent empty cells  
    Ex:    | X |___|___|    => |___| X | X |  
 
 Dem:  
    This will be similar to Lemma 1, just that we'll use 1 decrementer, 2 incrementers and 
another dummy state to bring back the cursor to position 1. An additional number of 2 states 
may be necessary to bring back the cursor to pos 1 in the end, but the number remains 
constant.  
 
 
BACK to the MAIN IDEA:  
 
    Phase 1 is easy:  
        One state walks blindly until an ___ is encountered and then moves one Left and goes to 
state 2.  
        State 2 halts with NO if the input is not "n" and otherwise the cursor is moved to the 
Right and phases 2-3 start.  
 
    Phase 2 and 3 will be described using the lemmas:  
        We will be generally in the position:  
            ... | X | Y |___|___| ....  



                            ^  
and first we use 4 states to go to the cell with X and check if it is _>_. If it is indeed _>_, we 
have reached the beginning of the tape and we only need to check phase 3. We move to Y 
check if it is 1, halt with YES or NO accordingly.  
    Now, if it is not _>_, we want to check if X and Y are consecutive and then somehow 
reduce Y. Here is what will happen on the tape, during a few sets of moves (a move will 
actually be a lemma usage)  
 
    ... | X | Y |___|___| ....   => (1 - move Y right)  
    ... | X |___| Y |___| ....   => (1 - move Y right)  
    ... | X |___|___| Y | ....   => (3 - double move X right)  
    ... |___| X | X | Y | ....   => (1 - move X left)  
    ... | X |___| X | Y | ....   => (1 - move X left)  
    ... | X | X |___| Y | ....   => (1 - move Y left)  
    ... | X | X | Y |___| ....   => (2 - compare X and Y for 
"consecutivity")  
    ... | X |___|___|___| ....  (on success of Y = X+1)  
 
and we continue the recursion, as desired. 
 
Using a main idea of this proof, another (shorter) proof comes to mind: run the cursor 
backwards and forward across the input (set a delimiter at its end in a preparation phase), 
decrementing every symbol found by 1 at each pass. If symbol 1 is read, decrement to empty 
cell symbol. Fail if in any of these passes a condition different from "find only empties at 
beginning, followed by non-empty cells, followed by right delimiter" is encountered, else 
accept. If I remember correctly, this solution was suggested by Josip Djolonga. 
 
 
 


