
Exercises for Computability and Complexity, Spring 2019, Sheet 1 – Solutions

As in the FLL course, you may work in miniteams of two (but not more).

Please return on Tuesday Feb 12 in class.

Exercise 1 Give a transition table for a TM that computes the function f(n) = 2n. The TM
should have the tape alphabet {0, 1, @, +} and numbers are coded as binary strings by writing
them to base 2.

Solution. That's an easy one. Multiplying n by 2 means to append a 0 at the binary
representation of n. A table for such a TM:

p Î K s Î S d(q, s) comment

s @ (s, @, ®) get started
s 0 (s , 0, ®) reading a 0, just move on to the right
s 1 (s, 1, ®) reading a 1, just move on to the right
s + (h, 1, -) hitting the first blank, replace it by 1, halt

Exercise 2 If one would admit TMs with countably many states, would this extend the set of
TM-computable functions on the integers? In other words, is there a function f: N → N which
can be computed by some TM with countably infinitely many states, but not by any ordinary
TM? Sketch a proof for your answer.

Solution. With infinitely many states one can indeed "compute" more functions than with
finitely many states. (In fact, with such a machine one could "compute" every function on the
integers.) To see why, let f: N → {0, 1} be any function with binary values on the integers
(that is, f picks a subset of the integers – and any subset can be thus picked by some such f –
that is, there must be uncountably many such f, which in turn means that almost all of these f
are not Turing-computable). Arrange an infinite-state TM M with state set K Ê {s1, s2, …}
such that on input n, M first goes to sn (how can this be done? needs a subroutine) and then
outputs f(n) due to a hardwired answer-table-lookup rule of the form d(sn, a) = (h, f(n), -).

