
Exercises for Computability and Complexity, Spring 2019, Sheet 1 – Solutions  
 
As in the FLL course, you may work in miniteams of two (but not more). 
 
Please return on Tuesday Feb 12 in class. 
 
Exercise 1  Give a transition table for a TM that computes the function f(n) = 2n. The TM 
should have the tape alphabet {0, 1, @, +} and numbers are coded as binary strings by writing 
them to base 2.  
 
Solution. That's an easy one. Multiplying n by 2 means to append a 0 at the binary 
representation of n. A table for such a TM: 
 
p Î K   s Î S   d(q, s) comment 

s @ (s, @, ®) get started 
s 0 (s , 0, ®) reading a 0, just move on to the right  
s 1 (s,  1, ®) reading a 1, just move on to the right  
s + (h, 1, -) hitting the first blank, replace it by 1, halt 

 
Exercise 2 If one would admit TMs with countably many states, would this extend the set of 
TM-computable functions on the integers? In other words, is there a function  f: N → N which 
can be computed by some TM with countably infinitely many states, but not by any ordinary 
TM? Sketch a proof for your answer. 
 
Solution. With infinitely many states one can indeed "compute" more functions than with 
finitely many states. (In fact, with such a machine one could "compute" every function on the 
integers.) To see why, let f: N → {0, 1} be any function with binary values on the integers 
(that is, f picks a subset of the integers – and any subset can be thus picked by some such f – 
that is, there must be uncountably many such f, which in turn means that almost all of these f 
are not Turing-computable). Arrange an infinite-state TM M with state set K Ê {s1, s2, …} 
such that on input n, M first goes to sn (how can this be done? needs a subroutine) and then 
outputs f(n) due to a hardwired answer-table-lookup rule of the form d(sn, a) = (h, f(n), - ).  
 
 
 


