Exercises for FLL, Fall 2018, sheet 1 – Solutions

Return Thursday Sep 13, in class

Note: you may work in teams of 2 if you wish. If you do, hand in a single solution sheet for both of you.

Exercise 1 (a) How many words exist over the alphabet $\Sigma = \{1\}$? and over the alphabet $\Sigma = \{a, b\}$? (b) How many words of length *n* exist over an alphabet of size *k*? (c) How many languages exist over the alphabets from (a) and (b)? (d) How many languages of words of length *n* exist over an alphabet of size *k*? (e, a bit more difficult, optional) Show that there are countably infinite many *finite* languages over $\Sigma = \{a, b\}$. *Hint: show two things. First, that there are at least as many finite languages as there are natural numbers – show this by giving an injective map from* \mathbb{N} to the set of finite languages. Second, show that there are **at most** as many finite languages to \mathbb{N} . The second part is more difficult than the first.

Solution: (a) The words over $S = \{1\}$ are ε , 1, 11, 111, ... – that is, as many as there are integers, that is, countably infinite many. The words over $S = \{a, b\}$ can be listed in a sequence, shortest first, sorted alphebetically for same size: ε , a, b, aa, ab, ba, bb, aaa, aab, ... – that is, again countably many. (b) k^n many. (c) In both cases, $|\Sigma^*| = |\mathbb{N}|$, that is, there are are $|\mathbb{2}^{\mathbb{N}}| = |\mathbb{R}|$ many languages over these alphabets – indeed, over any finite alphabet there are $|\mathbb{R}|$ many languages. (d) Since there are k^n many words of length *n* over a symbol set of size *k*, there are $2^{(k^n)}$ many such languages. (e) Let *F* be the set of finite languages over $\{a, b\}$. (I) "*at least as many finite languages as there are natural numbers":* there are many ways to define an injection $\beta: \mathbb{N} \to F$. For instance, $\beta(n) := \{a, a^2, ..., a^n\}$ does it. (II) "*at most as many finite languages as there are natural numbers":* It is clear that a finite language over over $\Sigma = \{a, b\}$ can be written as a word over the over $\Sigma' = \{a, b, _\}$. Example: $L = \{a, aa, ab, bba\}$ can be written as a_aa_ab_bbba. We know that there are $|\mathbb{N}|$ many words over $\Sigma' = \{a, b, _\}$, and each finite language over Σ corresponds to one of these words, so there are no more finite languages over Σ than words over Σ' , that is no more than $|\mathbb{N}|$ many.