
Exercises for FLL, Fall 2018, sheet 10

Return Thursday Nov 22, in class

Exercise 1. At the end of this exercise sheet I append an old exercise from 2004 together with
its solution. That old exercise outlines in its problem statement how DFAs can be seen as S-
structures, and in the model solution shows how they can be framed in FOL axioms. Use the
old exercise and its solution as a source of inspiration and do the same for context-free
grammars in Chomsky normal form! that is, give a similar outline of such grammars as S-
structures, and provide FOL axioms. Do not try however to code the requirement that every
symbol in a CNF grammar must be useful – that would be quite involved. Note: it is much
more difficult to axiomatise the context-free grammars of arbitrary form – a challenge for the
very ambitious ones!

************* attached: the similar problem from a 2004 exercise sheet **********

Old exercise from 2004: A DFA can be seen as a structure ! = (A, SA, QA, FA, dA, q0

A),
where the carrier A consists of the states and symbols, S is a unary predicate (intention: S
denotes the symbols), Q is a unary predicate (denoting the states), F is a unary predicate
(denoting the accepting states), d is a binary function (denoting the transition function), and q0
is a constant symbol (denoting the start state). Give a collection F of FOL propositions such
that every finite S-structure ! is a model of F iff ! corresponds to a DFA. In other works,
axiomatize the DFAs in FOL. Explain each of your propositons in words.

Solution (to the 2004 homework problem, serves as a hint). Here is one possibility:

"x ((Sx Ú Qx) Ù ¬ (Sx Ù Qx)) every thing must be either a state or a symbol
($x Sx Ù $x Qx) state and symbol sets are not empty
Qq0 the start state is actually a state
"x (Fx ® Qx) the accepting states are actually states
"x"y"z (((Qx Ù Sy) Ù dxy = z) ® Qz) d maps state-symbol pairs on states

Note: because in FOL we only know total functions, in any S-structure ! the function dA is
totally defined. For the purposes of interpreting ! as a DFA, it is not relevant which type of
values dA has on argument pairs that are not of type (state, symbol).

