Exercises for Comp & Comp, Spring 2019, Sheet 10 – Solutions

Please return Tuesdy May 7 in class.

Problem 1 (rather easy). Prove or disprove the following claim:

Let $R \subseteq \Sigma^* \times \Sigma^*$ be a polynomially decidable relation. Furthermore, assume that *R* is *constant balanced*, that is, there exists a constant *C* such that $(x, y) \in R$ implies $|y| \le C$. Let $L = \{w \mid (w, y) \in R \text{ for some } y\}$. Then $L \in \mathbf{P}$.

Solution. Claim is true. Let $L = \{w \mid (w, y) \in R \text{ for some } y\}$. There are finitely many y with $|y| \le C$, say, K many. They can be hardcoded in the transition function and state set of a deterministic TM which on input w systematically tries all y (makes K such tries) and for each y checks in polynomial time $O(n^k)$ whether $(w, y) \in R$. Total time is $O(Kn^k) = O(n^k)$.

Problem 2 (easy). Claim: SPACE(1) = TIME(1). Prove or disprove.

Solution. Claim is wrong. SPACE(1) (even SPACE(0)!) contains all regular languages, but TIME(1) doesn't because there are regular languages that need time n (e.g. the language of all words over $\{0,1\}$ which end in 1: the TM has to wander its read head to the end of the input word to verify this, taking n steps).

Problem 3 (needs an idea, but is rather straightforward). The problem SET PACKING has instances consisting of a finite collection *C* of finite sets and of a positive integer $K \le |C|$. The question to be decided is whether *C* contains at least *K* disjoint sets. – The problem CLIQUE has instances consisting of an undirected graph G = (V, E) and a positive integer $K \le |V|$. The question to be decided is whether *G* contains a *clique* of size at least *K*, that is, a subset $V' \subseteq V$ such that every two vertices in V' are joined by an edge in *E*. Reduce SET PACKING to CLIQUE. Don't forget to demonstrate that your reduction can be done in polynomial time!

Solution. Let *C*, *K* be an instance of SET PACKING. We construct a graph G = (V, E) by putting V = C, and $\{v_1, v_2\} \in E$ iff $v_1 \cap v_2 = \emptyset$ (for $v_1, v_2 \in C$). Then obviously *G* contains a clique of size at least *K* iff *C* contains at least *K* disjoint sets, that is, we have reduced SET PACKING to CLIQUE. This reduction can be carried out in polynomial time: we have to carry out $|C|^2$ many pairwise comparisons to check for all $v_1, v_2 \in C$ whether $v_1 \cap v_2 = \emptyset$. [Actually a bit fewer because we don't have to consider the pairings v_i, v_i]. A brute-force comparison of two finite sets v_1, v_2 to check whether they are disjoint needs $|v_1| |v_2|$ many individual checks whether some element $e_1 \in v_1$ is identical to another element $e_2 \in v_2$. All in all, this boils down to $O(|C|^2 m^2)$ pairwise element comparisons, where *m* is the maximum size of sets $v \in$ *C*. Each pairwise element comparison can be done in time $O(\log (C m))$. All in all, the reduction can be computed in time $O(|C|^3 m^3)$.