1. Prove the immediate consequences listed in the LN after Definition 7.1.1:

$$P(\emptyset) = 0$$

$$P(A^{c}) = 1 - P(A)$$

$$A \subseteq A' \implies P(A) \le P(A')$$

Solution.

 $P(\emptyset) = 0$: Use that the intersection $\emptyset \cap M = \emptyset$, that is, technically speaking, \emptyset and M are disjoint. Then by axiom 2, $P(\emptyset) + P(M) = P(\emptyset \cup M) = P(M) = 1$, hence $P(\emptyset) = 0$. $P(A^{c}) = 1 - P(A)$: conclude this from $1 = P(M) = P(A \cup A^{c}) = P(A) + P(A^{c})$, where the last equality is due to axiom 2.

 $A \subseteq A' \Rightarrow P(A) \leq P(A')$: If $A \subseteq A'$, then $A' = A \dot{\cup} (A' \setminus A)$ and hence $P(A') = P(A) + P(A' \setminus A) \geq P(A)$.

2. Consider the uniform distribution on the unit interval S = [0,1]. Since this is a part of the real line, this sample space is equipped with the Borel σ -field $\mathfrak{B}([0,1]) = \sigma(\{(a,b) \mid 0 \le a \le b \le 1\})$. For each interval (a,b] in this generator of $\mathfrak{B}([0,1])$, we have $P(X \in (a,b)) = b - a$. Use this to show that P(X = a) = 0 (consider only the case 0 < a < 1).

Solution. $(0,1) = (0,a) \cup \{a\} \cup (a,1)$, hence $1 = P((0,1)) = P((0,a)) + P(\{a\}) + P((a,1)) = a + P(\{a\}) + 1 - a = P(\{a\}) + 1$, from which P(X = a) = 0 follows.

3. Show that

$$P(X \in A, Y \in B, Z \in C) = P(X \in A) \ P(Y \in B \mid X \in A) \ P(Z \in C \mid X \in A, Y \in B).$$

Solution. Eqn. 7.4 from the LN is equivalent to

$$P(X \in A, Y \in B) = P(X \in A \mid Y \in B) P(Y \in B).$$

By twofold application of this equation, conclude

$$P(X \in A, Y \in B, Z \in C) = P(Z \in C \mid X \in A, Y \in B) P(X \in A, Y \in B)$$
$$= P(Z \in C \mid X \in A, Y \in B) P(X \in A) P(Y \in B \mid X \in A)$$