PSM Spring 2019, Homework 3

- 1. Let $\Omega = \{a, b, c\}$. Define two σ -fields on Ω such that their union is not a σ -field.
- 2. Let $\Omega = \{a, b, c, d\}$. Let $S = \{1, 2, 3\}$. Construct a nontrivial σ -field \mathcal{F} on S and a σ -field \mathfrak{A} on Ω and a function $X : \Omega \to S$ such that X is \mathfrak{A} - \mathcal{F} -measurable (a σ -field is trivial if it contains just the empty set and the whole set).
- 3. Let $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$ and $(\Omega_3, \mathcal{F}_3)$ be measurable spaces. If $f_1 : \Omega_1 \to \Omega_2$ and $f_2 : \Omega_2 \to \Omega_3$ are respectively \mathcal{F}_1 - \mathcal{F}_2 and \mathcal{F}_2 - \mathcal{F}_3 -measurable functions, prove that $f_2 \circ f_1 : \Omega_1 \to \Omega_3$, where $f_2 \circ f_1(x) := f_2(f_1(x))$ is \mathcal{F}_1 - \mathcal{F}_3 -measurable.
- 4. Let (S, \mathcal{F}) be a measurable space and $\varphi: S \to S'$ a map. Show that

$$\mathcal{F}' := \{ B \subseteq S' \, | \, \varphi^{-1}(B) \in \mathcal{F} \}$$

is a σ -field on S'.

5. Let $\varphi: S \to S'$ be a map and let $\sigma(\mathcal{G}')$ be a σ -field on S' generated by \mathcal{G}' . Show that $\varphi^{-1}(\sigma(\mathcal{G}')) = \sigma(\varphi^{-1}(\mathcal{G}')).$

Hint: make use of the previous fact 4. You can also use the fact (another easy exercise) that the preimage of a σ -field is a σ -sigma field, that is, if $\varphi : S \to S'$ is a map and \mathcal{F}' a σ -field on S', then $\varphi^{-1}(\mathcal{F}')$ is a σ -field on S.

6. Show that the square function sqr : $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ is $\mathfrak{B}(\mathbb{R})$ - $\mathfrak{B}(\mathbb{R})$ -measurable. Hint: use the previous problem.

Note: problems 1 - 4 and 6 are easy, problem 5 is a little tricky.