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Abstract

The echo state property is a key for the design and training of recur-
rent neural networks within the paradigm of reservoir computing. In intuitive
terms this is a passivity condition: a network having this property, when
driven by an input signal, will become entrained by the input and develop
an internal response signal. This excited internal dynamics can be seen as a
high-dimensional, nonlinear, unique transform of the input with a rich mem-
ory content. This view has implications for understanding neural dynamics
beyond the field of reservoir computing. Available definitions and theorems
concerning the echo state property, however, are of little practical use because
they do not relate the network response to temporal or statistical properties of
the driving input. Here we present a new definition of the echo state property
which directly connects it to such properties. We derive a fundamental 0-1
law: if the input comes from an ergodic source, the network response has the
echo state property with probability one or zero, independent of the given net-
work. Furthermore we give a sufficient condition for the echo state property
which connects statistical characteristics of the input to algebraic properties
of the network connection matrix. The mathematical methods that we em-
ploy are freshly imported from the young field of nonautonomous dynamical
systems theory. Since these methods are not yet well known in neural compu-
tation research, we introduce them in some detail. As a side story, we hope to
demonstrate the eminent usefulness of these methods.

Keywords. Echo state property, Reservoir computing, Recurrent neural networks,
Nonautonomous dynamical systems, Driven dynamical systems, Stability.
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1 Introduction

In this article we derive a number of theoretical results concerning the dynamics
of input-driven neural systems, using mathematical methods which still are widely
unknown in neural computation and mathematical neuroscience. We hope that both
– the results and the methods – will be of interest to the reader.

The results shed a new and sharp light on the question when an input-driven neural
dynamics is “stable” or “unstable”. These concepts are certainly understood in
different ways in different communities and contexts. Here we address phenomena
which are frequently described as “sensitive dependency on initial conditions” or
“divergence of perturbed trajectories” or the like, and which are often related to
“chaotic” dynamics. Such intuitions root in the theory of autonomous (i.e., not
input-driven) dynamical systems. It is, in fact, not trivial to cleanly extend these
intuitions to input-driven systems. We establish a rigorous formal framework in
which this notion of stability becomes well-defined in input-driven systems, and prove
a number of theorems. Among those, we derive a 0-1 law for systems driven by
input from an ergodic source, to the effect that the driven system is “stable” with
probability zero or with probability one.

Our work was originally motivated by questions which arise in the field of reservoir
computing (RC), and more specifically, in the subfield of echo state networks (ESNs).
ESNs are artificial recurrent neural networks (RNNs) which are used in machine
learning for the supervised training of temporal pattern recognizers, pattern gener-
ators, predictors, controllers and more (short overview: (Jaeger, 2007); application
oriented paper: (Jaeger et al., 2004); survey on state of the art: (Lukosevicius et al.,
2009); other RC flavors besides ESNs: liquid state machines (Maass et al., 2002),
backpropagation-decorrelation learning (Steil, 2004), temporal recurrent neural net-
work (Dominey et al., 1995)). The basic idea behind RC is to drive a randomly
created RNN (the reservoir) with the task input signal, and from the input-excited
RNN-internal dynamics distil a desired output signal by a trainable readout mecha-
nism – often just a linear readout trained by linear regression of the target output
on the excited internal activation traces. A necessary enabling condition for this
scheme to work is that the reservoir possesses the echo state property (ESP). This
is a particular stability concept for which a number of equivalent definitions are
available (Jaeger, 2001). Intuitively, these amount to the property that the reservoir
dynamics asymptotically “washes out” initial conditions, or in other wordings, is
“input-forgetting” or “state-forgetting”. The ESP is connected to spectral proper-
ties of the network weight matrix, and some work has been spent on stating and
refining these conditions (Jaeger, 2001; Buehner et al., 2006; Yildiz et al., 2012).

Importantly, the ESP is intrinsically tied to the characteristics of the driving input.
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It may well be the case that for inputs of some kind, a reservoir does not forget initial
states, while for others it does. Therefore, the ESP is not a property of a reservoir
per se, but a property of a pair (reservoir, “set of admissible inputs”). Concretely, in
all available definitions and conditions relating to the ESP, the admissible inputs are
characterized solely by their value range. It is presupposed that the input takes values
in a compact set U , from which the ESP becomes a property of a pair (reservoir,
U). This setting has been the only one accessible to a mathematical treatment so
far, which is why it is still there; but it is hardly relevant for the daily practice of
reservoir computing and has given rise to widespread misconceptions (discussion in
(Yildiz et al., 2012)).

The troublesome issue about specifying admissible inputs solely through their range
is the following. Consider a standard discrete-time reservoir RNN with a tanh sig-
moid. It is intuitively clear that the tanh mapping is more “contractive” for larger-
amplitude neural activations than it is for small-amplitude ones, because the slope of
the tanh is greatest around zero – larger arguments become more strongly quenched
by the tanh tails. Thus, when a tanh reservoir is driven by large-amplitude input, the
reservoir neurons will become highly excited, the tanh quenches strongly which re-
sults in an overall initial condition forgetting. In contrast, for small-amplitude input
one may witness that the “washing out” characteristics becomes lost. In particular,
a constant zero input is the most dangerous one for losing the ESP. But, very often
in a practical application the relevant input range contains zero. One then earns
0 ∈ U , and since all that is stated about possible inputs is their range, one also earns
the constant-zero signal as an admissible input, which has to be accommodated into
ascertaining the ESP. This is, firstly, unrealistic because more often than not in an
application one will never encounter the constant-zero input. And secondly, this
leads to unnecessarily strict constraints on the reservoir weight matrix because the
ESP has to be also guaranteed for the zero input signal.

This situation has led to some confusion. On the one hand, in many published RC
studies one finds an initial discussion on how the weight matrix was scaled to ensure
the ESP (then the weight matrix is typically suboptimally scaled); on the other hand,
in other studies one finds informal statements to the effect that a weight matrix
scaling was used which formally aborts the ESP but was working well nonetheless
because the input signal was strong enough (then there is no theoretical foundation
for what was done). In some other published work the confusion culminates in the
(incorrect) approach to scale the reservoir weight matrix “to the border of chaos” by
setting it such that the ESP for zero input just gets (or gets not) lost (discussion of
these issues in (Yildiz et al., 2012)).

All in all, an alternative definition of the ESP would be very welcome, which respects
the nature of the expected input signals in more detail than just through fixing their
range. We here provide such an alternative definition. In fact, we define the ESP
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for a specific, single input signal {un}n∈Z. Our definition is not constrained to RNN
settings but covers general input-driven dynamical systems provided their state space
is compact. From this single-input-signal based definition of the ESP, we are able
to derive the general 0-1 law mentioned previously (which boils down to the fact
that if the ESP is obtained for a particular input signal, then with probability 1 it is
also obtained for other inputs from the same source). Furthermore, returning to the
specific case of tanh reservoirs, we relate the statistics of the input signal to spectral
properties of the weight matrix, such that the ESP is guaranteed. While the bounds
that we were able to spell out are still far from tight, we perceive these results as
door-openers to further progress.

The methods which we use come from the young and strongly developing theory of
nonautonomous dynamical systems (NDS). In mathematics, a (discrete-time) NDS is
a dynamical system whose update map is time-varying. That is, while an autonomous
dynamical systems is governed by a single update map g : X → X, an NDS is
updated by a different map gn at every time n ∈ Z via gn : X → X. Input-driven
systems are a special case of NDS: given a particular input sequence {un}, and an
input-respecting update map g : U ×X → X, one obtains the time-dependent maps
gn by gn(x) := g(un, x).

Biological and artificial neural information processing systems are almost always
input-driven. The natural background theory to analyse them would thus be the
theory of NDS. However, the theory of NDS is significantly more complex, signifi-
cantly less developed, and much less known than the familiar theory of autonomous
systems. It is also a “strange” world where familiar concepts like attractors and bi-
furcations reappear in new shapes and bear properties which are thoroughly different
from the characteristics of their autonomous counterparts. Furthermore, a number
of different basic concepts of attractivity are being used in the field. We have started
to accommodate attractor concepts from NDS theory for neural dynamics phenom-
ena elsewhere (Manjunath et al., 2012). Here we re-use some of the definitions and
results from that work. For the purpose at hand, only quite elementary concepts
from NDS theory are necessary. For readers not familiar with NDS, the present
article might serve as a gentle first notice of the theory of NDS, and we hope that
the benefits of this set of methods become clear. We provide essential references
as our treatment below unfolds. Suggested readings containing important works in
this area include (Kloeden et al., 2011) as a reference text, (Pötzsche, 2010) for a
linearization theory, (Colonius et al., 2000) for nonautonomous control, (Rasmussen,
2007) for bifurcation theory and (Arnold, 1998) for random dynamics.

We hope that a wider usage of proper NDS concepts may help to make some of the
neural dynamics analysis more rigorous, and also more appropriate to its subject,
than it is possible when one only tries to adapt concepts to autonomous dynamics. In
a short digression (Section 2.1) below we highlight the “hygienic” capacities of NDS
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theory in a critique of “sensitivity to perturbation” analyzes which are sometimes
found in the neural dynamics literature.

The article is organized as follows. We redraft the echo state property by defining
it w.r.t. an input sequence in Section 2; we also analyze a simple special case where
the input is periodic. Keeping in view that the ESP has a wider usage beyond
artificial neural networks we spell out all our definitions for a general input driven
dynamical system on a metric space. In Section 3 we prove a probability 0 or 1
determination of the echo state property for an input driven system. In Section 4 for
a given artificial recurrent neural network with standard (tanh) sigmoid nonlinear
activations, we establish sufficient conditions on the input for ESP to hold in terms
of an induced norm of the internal weight matrix.

2 The Echo State Property w.r.t. an input

An input-driven system (IDS) on a metric space X is a continuous map g : U×X →
X, where U is the metric space which contains the input driving sequence. In this
paper we consider only those IDS for which X is compact and while U a complete
metric space. This includes discrete-time recurrent neural networks whose neurons
have bounded activations, and which are driven by RK-valued input signals. The
dynamics of such an IDS, when driven by an input sequence {un} ⊂ U , is realized
through xn+1 = g(un, xn). In the rest of this paper we denote an IDS by either
g : U ×X → X or just by g with the assumptions of U being a complete and X a
compact metric space implicit. Throughout we denote the diameter of a set A ⊂ X
by diam(A) = sup{d(x, y) : x, y ∈ X}. Also for a vector x in RN , we denote ∥x∥ as
its Euclidean norm and the operator or induced norm of any linear transformation
T is denoted by ∥T∥.

The state evolution in an IDS is studied through the orbits or solutions. Any sequence
{ϑn} ⊂ X is called an entire solution of the IDS g : U ×X → X if there exists some
{un} ⊂ U such that ϑn+1 = g(un, ϑn) for all n ∈ Z.

We now recall the original definition of the echo state property, which was stated
for a recurrent neural network with a compact input space in (Jaeger, 2001). We
formulate it in the more general framework of an IDS, and do not restrict the input
space U to be compact.

Definition 2.1. (cf. (Jaeger, 2001).) Let g : U×X → X be an input driven system,
where X is compact and U is complete. A sequence x(−∞,0] := (. . . , x−1, x0) ⊂ X is
said to be compatible with u(−∞,0) := (. . . , u−2, u−1) ⊂ U when xk+1 = g(uk, xk) for
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all k < 0. The input driven system g : U ×X → X has the echo state property with
respect to U if for any given u(−∞,0) ⊂ U and sequences x(−∞,0], y(−∞,0] ⊂ X, both
compatible with u(−∞,0), the equality x0 = y0 holds.

A simple consequence of ESP w.r.t. input space in terms of entire solutions is the
following:

Proposition 2.1. Suppose g : U × X → X is an input driven system which has
the echo state property with respect to U . If x(−∞,0], y(−∞,0] ⊂ X are both compatible
with u(−∞,0) then xk = yk for all k ≤ 0. As a consequence, for any input sequence
{un}n∈Z there exists at most one entire solution.

Proof. Since x(−∞,0] and y(−∞,0] are both compatible with u(−∞,0) then by defini-
tion of compatibility in Definition 2.1 it follows that x(−∞,−1] and y(−∞,−1] are both
compatible with u(−∞,−1), where x(−∞,−1] = (. . . , x−2, x−1), y(−∞,−1] = (. . . , y−2, y−1)
and u(−∞,−1) = (. . . , u−3, u−2). Since g has ESP, by Definition 2.1, x−1 = y−1. Re-
peating this argument, an obvious induction yields xk = yk for all k < 0. Now if
x0 = y0, then trivially by definition of an entire solution obtained from the input
{un} we have xk = yk for all k ≥ 1. Thus xk = yk for all k ∈ Z and hence there
exists at most one entire solution. �

We now approach the core matter of this article, a treatment of the ESP at the
resolution of individual input sequences.

Definition 2.2. An input driven system g : U × X → X is said to have the echo
state property with respect to an input sequence {un} if there exists exactly one entire
solution, i.e., if {ϑn} and {θn} are entire solutions, then ϑn = θn for all n ∈ Z.

This input-sequence sensitive definition of the ESP is related to the “classical” ver-
sion, as follows. We will show below that any IDS g : U × X → X has at least
one entire solution for a given input sequence. Acknowledging this fact, it is then
straightforward from Definition 2.1, Proposition 2.1 and Definition 2.2 that an IDS
has the ESP w.r.t. the input space U if and only if it has the ESP w.r.t. every
{un} ⊂ U .

For a deeper analysis of the ESP w.r.t. input sequences we will use methods from the
theory of nonautonomous dynamical systems (e.g., (Kloeden et al., 2011)). Because
these methods are not yet widely known in the neural computation world, we recall
core concepts and properties.

A discrete-time nonautonomous system on a state space X is a (time-indexed) family
of maps {gn}, where each gn : X → X is a continuous map, and the state of the
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system, at time n, satisfies xn = gn−1(xn−1). Since we will only be concerned with
the discrete time case, we will drop the qualifier “discrete time” in the remainder
of this text. Clearly an IDS gives rise to a nonautonomous system {gn} where
gn(·) := g(un, ·) : X → X. Following (Kloeden et al., 2011) and several other
authors we recall the definition of what is called a process for a nonautonomous
system. Although the term “process” has potentially confusing connotations, it is
a standard terminology in the theory of nonautonomous dynamical systems, which
makes us retain it. In essence, “process” here simply refers to a particular notation
for a nonautonomous system, which will turn out to be very convenient:

Definition 2.3. Let Z2
≥ := {(n,m) : n,m ∈ Z & n ≥ m}. A process ϕ on a state

space X is a continuous mapping ϕ : Z2
≥ × X → X which satisfies the evolution

properties:

(i). ϕ(m,m, x) = x for all m ∈ Z and x ∈ X.

(ii). ϕ(n,m, x) = ϕ(n, k, ϕ(k,m, x)) for all m, k, n ∈ Z with m ≤ k ≤ n and x ∈ X.

A sequence {ϑn} ⊂ X is said to be an entire solution of ϕ if ϕ(n,m, ϑm) = ϑn for all
n ≥ m.

It is readily observed that a nonautonomous system {gn} on X generates a process
ϕ on X by setting ϕ(m,m, x) := x and ϕ(n,m, x) := gn−1 ◦ · · · ◦ gm(x). To verify
that ϕ is a process we need to verify continuity. Continuity in the first two variables
of ϕ is trivial. Also, the composition of finitely many continuous mappings makes
the map xm 7→ ϕ(n,m, xm) continuous, and hence ϕ is continuous. Conversely, for
every given process ϕ on X, we obtain a nonautonomous system {gn} by defining
gn(·) := ϕ(n + 1, n, ·). Likewise, the notion of an entire solution is equivalently
transferred between the NDS and process formulation. Thus, a “process” and a
“NDS” provide two equivalent views on the same object. We will switch between
these views at our convenience.

Next, for each process ϕ on X we define a particular sequence of subsets of X, which
carries much information about the qualitative behavior of the process:

Definition 2.4. Let ϕ be a process on a compact space X. The sequence {Xn}
defined by

Xn =
∩
m<n

ϕ(n,m,X)

is called the natural association of ϕ on X.

Since for any n
ϕ(n+ 1, n− 1, X) ⊂ ϕ(n+ 1, n,X), (1)
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Xn is a nested intersection of sets in Definition 2.4. It is clear that if some gn0 in {gn}
is not surjective on X, then the set (gn0(X))c (where ·c denotes set complement) is
nonempty. Hence any entire solution of {gn} would not assume a value in the set
(gn0(X))c at time n0 +1. Indeed a much stronger condition holds: Xn is exactly the
set of points x through which some entire solution passes at time n. The natural
association can thus be intuitively regarded as the (tight) “envelope” of all entire
solutions. In order to ultimately establish this fact, we first note that the natural
association is ϕ-invariant :

Proposition 2.2. (cf. (Manjunath et al., 2012)) Let ϕ be a process on a compact
space X. Then the natural association {Xn} is such that each Xn is a nonempty
closed subset of X and {Xn} is ϕ-invariant, i.e., ϕ(n + 1, n,Xn) = Xn+1 for any
n ∈ Z and hence for all n ≥ m, ϕ(n,m,Xm) = Xn.

The proof is a straightforward exploitation of the compactness of X and can be found
in (Manjunath et al., 2012) (also reproduced in Appendix A). Using this finding, one
obtains the desired characterization of the natural association as “envelope” of entire
solutions:

Lemma 2.1. (cf. (Manjunath et al., 2012)) Let ϕ be a process on a compact space
X. A sequence {Xn} of subsets of X is the natural association of ϕ if and only if
for all k ∈ Z it holds that

Xk :=

{
πk(ϑn) : {ϑn} is an entire solution of ϕ

}
, (2)

where πk : {ϑn} 7→ ϑk is the projection map.

Again, the proof is adapted from (Manjunath et al., 2012) and found in the Ap-
pendix A.

If g is an IDS, it follows from Proposition 2.2 and Lemma 2.1 that the set of en-
tire solutions is nonempty. Hence in our definition 2.2 of the ESP w.r.t. {un} the
required existence of exactly one entire solution singles out the case of exactly one
such solution against cases where there are more than one solutions. The case with
no entire solution cannot arise.

We proceed to give a sufficient condition for a process to have exactly one entire
solution. This condition is technical and will be used later in the proof of a core
theorem.

Lemma 2.2. Let ϕ be a process on a compact metric space X metrized by d. Suppose
that, for all n ∈ Z, there exists a sequence of positive reals {δj}∞j=1 converging to 0
such that d(ϕ(n, n − j, x), ϕ(n, n − j, y)) ≤ δj d(x, y) for all x, y ∈ X and for all
j ∈ N. Then there is exactly one entire solution of the process ϕ.
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Proof. Assume that there are two distinct entire solutions {ϑn} and {θn}. Then
d(ϑn0 , θn0) = ϵ > 0 for some n0. For any such n0, by hypothesis there exists {δj}∞j=1

converging to 0 such that

d(ϕ(n0, n0 − j, ϑn0−j), ϕ(n0, n0 − j, θn0−j)) ≤ δj d(ϑn0−j, θn0−j) ∀j
≤ δj diam(X) ∀j.

Since by definition of an entire solution, ϕ(n0, n0 − j, ϑn0−j) = ϑn0 and ϕ(n0, n0 −
j, θn0−j) = θn0 , we have ϵ < δj diam(X) for all j. But diam(X) is finite because X is
compact, and hence δj diam(X) → 0 as j → ∞. This is a contradiction to the fact
that ϵ > 0. �

Notice that in this lemma, the required null sequences {δj}∞j=1, which capture the
rate of contraction “from the past to the present”, depend on n. This allows for a
time-varying degree of contractivity in the process. It is even possible that for limited
periods, the maps {gn} are expanding. Specifically, consider the case of an input-
driven recurrent neural network, with no internal weight adaptation (e.g., exploiting
a network after a training phase). State contraction over time in the sense of the
lemma is, in intuitive terms, related to input forgetting: when the contraction rate
is high (i.e., {δj}∞j=1 converges quickly to zero), information about earlier input is
quickly washed out from the network state. In a non-adapting RNN, the temporal
variation of the contractivity of the process is entirely due to time-varying input
itself. Again, still in purely intuitive terms, this means that some temporal input
patterns can interact with the network such that they will be quickly forgotten,
while other input patterns may be better preserved over longer timespans – or may,
in fact, even become “enhanced” in the network state if the induced maps {gn} are
expanding.

2.1 Some remarks on folklore

The ESP is constitutive for the Echo State Network (ESN) approach to training
RNNs. In the concerned literature we witness that some assumptions are tacitly and
pervasively taken for granted which actually have not been proven yet. Furthermore,
we also witness some lack of conceptual rigor in some published work, especially with
respect to the usage of notions from dynamical systems theory (attractors and chaos
in particular). Here we want to clarify some of these themes and point to leads from
nonautonomous dynamical systems theory.

First, we consider the case of an RNN which is driven by periodic input. This situa-
tion arises commonly when such systems are trained as periodic pattern generators
or recognizers. It is taken for granted by ESN practitioners (the second author in-
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cluded) that the induced network dynamics is (or asymptotically becomes) periodic
of the same period. Our present setting helps us make this intuition rigorous.

Proposition 2.3. Let g : U × X → X be an input driven system with {un} being
p-periodic, i.e, the smallest positive integer s for which un+s = un for all n is p.
Suppose g has the ESP w.r.t. {un}, then the entire solution ϑn = ϑn+p for all n.
This entails that {ϑn} is r-periodic, with p = kr for some integer k.

Proof. Let ϕ be the process of the IDS corresponding to the input {un} and {ϑn} be
the entire solution of ϕ. From Lemma 2.1 we have ϑn =

∩
m<n ϕ(n,m,X) for any n.

Since {un} is p-periodic, by definition of ϕ it follows that ϕ(n+p,m,X) = ϕ(n,m,X)
for all m < n. Hence ϑn+p =

∩
m<n+p ϕ(n,m,X) ⊂

∩
m<n ϕ(n,m,X) = ϑn. Thus as

subsets of X, the set inclusion ϑn+p ⊂ ϑn holds. But since these sets are singletons
and moreover nonempty, ϑn+p = ϑn for any n. This directly entails that {ϑn} is
r-periodic, with p = kr for some integer k. �

As a noteworthy special case, a constant (i.e. 1-periodic) input induces a constant
entire solution ϑn ≡ ϑ0. However, entire solutions extend from the infinite past, but
in real life an RNN is started at some time 0 from some initial condition x0 ̸= ϑ0,
after which its positive time evolution {g(un, xn)}n≥0 is observed. It follows easily
from Lemma 2.1 and Proposition 2.3 that xn converges to ϑ0.

Jumping from the most simple (constant) to the most complex behavior, we would
like to indulge in some cautionary remarks on using the notion of chaos when de-
scribing input-driven RNNs. We sometimes find in the literature discussions of
RNNs driven by non-periodic input, where statements concerning chaotic behavior
are made. Typically, chaos (or “edge of chaos”) is identified numerically by simula-
tion experiments. The RNN is driven several times with the same input sequence;
at some time the network state is slightly perturbed and an exponential divergence
of the perturbed trajectory from the unperturbed reference trajectory is quantified;
if it is found positive then a chaotic dynamics is claimed.

This way of proceeding is dubious, and new approaches are needed for a number of
reasons:

• The term chaos originates from the theory of autonomous systems – i.e., sys-
tems without input, or driven by constant or periodic input (in which cases
they can be mathematically treated as autonomous). In the original context
of autonomous systems, chaoticity is a property of attractors (sometimes more
generally of invariant sets). Thus, for conceptual hygiene, it should be un-
derstood as a characteristic of attractors in nonautonomous systems as well.
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But, in general, for nonautonomous systems attractivity notions are compli-
cated, and typically an attractor is not a single subset of X but a particu-
lar sequence of subsets of X which is ϕ-invariant, where ϕ is the process of
the nonautonomous system (Kloeden et al., 2011). The mathematical theory
of attraction in nonautonomous dynamics is in its infancy, and a number of
non-equivalent proposals for defining attractors have been forwarded, often de-
pending on specific topological or probabilistic conditions. We bring to the
attention of a reader interested in nonautonomous attractivity that the natu-
ral association {Xn} of the process is also what is called a “pullback attrac-
tor” of the underlying nonautonomous system (Kloeden et al., 2011) (also see
(Manjunath et al., 2012)). Further comments on attractor notions are beyond
the scope of this paper.

• As we mentioned after Lemma 2.2, it may well be the case that for certain
limited periods, a driving input leads to expanding mappings, while on longer
timespans it will result in, on average, contracting dynamics. Specifically, if
a standard RNN is driven with strong enough input, its units will be driven
close to their saturation, which in turn leads to contractive dynamics in the
sense of our Lemma 2.2 (or even stronger versions of contraction). If such
contraction maps appear for longer timespans, the role of expanding maps di-
minishes or sensitivity on initial conditions may disappear eventually. Any
numerical detection of “sensitivity on initial conditions” by perturbation ex-
periments is only a temporally local finding in input driven systems and by
itself cannot imply or preclude chaos. Thus, chaos has to be properly acknowl-
edged to be an attribute of the input signal + driven system pair. In more
technical terms, since chaos is an asymptotic concept (for instance, complex-
ity quantifiers like Lyapunov exponents or topological entropy are obtained as
time-related asymptotic quantities), to verify chaos in an input driven system
the effect of the asymptotics of the input has to be factored into the picture.
The notions of topological entropy for nonautonomous systems are under in-
vestigation and some interesting results can be found in (Kolyada et al., 1996;
Oprocha et al., 2009; Zhang et al., 2009). Since an IDS g : U × X → X and
an input {un} gives rise to a NDS {gn}, calculating the topological entropy
of {gn} actually quantifies the dynamical complexity by accounting for the in-
put asymptotics. A formal calculation of topological entropy in this case is
dependent on knowing the individual maps gn explicitly unless algorithms are
developed for estimating entropy from a time-series. When the input sequence
{un} is drawn from a finite-valued source, it seems that it is possible to esti-
mate the lower bounds on the topological entropy by the methods developed
in (Zhang et al., 2009). In a related finding, but in a very special case, an
anonymous referee points us at (Amigó et al., 2012) where it is shown that
when the input sequence {un} is only an arbitrary switching between two val-
ues, and the two different gn’s obtained are affine transformations on the real
line, then the topological entropy of the {un} is identically equal to that of the
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NDS it induces. However, this result does not hold when gn’s are not affine.
For instance, in an artificial RNN by scaling the input sequence by a suitable
large number the dynamics in the reservoir can be made trivial regardless of
the input complexity. All of this prompts us to conclude that till estimates of
topological entropy like in (Zhang et al., 2009) or other complexity measures
factoring in the input asymptotics are obtained, no rigorous claims of chaos
can be made based on perturbation-based detection experiments.

3 A 0 – 1 law for the ESP

In this section we consider an IDS g : U × X → X with an input obtained as a
realization of an U -valued stationary ergodic process {ξn} defined on a probability
space (Ω,F , P ), i.e., for each ω and n, ξn(ω) takes values in the set U . Each realiza-
tion {ξn(ω)}, where ω ∈ Ω gives rise to a separate nonautonomous system and hence
has its own natural association {Xn(ω)}. We thus consider {Xn} to be a set-valued
stochastic process. Before we embark on analyzing this object in more detail, we
recall some standard notions from ergodic theory (e.g., (Billingsley, 1979; Krengel,
1985; Skorokhod et al., 2002; Walters , 1992).

Measure-theoretic dynamical systems andmeasure preserving dynamical systems (e.g.,
(Krengel, 1985; Walters , 1992)): A measure-theoretic dynamical system is a quadru-
plet (Ω,F , µ, T ) where (Ω,F , µ) is a measure space and T : Ω → Ω is a measurable
map. A measure-theoretic dynamical is said to be a measure preserving dynamical
system (MPDS) if µ(T−1(A)) = µ(A) for all A in F . A MPDS (Ω,F , µ, T ) is said
to be ergodic if for all A ∈ F , T−1(A) = A implies µ(A) = 0 or µ(A) = 1.

Representing a stationary stochastic process as an MPDS (e.g., (Krengel, 1985)):
Let (Ω,F , P ) be a probability space and S a separable complete metric space. Let
BS denote the Borel sigma-field of S. Let {θn} be an S-valued stationary process.
Consider (S∞,B∞), where S∞ is the Cartesian product of bi-infinite countable num-
ber of copies of S and B∞ is the sigma-field generated by the product topology
on S∞. For each ω ∈ Ω, there exists an ū = (· · · , u−1, u0, u1, · · · ) ∈ S∞ such that
uk = θk(ω). The process θ = {θn} and P induce a measure µ on (S∞,B∞) defined by
µ(A) := P (θ−1(A)) for all A ∈ B∞. It holds that the set {ū : ∃ω ∈ Ω such thatuk =
θk(ω) ∀ k} of all paths is in B∞ and has µ-measure 1. The process {θn} is stationary
if and only if (S∞,B∞, µ, σ) is a MPDS where σ is the shift map that sends a point
ū := (· · · , un−1, un, un+1, · · · ) in S∞ to σ(ū) = (· · · , un, un+1, un+2, · · · ).

Ergodic stochastic processes (e.g., (Skorokhod et al., 2002, pp. 54–55)): An S-valued
stationary process {θn} is said to be an ergodic process on (Ω,F , P ) if for every two
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integers l ≤ m and for any finite collection of elements of the Borel sigma-field of S,
(Al, Al+1, . . . , Am) and (Bl, Bl+1, . . . , Bm), the limit

lim
j→∞

1

j

j∑
k=1

P ({θl ∈ Al, . . . , θm ∈ Am, θk ∈ Bl, · · · , θk+(m−l) ∈ Bm})

exists and is equal to

P ({θl ∈ Al, . . . , θm ∈ Am})P ({θl ∈ Bl, . . . , θm ∈ Bm}).

Ergodic stochastic processes as ergodic MPDS (e.g., (Krengel, 1985)): It can be
shown that {θn} is ergodic if and only if the MPDS (S∞,B∞, µ, σ) is ergodic.

Birkhoff’s ergodic theorem (e.g., (Krengel, 1985; Walters , 1992)): A core result in
ergodic theory is Birkhoff’s ergodic theorem. It states that if {θn} is an ergodic
process and if Ψ ∈ L1(µ) (i.e. Ψ is a complex valued function defined on S∞ such
that

∫
|Ψ|dPµ <∞), then the limit limj→∞

1
j

∑j
i=1Ψ(σi(θ(ω))) exists µ-almost surely

and when it exists, is equal to the µ-average:

lim
j→∞

1

j

j∑
i=1

Ψ(σi(θ(ω))) =

∫
Ψ dµ almost surely w.r.t. µ. (3)

A particular, useful application of (3) is if {θn} is an ergodic process and Φ ◦ θk
belongs to L1(P ) for some k (and hence for all k since for a stationary process∫
Φ ◦ θk dP is independent of k), then

lim
j→∞

1

j

j∑
i=1

Φ(θi(ω)) =

∫
Φ ◦ θk dP almost surely w.r.t. P. (4)

Hausdorff semi-distance and Hausdorff metric: When X is a metric space with
metric d, we denote by HX the collection of all nonempty closed subsets of X. Let
dist(A,B) := sup{d(x,B) : x ∈ A} be the Hausdorff semi-distance between any two
A,B ⊂ X. It is well known that whenever X is complete (compact), HX is also
a complete (compact) metric space with the Hausdorff metric equivalently defined
by dH(A,B) := max(dist(A,B), dist(B,A)) := inf{ϵ : A ⊂ Bϵ(B) & B ⊂ Bϵ(A)},
where Bϵ(A) := {x ∈ X : d(x,A) < ϵ} is the open ϵ-neighborhood of A.

We now begin our analysis of an IDS whose input comes from a stationary ergodic
source. The following lemma concerns the definition of a new real-valued process
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obtained from an IDS when its input is {ξn}. Since notions of measurability are not
obvious for set-valued functions, we prove measurability of the functions involved in
Appendix A.

Lemma 3.1. Consider an IDS g : U × X → X and an U-valued ergodic process
{ξn} defined on (Ω,F , P ). For each realization {ξn(ω)}, ω ∈ Ω, define the process
ϕω(n,m, x) := gn−1,ω ◦ · · · ◦ gm,ω(x), on X where gn,ω(·) := g(ξn(ω), ·) : X → X. Let
{Xn} be the set-valued stochastic process where {Xn(ω)} is the natural association of
the process ϕω (notice that Xn(ω) ∈ HX as a consequence of Proposition 2.2). Define
γ : HX → R by

γ(A) :=

{
0 : if diam(A) = 0,
1 : otherwise.

Then {γ(Xn)} is an ergodic stochastic process.

Proof. Recalling the definition of a natural association, we have Xn(ω) =
∩m<∞ϕω(n,m,X). The set-valued function Xn is measurable by Lemma A.2. From
Lemma A.3, we know γ : HX → R is also a measurable function. Since the composi-
tion of two measurable functions is also measurable, γ(Xn) is measurable for any n.
Applying statement (ii) of Lemma A.1, we obtain {γ(Xn)} to be an ergodic process.
�

We are now equipped for the main result of this section:

Theorem 3.1. Let {ξn} be an U-valued ergodic process defined on (Ω,F , P ) and
g : U ×X → X an input driven system. Then the set of all ω ∈ Ω such that g has
the echo state property, i.e., the subset of Ω{

ω : g satisfies ESP w.r.t. {ξn(ω)}
}

has either probability 1 or 0.

Proof. Let ϕω, {Xn(ω)} and {γ(Xn)} be defined as in Lemma 3.1. Since Xn(ω)
is nonempty, diam(Xn(ω)) = 0 if and only if Xn(ω) contains only a singleton of X.
We also know from Lemma 2.1 that there is exactly one entire solution of ϕω if and
only if diam(Xn(ω)) = 0 for all n. Using this and the definition of γ,{

ω : g satisfies ESP w.r.t. {ξn(ω)}
}

=

{
ω : γ(Xn(ω)) = 0 ∀n

}
.

By Lemma 3.1 and Lemma A.1, {γ(X−n)} is an ergodic process. Since γ takes the
values 0 and 1, γ ◦Xi belongs to L

1(P ) for any i. By Birkhoff’s ergodic theorem in
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(4) the limit

lim
j→∞

1

j

−j∑
i=−1

γ(Xi(ω)) (5)

exists and assumes the same value almost surely. We know a continuous map cannot
map a singleton of X into a set of positive diameter. Hence, by definition of γ(Xi(ω))
and Lemma 2.1 it follows that if γ(Xi(ω)) = 0 for some i then γ(Xm(ω)) = 0 for
all m ≤ i. Also by Lemma 2.1 it follows that if γ(Xi(ω)) = 1 for some i then
γ(Xm(ω)) = 1 for all m ≤ i. Hence the limit in (5) is equal to 0 if and only if
γ(Xi(ω)) = 0 for all i. Since the limit in (5) is almost surely the same constant, we
have {ω : γ(Xn(ω)) = 0 ∀n} has either probability 1 or 0. �

4 Sufficient conditions for the ESP in an RNN

In this section we consider a discrete-time RNN with standard sigmoidal activa-
tions (with tanh nonlinearity) to provide sufficient conditions for the ESP w.r.t. an
input. Sufficient conditions for the ESP w.r.t. an input space were provided by
(Buehner et al., 2006; Yildiz et al., 2012) in terms of the internal weight matrix of
the RNN. However, since our definition of the ESP is w.r.t. an input sequence, we
have to bring in the role of the input as well into sufficient conditions for ESP. This
is established in Theorem 4.1. When furthermore the input arises as a realization of
a stationary ergodic source, we state sufficient conditions for the ESP w.r.t. typical
realizations in Theorem 4.2. Since by its definition for a given IDS, the ESP w.r.t.
an input depends upon the past history of the input, the higher order correlation or
higher order statistics of the input data would be expected to play a role in deter-
mining the ESP. However, basing the ESP on higher order correlations or statistics
of the input may not only be onerous but also of little help since complete higher
order correlations or statistics are rarely available. In contrast, our sufficient con-
ditions for the ESP in Theorem 4.1 and Theorem 4.2 are based on the intermittent
frequencies of expanding and contracting behaviors of the nonautonomous system
{gn} generated by the IDS and the input un via gn(·) := g(un, ·).

Concretely, we consider the following standard RNN model, written as an IDS g :
RK × RN → RN given by

xn+1 = g(un, xn) = tanh(W inun +Wxn), (6)

where W in and W are K × N and N × N dimensional real matrices representing
the input and internal weight matrices of the neuronal connections, un and xn are
column vector representations, the function tanh : RN → (−1, 1)n is defined by
tanh := (tanh(y1), tanh(y2), . . . , tanh(yN))T when y = (y1, y2, . . . , yN)T (·T denotes
transpose).
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Owing to the range of the tanh function, the effective dynamics of the IDS in (6) is
always contained in [−1, 1]N . Thus, we can consider the IDS in (6) to be defined on
g : RK × [−1, 1]N → [−1, 1]N . Note that we do not restrict the input space to be
compact.

We make use of the following facts in proving Theorem 4.1. A generalization of the
mean-value theorem in one-dimensional calculus in higher dimensions is the so-called
mean-value inequality (e.g., (Furi et al., 1991)) and we state that if φ : V → Rn is a
C1-function where V is an open subset of Rn then for any x, y ∈ V

∥φ(x)− φ(y))∥ ≤ sup{∥φ′
(z)∥ : z ∈ V }∥x− y∥, (7)

where ∥ · ∥ is the Euclidean norm, and ∥φ′
(z)∥ := sup(∥φ′

(z)x∥ : ∥x∥ = 1) is the
induced norm of the Jacobian of φ(·) at the point z.

We also recall that tanh
′
(x) = sech 2(x), where sech (x) = 2

ex+e−x . Further sech 2 is
such that

sech 2(0) = 1 (8)

sech 2(x) = sech 2(−x) ∀x ∈ R (9)

sech 2(|x|) < sech 2(|y|) if |y| < |x| (10)

sech 2(|x|) → 0 as |x| → ∞ (11)

The following Lemma can be proved by elementary steps and is stated without proof.

Lemma 4.1. Let {ai}i∈N be a sequence of real numbers such that ai > 0 for all i.
Then in the following statements the implications (i) ⇒ (ii) ⇒ (iii) hold:

(i). lim supj→∞
1
j

∑j
i=1 log(ai) < 0,

(ii). lim supj→∞(
∏j

i=1 ai)
1
j < 1,

(iii). limj→∞
∏j

i=1 ai = 0.

Theorem 4.1. Consider the IDS g : RK × [−1, 1]N → [−1, 1]N defined in Equation
(6) with an input {un} ⊂ RK. Then

(i). g has the ESP w.r.t. {un} if ∥W∥ < 1,

(ii). or in general i.e., even if ∥W∥ ≥ 1, g has the ESP w.r.t. {un} if {un} is such
that

lim sup
j→∞

1

j

−j∑
i=−1

(
Ci − (1 + ln(2))

)
I{Ci ≥ 2} > ln(∥W∥)

2
, (12)
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where Ci is the smallest absolute component of the vectorW inui: Ci := min(|W inui|),
and I is the indicator function, i.e., it takes +1 if its argument is true and 0
otherwise.

Proof. Let X = [−1, 1]N . For any given sequence {ui}, the IDS g specified in (6)
defines a process ϕ given by ϕ(n,m, x) := gn−1 ◦ · · · ◦ gm(x), where gn(·) := g(un, ·) :
X → X. Also since g is C1 continuous on the interior of U ×X it follows that each
gn is C1-continuous on the interior of X. Since a finite composition of C1 functions is
also C1 continuous, the function ϕ(n,m, ·) : X → X is C1-continuous on the interior
of X for any n > m.

Since ϕ(n, n− 2, x) = ϕ(n, n− 1, ϕ(n− 1, n− 2, x)), by chain rule of differentiation,
we know

ϕ
′
(n, n− 2, x) = ϕ

′
(n, n− 1, ϕ(n− 1, n− 2, x))ϕ

′
(n− 1, n− 2, x).

In general for any j ≥ 1,

ϕ
′
(n, n− j, x) =

j−1∏
k=0

ϕ
′
(
n− k, n− k − 1, ϕ(n− k − 1, n− k − 2, x)

)
. (13)

Fix n. By applying the mean-value inequality (7), we get

d(ϕ(n, n− j, x), ϕ(n, n− j, y)) ≤ sup{∥ϕ′
(n, n− j, z)∥ : z ∈ Int(X)} d(x, y), (14)

where d is the Euclidean metric, ∥ϕ′
(n, n−j, z)∥ is the induced norm of the Jacobian

of ϕ(n, n− j, ·) at the point z and Int(X) is the interior of X.

For any m, from (6) we know ϕ(m,m− 1, x) = tanh(W inum−1 +Wxm−1). We know
the derivative of the tanh(y1) w.r.t. y1 is sech 2(y1). Define the function Dum by

x ∈ X 7→ diag(sech
2
(W inum +Wx)), where diag(⋆) denotes a N × N dimensional

real valued diagonal matrix whose k-th diagonal element is ⋆k, the k-th element of

the vector ⋆, and the function sech
2
: y 7→ (sech 2(y1), sech 2(y2), . . . , sech 2(yN))T.

With this notation and by using the chain rule, ϕ
′
(m,m−1, x) = Dum−1(x)W . Again

with such notation, from (13) and taking norms we can write

∥ϕ′
(n, n− j, x)∥ =

∥∥∥∥ j∏
i=1

Dun−1

(
ϕ(n− i, n− i− 1, x)

)
W

∥∥∥∥. (15)

Proof of (i). We now proceed to find an upper bound on sup{∥ϕ′
(n, n− j, z)∥ : z ∈

Int(X)}. First, we find an upper bound on ∥Dum(⋆)∥ regardless of the argument ⋆.
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We know that Dum(⋆) is a diagonal matrix, and hence ∥Dum(⋆)∥ is upper bounded
by the maximum of the absolute value of the diagonal elements. Since the diagonal
elements belong to the range of the sech 2 function, and sech 2 is a nonnegative
function and can take a maximum value of 1, ∥Dum(⋆)∥ ≤ 1 for any um and any ⋆.

We can get a tighter upper bound on ∥Dum(⋆)∥ if um satisfies certain conditions.
Denoting the maximum (minimum) of the elements of a vector v by max(v) (min(v)),

∥Dum(⋆)∥ = max(sech
2
(W inum + ⋆)) by definition,

(10)
= sech 2(min(W inum + ⋆)))

(9)
= sech 2(|min(W inum + ⋆)|). (16)

Recall that Cm = min(|W inum|), where |·| denotes the absolute value of its argument.
Suppose Cm ≥ 2 and let ⋆ take any value in [−1, 1]N . Then by definition of Cm,
clearly |min(W inum + ⋆)| ≥ Cm − 1. By (10), we have sech 2(|min(W inum + ⋆|) ≤
sech 2(Cm − 1). Using this in (16) we can write

∥Dum(⋆)∥ ≤ I{Cm < 2}+ sech 2(Cm − 1)I{Cm ≥ 2}. (17)

Let δj(n) := sup{∥ϕ′
(n, n − j, z)∥ : z ∈ Int(X)}. Using Lemma 2.2 in (14) we infer

that if δj(n) → 0 as j → ∞ for all n, then only one entire solution exists for ϕ
and thus g has ESP w.r.t. {ui}. We find an upper bound on δj(n) starting from the
definition of ∥ϕ′

(n, n− j, z)∥ in (15):

δj(n) = sup
x∈Int(X)

∥∥∥∥ j∏
i=1

Dun−i
(ϕ(n− i, n− i− 1, x))W

∥∥∥∥
∥AB∥≤∥A∥∥B∥

≤ sup
x∈Int(X)

j∏
i=1

∥∥∥∥Dun−i

(
ϕ(n− i, n− i− 1, x)

)
W

∥∥∥∥,
≤ ∥W∥j sup

x∈Int(X)

j∏
i=1

∥∥∥∥Dun−i

(
ϕ(n− i, n− i− 1, x)

)∥∥∥∥,
(17)
≤ ∥W∥j

j∏
i=1

I{Cn−i < 2}+ sech 2(Cn−i)I{Cn−i ≥ 2} (18)

Clearly δj(n) → 0 as j → ∞ whenever the right hand side of (18) converges to 0
as j → ∞. The right hand side of (18) is a product of j positive reals and using
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Lemma 4.1, δj(n) → 0 whenever:

lim sup
j→∞

1

j

j∑
i=1

ln(∥W∥j
(
I{Cn−i < 2}+ sech 2(Cn−i − 1)

)
I{Cn−i ≥ 2}) < 0,

or if lim sup
j→∞

1

j

j∑
i=1

ln

(
I{Cn−i < 2}+ sech 2(Cn−i − 1)I{Cn−i ≥ 2}

)
< − ln(∥W∥).

(19)

The left hand side of the inequality in (19) is upper bounded by zero since sech 2(·)
is upper bounded by 1. Let ∥W∥ < 1. Then the right hand side is positive (19) and
hence the inequality in (19) is always true. Moreover (19) holds independent of any
n, and hence whenever ∥W∥ < 1, limj→∞ δj(n) = 0 for all n. Using Lemma 2.2, we
infer that only one entire solution exists for ϕ and thus g has the ESP w.r.t. {ui}.

Proof of (ii). We proceed to rearrange (19) and deduce further:

− lim sup
j→∞

1

j

n−j∑
i=n−1

ln

(
sech 2(Ci − 1)

)
I{Ci > 2} > ln(∥W∥),

(20)

or − lim sup
j→∞

1

j

n−j∑
i=n−1

ln

(
2

e(Ci−1) − e−(Ci−1)

)
I{Ci > 2} > ln(∥W∥)

2
,

(21)

or lim sup
j→∞

1

j

n−j∑
i=n−1

(
− ln 2 + (Ci − 1) + ln(1− e−2(Ci−1))

)
I{Ci > 2} > ln(∥W∥)

2
,

(22)

=⇒ lim sup
j→∞

1

j

n−j∑
i=n−1

(
Ci − (1 + ln(2))

)
I{Ci > 2} > ln(∥W∥)

2
;

(23)

here (21) follows from (20) by definition of the function sech ; (22) follows from (21)
by using ln(p/(q + r)) = ln(p) − ln(q) − ln(1 − r

q
); (23) follows from (22) by using

the fact that ln(1 − e−2(Ci−1)) < 0 (we can in fact ignore ln(1 − e−2(Ci−1)) without
much loosening the bound as it attains values very close to zero whenever Ci ≥ 2).
If (23) holds for some n, by the property of lim sup, (23) also holds for any other n.
Hence (12) is true if and only if (23) holds. Since (23) holds independent of any n,
limj→∞ δj(n) → 0 for all n. This proves (ii). �
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The result from (ii) readily extends to a probabilistic version for networks driven by
an ergodic source:

Theorem 4.2. Let {ξn} be an RK-valued ergodic process defined on (Ω,F , P ) such
that the expectation of max(ξi) is finite, i.e., −∞ < E(max(ξi)) < ∞, and let
g : RK × [0, 1]N → [0, 1]N as specified in Equation (6). Define the random variables
Ci(ω) := min(|W inξi(ω)|) and

ψi(ω) :=

{
Ci(ω) : if Ci(ω) ≥ 2,
0 : otherwise.

Then g has ESP almost surely whenever for some i the following inequality holds:

E[ψi]− (1 + ln 2)P (ψi ≥ 2) >
ln(∥W∥)

2
.

Proof. Let Ci(ω) := min(|W inξi(ω)|). Then by (12) if

lim sup
j→∞

1

j

−j∑
i=−1

(
Ci(ω)− (1 + ln(2))

)
I{Ci(ω) ≥ 2} > ln(∥W∥)

2
(24)

holds, g has ESP w.r.t. {ξi(ω)}.

Define random variables φi on the space Ω through φi(·) = min ◦abs ◦W in ◦ ξi(·),
where abs stands for taking the absolute value of individual vector components.
Furthermore, define random variables Ψi(·) := (φi(·) − (1 + ln 2))I{φi(·) > 2}.
It can easily be verified that φi and hence Ψi belong to L1(P ) if ξi is such that
|E(max(ξi))| < ∞. Now (Ci(ω)− (1 + ln(2)))I{Ci(ω) ≥ 2} = Ψi(ω). Hence we can
apply Birkhoff’s ergodic theorem (4) to evaluate the limit in (24).

In order to include the indicator function in the Lebesgue integral on the space Ω,
for any E ∈ F define

χE(∗) :=
{

1 : if ∗ ∈ E
0 : otherwise ,

Using this notation and applying (4), the limit in (24) exists and

lim
j→∞

1

j

−j∑
i=−1

(
Ci(ω)− (1 + ln(2)

)
I{Ci(ω) ≥ 2}

=

∫ (
min(|W inξi|)− (1 + ln(2))

)
χmin(|W inξi|)≥2 dP a.s. w.r.t. P,

= E[ψ]− (1 + ln 2)P ({ω : ψi ≥ 2}) a.s. w.r.t. P.

(25)
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From this and (24), if E[ψ]− (1 + ln 2)P (ψi ≥ 2) > ln(∥W∥)
2

, we have the ESP w.r.t.
almost all realizations of {ξi(ω)}. Hence the theorem is proved. �

The bounds offered by the theorems in this section are admittedly weak. Specifically,
the reliance on I{Ci ≥ 2}, with Ci := min(|W inui|) will often bar practically useful
applications of these theorems, since the condition Ci ≥ 2 becomes easily unachiev-
able when some of the input weights are small – which they usually are. However,
we still think these results are worth reporting because they demonstrate the ap-
plication of methods which may guide further investigations, eventually leading to
tighter bounds.

5 Conclusion

With this article, we hope to have served two purposes. First, to put the field
of reservoir computing on a more appropriate foundation than it had before, by
presenting a version of the echo state property which respects inputs as individual
signals – and not only as “anything that comes from some admissible value range”.
Second, to demonstrate the usefulness and power of concepts and insights from the
field of nonautonomous dynamical systems.

A Appendix : Proofs and some intermediate re-

sults

Proof of Proposition 2.2. Since ϕ(n,m, ·) is continuous for every n ≥ m and X is
compact, we have ϕ(n,m,X) is also a compact subset of X. Hence

∩
m<n ϕ(n,m,X)

is an intersection of closed subsets of X which implies Xn is closed. Further it is also
a nested intersection of closed sets in view of (1). Hence Xn is nonempty for any n.

We next prove the following claim: Let A1, A2, . . . , be a collection of nonempty
subsets of X such that Ai+1 ⊂ Ai and Λ be a continuous function on X. Then

Λ(A) =
∞∩
i=1

Λ(Ai), where A :=
∞∩
i=1

Ai. (A-26)

Proof of Claim. When A :=
∩∞

i=1Ai, then one directly obtains Λ(A) ⊂
∩∞

i=1 Λ(Ai).
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Next, let us show the inclusion ⊃. Let y ∈
∩∞

i=1 Λ(Ai), i.e., y ∈ Λ(Ai) for all i =⇒
there exists xi ∈ Ai such that Λ(xi) = y. Let x′ be an accumulation point of {xi}.
Since A is a nested intersection of Ai, by definition of lim sup of sets, lim supi→∞Ai =∩∞

i=1Ai = A. Also by definition of lim sup of sets, all the accumulation points of {xi}
are contained in A. Hence, x′ ∈ A. By continuity of Λ, Λ(x′) = y. Thus y ∈ Λ(A).

Starting from the definition of Xn we deduce

ϕ(n+ 1, n,Xn) = ϕ(n+ 1, n,
∩
m<n

ϕ(n,m,X))

(A-26)
=

∩
m<n

ϕ(n+ 1, n, ϕ(n,m,X))

=
∩
m<n

ϕ(n+ 1,m,X)

(1)
=

∩
m<n

ϕ(n+ 1,m,X) ∩ ϕ(n+ 1, n,X)

=
∩

m<n+1

ϕ(n+ 1,m,X),

= Xn+1. �

Proof of Lemma 2.1. We first show ⊂ in (2). We first prove the following claim:
A sequence of sets A = {Ak} is ϕ-invariant if and only if for every pair k ∈ Z, x ∈ Ak

there exists an entire solution {ϑn} such that ϑk = x and ϑk ∈ Ak for all k ∈ Z.

Proof of Claim. (from (Kloeden et al., 2011)) (=⇒) Let k0 ∈ Z and choose x ∈ Ak0 .
For k ≥ k0, define the sequence ϑk := ϕ(k, k0, x). Then by ϕ-invariance, ϑk ∈ Ak for
any k > k0. On the other hand, Ak0 = ϕ(k0, k, Ak) for k ≤ k0 and so there exists
a sequence xk ∈ Ak with x = ϕ(k0, k, xk) and xk = ϕ(k, k − 1, xk−1) for all k ≤ k0.
Then define ϑk := xk for k ≤ k0. This completes the definition of the entire solution
ϑk.
(⇐=) Suppose for any k ∈ Z and x ∈ Ak, there is an entire solution {ϑn} satisfying
ϑk ∈ Ak for all k ∈ Z. This implies ϕ(k + j, k, x) ⊂ Ak+j for all j ≥ 0. Hence ϕ(k +
j, k, Ak) ⊂ Ak+j. The other inclusion follows from the fact that ϕ(k, k− j, ϑk−j) = x
for all j ≥ 0.

Thus if {Xn} is a natural association then it is ϕ-invariant by Proposition 2.2 and
by the above claim ⊂ in (2). We next show ⊃ in (2). From the above claim, if there
is an x ∈ Xk, then there is an entire solution {ϑn} such that x = ϑk.

(⇐=) Let {ϑi} be an entire solution. Now consider some ϑn. By definition there ex-
ists xk ∈ X such that ϕ(n, k, xk) = ϑn for all k < n. Clearly, ϕ(n, k, xk) ∈ ϕ(n, k,X)
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for all k < n. This implies ϑn ∈
∩

k<n ϕ(n, k,X) = Xn. Since n was chosen arbitrar-
ily, ϑi ∈ Xi for all i. �

The following is an elementary result for stochastic processes (e.g., (Krengel, 1985))
which is recalled in our results:

Lemma A.1. Let {θn}n∈Z be a S-valued ergodic process defined on (Ω,F , P ) Then

(i). {θ−n} is ergodic.

(ii). If R is some measurable space and Φ : S → R is a measurable function and

Θi : S → R; Θi := Φ ◦ θi,

then {Θn} is an R-valued ergodic process.

The following result is borrowed from another authors’ manuscript (Manjunath et al.,
2012) which is currently under review.

Lemma A.2. Let the random variable Xn be defined as in Lemma 3.1. With respect
to the given sigma algebra on Ω, and the Borel-sigma algebras defined on HX obtained
by the Hausdorff distance, Xn : Ω → HX is a measurable function.

Proof. For the U -valued stationary process {ξn}, let its MPDS be denoted by
(U∞,B∞, µ, σ).

Given any pair i, n ∈ Z such that n > i, we define hn,i : U
∞ → HX by

hn,i(ū) := gn−1 ◦ · · · ◦ gk+1 ◦ gi(X),

where ū = (· · · , u−1, u0, u1, · · · ) ∈ U∞, gm : X → X is defined by gm := g(um, ·), the
map g : U ×X → X being as in Theorem 3.1.

Let dU denote some metric on U that gives rise to B. Then d′U := min(1, dU) also

generates B. Let d∞(ū, v̄) :=
∞∑

i=−∞

d′U(ui, vi)

2|i|+1
be the metric on U∞. It may be verified

that d∞ generates the product topology on U∞. We now claim that hn,i : U
∞ → HX

is a continuous map for each n and i. To show this let {ūk} be any sequence such that
ūk → ū as k → ∞. We will show that hn,i is continuous by proving hn,i(ūk) → hn,i(ū)
as k → ∞.
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Let ūk = (· · · , uk−1, u
k
0, u

k
1, · · · ). Hence hn,i(ūk) = g

[k]
n−1 ◦ · · · ◦ g[k]k+1 ◦ g

[k]
i (X), where

g
[k]
m := g(ukm, ·). Since g : U × X → X is continuous, it follows from the continuity
argument that given any ϵ there exists a δ > 0 such that

dU(um, u
k
m) < δ ∀ n ≤ m ≤ i ⇒ d

(
gn−1 ◦ · · · ◦ gi(x) , g[k]n−1 ◦ · · · ◦ g

[k]
i (x)

)
< ϵ,

⇒ hn,i(ūk) ⊂ Bϵ(hn,i(ū)) & hn,i(ū) ⊂ Bϵ(hn,i(ūk)),

⇒ dH(hn,i(ū), hn,i(ūk)) < ϵ. (A-27)

Since ūk → ū as k → ∞, we can find an integer K such that for all k ≥ K,
d∞(ū, ūk) <

δ
2n−i holds. This implies dU(um, u

k
m) < δ for all n ≤ m ≤ i. Hence for all

k ≥ K from (A-27), we have dH(hn,i(ū), hn,i(ūk)) < ϵ. Since ϵ was chosen arbitrarily,
hn,i(ūk) → hn,i(ū) as k → ∞. This implies that hn,i is continuous.

Define hn : U∞ → HX by

hn(ū) :=
∞∩
j=1

hn,n−j(ū). (A-28)

Since hn,n−j is continuous for any j ≥ 1, h−1
n,n−j(B) ∈ B∞ for any Borel subset B

contained in HX . This implies h−1
n (B) ∈ B∞ for any Borel subset B contained in

HX . This implies hn is measurable.

For each ω ∈ Ω, there exists an ūω such that uωk = ξk(ω). Hence

Xn(ω)
by definition

=
∞∩
j=1

ϕω(n, n− j,X),

=
∞∩
j=1

gn−1 ◦ · · · ◦ gn−j+1 ◦ gn−j(X), where gj(·) = g(ξj(ω), ·),

=
∞∩
j=1

hn,n−j(ū
ω),

= hn(ū
ω).

Since Xn(ω) = hn(ū
ω), hn is measurable, and ω 7→ ūω is obviously measurable, it

follows that Xn is measurable. �
Lemma A.3. Let X be a compact metric space. Let a map γ : HX → R be defined
by

γ(A) :=

{
0 : if diam(A) = 0,
1 : if otherwise.

Then the function γ is measurable.

Proof. Since γ assumes values in {0, 1}, to prove γ is measurable it is sufficient
to show that γ−1(0) is a Borel subset of HX . We will show something stronger than
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this by proving that γ−1(0) is a closed subset of HX . Let SX := {{x} : x ∈ X}, i.e.,
SX is a set containing all singletons of the space X. By definition of γ, γ(A) = 0
if and only if A is a singleton of the space X. Hence γ−1(0) = SX . Now to show
that the complement of SX in HX , i.e., HX \SX is an open set we will prove that for
any eX ∈ HX \ SX there exists an open neighborhood of eX contained in HX \ SX .
Let eX ∈ HX \ SX . Now considering eX as a subset of the space X, we have at least
two distinct elements a, b ∈ X such that a, b ∈ eX . Let d(a, b) = 2δ for some δ > 0.
By triangle inequality for any x ∈ X, it follows that at least one of the following
holds: d(a, x) ≥ δ or d(b, x) ≥ δ. Now if an open ball of radius δ around eX does not
intersect SX if and only if dH(eX , SX) ≥ δ:

dH(eX , SX) := inf

(
dH(eX , {x}) : {x} ∈ SX

)
,

= inf

(
max(dist(eX , {x}), dist({x}, eX)) : {x} ∈ SX

)
,

≥ inf

(
dist(eX , {x}) : {x} ∈ SX

)
,

= inf

(
sup(d(z, x) : z ∈ eX) : {x} ∈ SX

)
,

≥ inf

(
sup(d(a, x), d(b, x)) : {x} ∈ SX

)
,

≥ δ (by triangle inequality).

Thus the open ball of radius δ around eX does not intersect SX . Hence HX \ SX is
open in HX and hence SX is closed and has to be a Borel subset of HX . Thus γ is a
measurable function. �
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