
Re: Submission to Science, "Harnessing nonlinearity: predicting chaotic systems and 
boosting wireless communication." (Ref: 1091277) 
 

Refutation of Second Reviewer's Objections 
 
Herbert Jaeger, Dec. 23, 2003 
 
For convenient reference, the second reviewer's objections are appended at the end of this 
refutation. 
 
Among the three objections raised by the second reviewer, the second is the most serious. 
Therefore I treat it first. The objection has several aspects that I will address separately. 
 

Objection 2, aspect 1 
 
Allow me to re-phrase: in computing the training and testing data for the chaotic attractor 
example, I used a large stepsize for simulating the attractor trajectory. Therefore, it might not 
be an accurate version of the attractor; it might even be non-chaotic. To remove such 
suspicion, I shold report the Lyapunov exponent. 
 
Refutation:  
 

• The stepsize that I use is actually not large. The stepsize 0.1 that I used must be 
seen in relation to the attractor's inherent timescale, which is very slow. With this 
stepsize, one loop around the attractor takes about 500 simulation steps, which cannot 
be considered a coarse approximation. When the Mackey-Glass system is simulated 
with a standard commercial solver for differential delay equations (namely, Matlab's 
dde23 function), a stepsize of about 2.0 is automatically selected, 20 times the stepsize 
I used. 

• The stepsize that I use yields an accurate simulation of the attractor. I computed 
estimates of the first Lyapunov exponent λ1 for both my simulation (stepsize 0.1) and 
the Matlab simulation function dde23. I obtained λ1 ≈ 0.0064 for my simulation and 
λ1 ≈ 0.0059 for the commercial simulation tool. Both values are in agreement with 
estimates found in the literature.  

 
Taken both points together, my simulation method clearly yielded an accurate model of the 
MG attractor. All computations relating to the calculation of Lyapunov exponents are online 
in the form of commented executable Matlab files at 
http://www.ais.fraunhofer.de/INDY/herbert/1091277/MGLyapunov.zip . 
 
Suggested improvement to the manuscript: if the occasion arises, I would include a 
statement about the Lyapunov exponent into the SOM, as suggested by the reviewer. 
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http://www.ais.fraunhofer.de/INDY/herbert/1091277/MGLyapunov.zip


Objection 2, aspect 2  
 
First I rephrase this objection: the chaotic system I investigated is not strongly chaotic and 
therefore easy to predict. 
 
Refutation: 
 

• The Mackey-Glass system is indeed not strongly chaotic, but that is not the point. 
A first Lyapunov exponent of about 0.006 implies weak chaos. But this fact is 
common knowledge in the field of nonlinear dynamics; in fact it is one of the reasons 
why the Mackey-Glass system is arguably the most popular benchmark for chaotic 
time series prediction methods. I chose it because of this benchmark character which 
allowed me to put my approach into perspective. The MG system (with delay 17) is 
uniquely suited as a demonstrator because it is the only system where, for historical 
reasons, virtually all authors use the same criterium for measuring model precision, 
namely, the 84 step prediction. This allowed me to formulate my claim that the ESN 
method outperforms existing techniques by 2.7 orders of magnitude.  

• On more chaotic or more complex systems the ESN method works superbly as 
well. Because of limited space, I did not include other case studies in the submitted 
manuscript. In a separate document attached to this refutation1, I report ESN training 
experiments on various chaotic attractors that each pose distinctive difficulties: 

- The Lorenz attractor, which with a largest Lyapunov exponent of about 0.9 
exhibits significant chaos. Here, ESNs appear to perform better than previous 
techniques by 4-5 orders of magnitude. 

- The MG system with a delay of 30, whose chaos is as mild as in attractor 
investigated in the submitted manuscript, buth which has a higher embedding 
dimension and exhibits a very rich phenomenology and is therefore difficult to 
model. Again, ESNs advance the state of the art dramatically. 

- The empirical Laser time series from the 1994 Santa Fe time series prediction 
competition, which contains noise and in which a crucial "breakdown" event 
that has to be predicted occurs only once in the training sequence. I include this 
example because the second reviewer suggested that I treat time series 
competition data. ESNs perform as well as the best other techniques; however, 
since 1994 it has been found out that this time series is actually easy to learn 
optimally by a simple pattern matching. Thus, ESNs and the other best 
approaches simply reach the optimal possible performance. 

 
Suggested improvements to the manuscript:  
 
• If recommended by the editors, I would include prediction studies of other well-known 

chaotic attractors into the SOM. 
• In the meantime I was able to further increase the prediction accuracy by a factor of about 

4, achieving in the MG (delay 17) task an NRMSE for the standard 84-step prediction of 
1e-4.75, a little more than 3.0 orders of magnitude better than previously possible. The 
idea of the method refinement is sketched in the supplementary manuscript and can be 
inspected in detail from the Matlab files that I made accessible online. If suggested by the 
editors, I would use the improved results and methods for a revised version of the 
manuscript. 

 

                                                
1 Various chaotic attractors predicted by ESN models, manuscript specially prepared for this refutation. 
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Objection 2, aspect 3  
 
First I rephrase this objection: I should compare my prediction results with the theoretical 
optimum. 
 
Refutation: 
 
• It is currently not possible to define the theoretical optimum. Such an optimum should 

indicate the maximal achievable prediction accuracy using any prediction method, given a 
set of training data. In computing such an optimum, the mathematics of a general learning 
theory (independent of learning method) must be combined with the mathematics of 
chaotic attractors. But even a general learning theory is not available. The best that we 
have is known as statistical learning theory2, but the error bounds yielded by that theory 
are far from tight, and the theory does not yet cover models of dynamical systems.  

• The optimality criterium suggested by the reviewer is closely met by the ESN 
method, but this is not revealing. The reviewer does not state which optimality criterium 
s/he has in mind, but I take it that s/he refers to the criterium used in the supplied 
reference. According to this criterium, a prediction is optimal if it diverges from the true 
continuation with the rate of the true system's maximal Lyapunov exponent. In this sense, 
the predictions yielded by the ESN method in the original submission are almost optimal 
(Fig. 1). But, the refined ESN method developed in the meantime is 4 times more precise 
and meets the criterium just as well. Therefore, the criterium is not informative about how 
close a method comes to the theoretical optimum.  
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Figure 1: Illustrating the optimality criterium suggested by the second reviewer. The 
x-axis shows network updates which correspond in this case to MG time units, the y-
axis shows log10 of absolute error. Blue line: absolute error of MG predictions 
averaged over 20 predicition trials, all using the same ESN trained as described in the 
submitted manuscript. Red line: same for an ESN model trained with the improved 
method developed in the meantime (averaged over 2 prediction trials). Black lines: 
rate of divergence according to a Lyapunov exponent of 0.0064. Even without a 
riorous statistical analysis it is clear that the slope of the model divergence comes 
close to the Lyapunov rate for both ESN models; in this sense, both model predictions 
would qualify as "optimal". However, the second model is 10 times as precise as the 
first.  

 

                                                
2 Vapnik, ,V. N., The Nature of Statistical Learning Theory, Second Edition, Springer Verlag 1999 
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Suggested improvement to the manuscript: Figure 1 might be included in the SOM and 
explained. 
 
 
Objection 1  
 
In the remainder I treat the less serious objections. I first rephrase the reviewer's first 
objection: the idea of using a randomly connected network to yield a reservoir of basis 
functions has no significant originality – it is known since the beginnings of neural network 
research and has been tested often and with limited success. 
 
Refutation:  
 
• Randomly connected networks as reservoirs of basis functions were mostly of the 

feedforward type. It is true that the forefather of modern neural networks, the Perceptron, 
had neurons with fixed, random connections (although not among each other but to the 
input field). Similarly, some versions of the well-known radial basis function networks 
can be considered randomly connected. But all of these are feedforward networks, very 
different objects from the recurrent networks considered in the manuscript. 
Mathematically, feedforward networks are functions, whereas recurrent networks are 
dynamical systems.  

• If similar approaches exist, they are not well-known. I cannot preclude the possibility 
that randomly connected recurrent neural networks were used previously in ways that bear 
similarity to my method; specifically, by training the output connection weights only. 
However, if this is the case, these approaches are not well-known in the field of machine 
learning / artificial neural networks. The only exception known to me (now) is the 1981 
paper by Geoffrey Hinton, pointed out by the first reviewer. Since the first conception of 
ESNs in 2000, I discussed my ideas with a number of prime researchers in the field (Helge 
Ritter, Geoffrey Hinton, Danil Prokhorov, Wolfgang Maass, Peter Dayan, Zoubin 
Gharhamani, Wolfgang Singer, Jun Tani, Volker Tresp, Jürgen Schmidhuber) and none of 
them expressed concern about lack of originality. If the second reviewer could be asked to 
give references indicating to what approaches s/he is alluding, presenting and discussing 
them would certainly be instructive and benefit the manuscript.  

• My approach rests on original mathematical insights. I did not expand on the 
mathematical aspects in the body of the manuscript because I felt that this would be 
inappropriate for the wide-spanning readership of Science. However, I give references to 
online techreports where interested readers may learn more about the following points: 

- several abstract (some not entirely trivial) characterizations of the "echo state 
property" that randomly connected networks must have to make the learning 
method work, 

- a formal analysis of algebraic properties of the network weight matrix that ensure 
the echo state property, 

- a formal analysis of the short-term memory capacity of echo state networks. This 
short-term memory capacity is the main reason for the good performance of echo 
state networks for learning systems which have memory.   

• Echo state networks are of interest as models of biological neural networks. In the 
field of computational neuroscience, we currently see a surge of interest in models of 
neural information processing that are very similar to the basic idea of echo state 
networks. Specifically, this concerns the "liquid state" model proposed by Wolfgang 
Maass and Henry Markram. Both in echo state and liquid state networks, the basic idea is 
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that a random reservoir is "tapped" by trainable readout neurons. Wolfgang Maass (with 
whom I now co-operate) developed these ideas simultaneously and independently. I 
briefly point out these correspondences to biological neural networks at the end of my 
submission paper. 

 
Suggested improvement to the manuscript: (i) I will comment and reference the paper 
indicated by the first reviewer, (ii) I could elaborate more on the mathematical results 
underpinning my approach, and (iii) I could expand more on the emerging correspondences to 
biological neural networks. 
 
Objection 3 
 
If I understand it correctly, the third objection can be paraphrased as follows: ESNs are 
random structures, whose construction is determined by a few global parameters (number of 
hidden units, sparseness of connectivity, spectral radius of weight matrix). For a given 
learning task, optimal values of these parameters must be found. I should supply a method for 
determining these values; specifically, this method must not make use of the of the testing 
data. Furthermore, I should demonstrate that the results do not critically depend on the 
specific random connection structure. Finally, I should use real-world data and not synthetic 
textbook systems. 
 
Refutation: 
 
• I did (of course) not use test data for parameter optimization. All experiments 

reported in the submitted manuscript proceeded by first optimizing the few global model 
parameters by hand, using only the training data, then training an ESN on the training 
data, and finally testing the obtained model on independent test data.  

• Some hand-tuning of parameters cannot be avoided in machine learning algorithms. 
It is standard practice, if not unavoidable in working with artificial neural networks to 
experiment by hand in order to determine appropriate ranges of structural network 
parameters. Typically, the number of neurons, the global network topology, learning rates 
and/or learning rate decay schemes (sometimes elaborate), control parameters for gradient 
descent speedup mechanisms, termination criteria for iterative optimalization schemes 
have to be found by experimentation. Requiring a fully automated learning scheme 
wherein all parameters are automatically determined just is demanding too much. The 
ESN approach compares favourably with other neural network learning techniques in that 
the actual learning is a constructive algorithm that needs no parametrization itself – other 
techniques all rely on iterative schemes where the learning mechanism itself needs heavy 
tuning. In fact, there are only four parameters that I have found to be important: network 
size, spectral radius, input and output scaling. In an online techreport referenced in the 
submitted paper I give detailed practical hints to optimize these. Because the number of 
hand-tuned parameters is small and they have broad tuning curves, a few iterations of 
hand-tuning typically suffice.  

• The specific random connectivity of an ESN plays not a very important role. It is true 
that given a fixed set of structural parameters, independently created ESNs perform 
differently. The reviewer rightly demands that I consider this point and provide statistics 
to show how strong is the effect of random variations between individual ESNs, and I will 
do so if the occasion arises. However, the effect is not large and in practice can be 
neglected. This is probably due to the fact that I use relatively large networks, where the 
effects of random internal structure smooth out. For instance, when I train 100 
independently created ENSs on the MG prediction task considered in the submitted 
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manuscript, all on the same training data, I obtain an average log10 prediction NRMSE 
error for the 84 step prediction of about −4.2, with a standard deviation of 0.38. Given that 
the best previous techniques featured a log10 prediction error of –1.7, this means that the 
entire performance "cloud" of random ESNs is separated by more than 2 orders of 
magnitude from previous techniques. 

• Using synthetic data is appropriate for first introducing a novel modelling technique. 
Only with synthetic data that can be systematically varied it is possible to evaluate the 
principle properties of a learning technique. For instance, in the equalizer example in the 
manuscript I could systematically vary the amount of noise and see how the model copes. 
Likewise, only for synthetic chaotic systems it is possible to obtain sharp estimates of the 
Lyapunov exponent. Therefore I believe it is justified (and standard practice, too) to use 
synthetic data in an early publication on a new learning method. However, the reviewer is 
certainly right that the final criterium for usefulness is the performance of a modelling 
technique on real-world data. One such example is given in the supplementary manuscript 
(the Laser data set).  

 
Suggested improvement to the manuscript: I will provide the statistics of ESN performance 
scattering for both the Mackey-Glass and the channel equalization examples.  
 
 
 
Appendix: review #2. 
 
This manuscript reports two examples of using artificial neural 
networks, which the authors call Echo State Networks, to signal 
prediction and filtering. Although the reported numbers may sound 
appearing, this work leaves many points to be clearified and would not 
be of particular interest to the wide readership of Science. 
 
1) The idea of diversifying input signals by a randomly connected 
network to build basis functions for synthesizing the output has been 
around for many years, probably since the days of original Perceptron. 
It`s use for temporal signal processing has also been tested, often with 
limited results. What differentiates ESNs from previous works are the 
use of sparse connections and the scaling of connection weights by 
computing the spectral radius. These two points are not adequately 
stated, especially the latter is only mentioned in the SOM. 
 
2) How far ahead one can predict a chaotic time series is fundamentally 
limited by the size of Liapunov exponent (Kuo et al., 1992). It is very 
surprising that the MG system was predicted for a long time as reported 
here, if the system is in a strongly chaotic regime. At the reported 
parameter setting of MG system, what was the value of the largest 
Liapunov exponent? Unfortunately the SOM does not report the numerical 
integration method used, but with a quite large time step of 0.1, the 
simulated time course would have been rather different from that of the 
genuine delay-differential dynamics of MG system. A knowledgeable reader 
would suspect that the reason why long-term prediction was possible was 
because the simulated system was not strongly chaotic (e.g., 
quasi-periodic) due to a poor simulation method. In order to reject such 
a suspicion, the Liapunov exponent of the simulated system should be 
reported, and the success of prediction should be measured with respect 
to the theoretical limit. 
 
3) The critical parameters of ESN implementation are the number of 
hidden units, the sparseness of connectivity, and the spectral radius of 
the connection weights. In the benchmark tasks for which the TRUE 
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outputs are known, tuning of these parameters are easy since we can just 
tune them to minimize the the prediction error. However, a real 
challenge is to set these parameters for real problems for which we 
don`t know the true output. This is why competitions of signal 
predictions have been in practice, in which the true answers are 
withheld. In light of the state of the art of signal processing, the 
value of any new method is recognized only through its application with 
real problems with real uncertainties, rather than it application to 
textbook examples to which true answers are known. Although parameter 
tuning is always a headache in signal prediction, an additional problem 
with ESN is to decide which instance of random connections to use, since 
not all the random networks perform equally, as demonstrated in Figure 
4d. If these are not actually the problems, the authors should either 
report systematic procedures for setting those parameters for novel 
problems, or demonstrate in systematic simulations that performance of 
ESNs do not critically depend on parameter settings. 
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