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Abstract:  
 
This tutorial is a worked-out version of a 5-hour course originally held at AIS in 
September/October 2002. It has two distinct components. First, it contains a 
mathematically-oriented crash course on traditional training methods for recurrent 
neural networks, covering back-propagation through time (BPTT), real-time recurrent 
learning (RTRL), and extended Kalman filtering approaches (EKF). This material is 
covered in Sections 2 – 5. The remaining sections 1 and 6 – 9 are much more gentle, 
more detailed, and illustrated with simple examples. They are intended to be useful 
as a stand-alone tutorial for the echo state network (ESN) approach to recurrent 
neural network training.  
 
The author apologizes for the poor layout of this document: it was transformed from 
an html file into a Word file... 
 
 
This manuscript was first printed in October 2002 as 
 
H. Jaeger (2002): Tutorial on training recurrent neural networks, covering BPPT, 
RTRL, EKF and the "echo state network" approach. GMD Report 159, German 
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1. Recurrent neural networks 
 

1.1 First impression 
 
There are two major types of neural networks, feedforward and recurrent. In 
feedforward networks, activation is "piped" through the network from input units to 
output units (from left to right in left drawing in Fig. 1.1):  
 
 
 
 
 
 
  
 
 
 
 
Figure 1.1: Typical structure of a feedforward network (left) and a recurrent network 
(right). 
 
Short characterization of feedforward networks: 
 

• typically, activation is fed forward from input to output through "hidden layers" 
("Multi-Layer Perceptrons" MLP), though many other architectures exist 

• mathematically, they implement static input-output mappings (functions)  
• basic theoretical result: MLPs can approximate arbitrary (term needs some 

qualification) nonlinear maps with arbitrary precision ("universal approximation 
property") 

• most popular supervised training algorithm: backpropagation algorithm 
• huge literature, 95 % of neural network publications concern feedforward nets 

(my estimate)  
• have proven useful in many practical applications as approximators of 

nonlinear functions and as pattern classificators 
• are not the topic considered in this tutorial 

 
By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of 
synaptic connections. Basic characteristics:  
 

• all biological neural networks are recurrent 
• mathematically, RNNs implement dynamical systems 
• basic theoretical result: RNNs can approximate arbitrary (term needs some 

qualification) dynamical systems with arbitrary precision ("universal 
approximation property") 

• several types of training algorithms are known, no clear winner 
• theoretical and practical difficulties by and large have prevented practical 

applications so far 

 

. . . 

. . . . . . 

. . . 

.. .
...
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• not covered in most neuroinformatics textbooks, absent from engineering 
textbooks 

• this tutorial is all about them.  
 

Because biological neuronal systems are recurrent, RNN models abound in the 
biological and biocybernetical literature. Standard types of research papers include... 
 

• bottom-up, detailed neurosimulation: 
o compartment models of small (even single-unit) systems 
o complex biological network models (e.g. Freeman's olfactory bulb 

models)  
• top-down, investigation of principles 

o complete mathematical study of few-unit networks (in AIS: Pasemann, 
Giannakopoulos)  

o universal properties of dynamical systems as "explanations" for 
cognitive neurodynamics, e.g. "concept ~ attractor state"; "learning ~ 
parameter change"; " jumps in learning and development ~ bifurcations"  

o demonstration of dynamical working principles 
o synaptic learning dynamics and conditioning 
o synfire chains 

 
This tutorial does not enter this vast area. The tutorial is about algorithmical RNNs, 
intended as blackbox models for engineering and signal processing.  
 
The general picture is given in Fig. 1.2:  
 

 
Figure 1.2: Principal moves in the blackbox modeling game.  
Types of tasks for which RNNs can, in principle, be used: 

physical system empirical time 
series data

RNN model model-generated 
data

observe

model

generate

fit (similar 
distribution)"learn", 

"estimate",
"identify"

.. .
...
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• system identification and inverse system identification 
• filtering and prediction  
• pattern classification 
• stochastic sequence modeling 
• associative memory  
• data compression 

 
Some relevant application areas: 
 

• telecommunication 
• control of chemical plants 
• control of engines and generators 
• fault monitoring, biomedical diagnostics and monitoring 
• speech recognition 
• robotics, toys and edutainment 
• video data analysis 
• man-machine interfaces 

 
State of usage in applications: RNNs are (not often) proposed in technical articles as 
"in principle promising" solutions for difficult tasks. Demo prototypes in simulated or 
clean laboratory tasks. Not economically relevant – yet. Why? supervised training of 
RNNs is (was) extremely difficult. This is the topic of this tutorial. 
 

1.2 Supervised training: basic scheme 
 
There are two basic classes of "learning": supervised and unsupervised (and unclear 
cases, e.g. reinforcement learning). This tutorial considers only supervised training.  
 
In supervised training of RNNs, one starts with teacher data (or training data): 
empirically observed or artificially constructed input-output time series, which 
represent examples of the desired model behavior.  

 
Figure 1.3: Supervised training scheme. 
 

A. Training

Teacher:

Model:

B. Exploitation

Input: 
Correct (unknown) 
output:

Model:

in

out

in

out

in

out
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The teacher data is used to train a RNN such that it more or less precisely 
reproduces (fits) the teacher data – hoping that the RNN then generalizes to novel 
inputs. That is, when the trained RNN receives an input sequence which is somehow 
similiar to the training input sequence, it should generate an output which resembles 
the output of the original system.  
 
A fundamental issue in supervised training is overfitting: if the model fits the training 
data too well (extreme case: model duplicates teacher data exactly), it has only 
"learnt the training data by heart" and will not generalize well. Particularly important 
with small training samples. Statistical learning theory addresses this problem. For 
RNN training, however, this tended to be a non-issue, because known training 
methods have a hard time fitting training data well in the first place.  
 

1.3 Formal description of RNNs 
 
The elementary building blocks of a RNN are neurons (we will use the term units) 
connected by synaptic links (connections) whose synaptic strength is coded by a 
weight. One typically distinguishes input units, internal (or hidden) units, and output 
units. At a given time, a unit has an activation. We denote the activations of input 
units by u(n), of internal units by x(n), of output units by y(n). Sometimes we ignore 
the input/internal/output distinction and then use x(n) in a metonymical fashion.  
 

Figure 1.4: A typology of RNN models (incomplete). 
 
There are many types of formal RNN models (see Fig. 1.4). Discrete-time models are 
mathematically cast as maps iterated over discrete time steps n = 1, 2, 3, ... . 
Continuous-time models are defined through differential equations whose solutions 
are defined over a continous time t. Especially for purposes of biological modeling, 
continuous dynamical models can be quite involved and describe activation signals 
on the level of individual action potentials (spikes). Often the model incorporates a 
specification of a spatial topology, most often of a 2D surface where units are locally 
connected in retina-like structures.  
 
In this tutorial we will only consider a particular kind of discrete-time models without 
spatial organization. Our model consists of K input units with an activation (column) 
vector  
 
(1.1) t

K nunun ))(,),(()( 1 …=u ,  
of N internal units with an activation vector 

discrete time 

continuous time

spiking

spatially organized

))(()1( ∑=+ nxwfnx jiji )(∑+−=τ jijii xfwxx!
(+ input, + 
bias, +noise, 
+output
feedback...)
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(1.2)   

€ 

x(n) = (x1(n),…,xN (n))
t ,  

 
and of L output units with an activation vector 
 
(1.3)   

€ 

y(n) = (y1(n),…,yL (n))
t , 

 
where t denotes transpose. The input / internal / output connection weights are 
collected in N x K / N x N / L x (K+N) weight matrices 
 
(1.4) ).(),(),( out

ij
out

ij
in
ij

in www === WWW  
 
The output units may optionally project back to internal units with connections whose 
weights are collected in a N x L backprojection weight matrix 
 
(1.5) ).( back

ij
back w=W  

 

.. . ...

K input 
units

N internal units L output 
units

 
 
Figure 1.5. The basic network architecture used in this tutorial. Shaded arrows 
indicate optional connections. Dotted arrows mark connections which are trained in 
the "echo state network" approach (in other approaches, all connections can be 
trained).  
 
 
A zero weight value can be interpreted as "no connection". Note that output units 
may have connections not only from internal units but also (often) from input units 
and (rarely) from output units.  
 
The activation of internal units is updated according to  
 
(1.6) )),()()1(()1( nnnn backin yWWxuWfx +++=+  
 
where u(n+1) is the externally given input, and f denotes the component-wise 
application of the individual unit's transfer function, f (also known as activation 
function, unit output function, or squashing function). We will mostly use the sigmoid 
function f = tanh but sometimes also consider linear networks with f = 1. The output is 
computed according to 
(1.7) 

€ 

y(n +1) = f out (Wout (u(n +1),x(n +1)), 
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where (u(n+1),x(n+1)) denotes the concatenated vector made from input and internal 
activation vectors. We will use output transfer functions fout = tanh or fout = 1; in the 
latter case we have linear output units. 
 

1.4 Example: a little timer network  
 
Consider the input-output task of timing. The input signal has two components. The 
first component u1(n) is 0 most of the time, but sometimes jumps to 1. The second 
input u2(n) can take values between 0.1 and 1.0 in increments of 0.1, and assumes a 
new (random) of these values each time u1(n) jumps to 1. The desired output is 0.5 
for 10 x u2(n) time steps after u1(n) was 1, else is 0. This amounts to implementing a 
timer: u1(n) gives the "go" signal for the timer, u2(n) gives the desired duration.  
  

Figure 1.6: Schema of the timer network. 
 
The following figure shows traces of input and output generated by a RNN trained on 
this task according to the ESN approach: 
 

 
 
Figure 1.7: Performance of a RNN trained on the timer task. Solid line in last graph: 
desired (teacher) output. Dotted line: network ouput. 
 
Clearly this task requires that the RNN must act as a memory: it has to retain 
information about the "go" signal for several time steps. This is possible because the 

 

...
...

input 1: start signals 

input 2: duration setting

ouput: rectangular signals of 
desired duration

...
...

input 1: start signals 

input 2: duration setting

ouput: rectangular signals of 
desired duration
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internal recurrent connections let the "go" signal "reverberate" in the internal units' 
activations. Generally, tasks requiring some form of memory are candidates for RNN 
modeling.  
 
 
2. Standard training techniques for RNNs 
 
During the last decade, several methods for supervised training of RNNs have been 
explored. In this tutorial we present the currently most important ones: 
backpropagation through time (BPTT), real-time recurrent learning (RTRL), and 
extended Kalman filtering based techniques (EKF). BPTT is probably the most widely 
used, RTRL is the mathematically most straightforward, and EKF is (arguably) the 
technique that gives best results.  

2.1 Backpropagation revisited 
 
BPTT is an adaptation of the well-known backpropagation training method known 
from feedforward networks. The backpropagation algorithm is the most commonly 
used training method for feedforward networks. We start with a recap of this method.  
 
We consider a multi-layer perceptron (MLP) with k hidden layers. Together with the 
layer of input units and the layer of output units this gives k+2 layers of units 
altogether (Fig. 1.1. left shows a MLP with two hidden layers), which we number by 0, 
..., k+1. The number of input units is K, of output units L, and of units in hidden layer m 
is Nm. The weight of the j-th unit in layer m and the i-th unit in layer m+1 is denoted by 
wij

m. The activation of the i-th unit in layer m is xi
m (for m = 0 this is an input value, for 

m = k+1 an output value).  
 
The training data for a feedforward network training task consist of T input-output 
(vector-valued) data pairs  
 
(2.1) tk

L
kt

K ndndnnxnxn ))(,),(()(,))(,),(()( 11
1

00
1

++== …… du , 
 
where n denotes training instance, not time. The activation of non-input units is 
computed according to  
 
(2.2) )).(()(

,...,1

1 nxwfnx j
Nj

m
ij

m
i

m
∑

=

+ =  

 
(Standardly one also has bias terms, which we omit here). Presented with teacher 
input u(t), the previous update equation is used to compute activations of units in 
subsequent hidden layers, until a network response  
 
(2.3) ))'(,),(()( 11

1 nxnxn k
L

k ++= …y  
 
is obtained in the output layer. The objective of training is to find a set of network 
weights such that the summed squared error 
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(2.4) ∑∑
==

=−=
TnTn
nEnnE

,...,1

2

,...,1

)()()( yd  

 
is minimized. This is done by incrementally changing the weights along the direction 
of the error gradient w.r.t. weights 
 

(2.5) ∑
= ∂

∂
=

∂
∂

Tt
m
ij

m
ij w

nE
w
E

,...1

)(  

 
using a (small) learning rate γ: 
 

(2.6) m
ij

m
ij

m
ij w

Ewwnew
∂

∂
γ−= . 

 
(Superscript m omitted for readability). This is the formula used in batch learning 
mode, where new weights are computed after presenting all training samples. One 
such pass through all samples is called an epoch. Before the first epoch, weights are 
initialized, typically to small random numbers. A variant is incremental learning, 
where weights are changed after presentation of individual training samples: 
 

(2.7) m
ij

m
ij

m
ij w

nEwwnew
∂
∂

γ−=
)( . 

 

The central subtask in this method is the computation of the error gradients m
ijw
nE

∂
∂ )( . 

The backpropagation algorithm is a scheme to perform these computations. We give 
the recipe for one epoch of batch processing. 
 
Input: current weights wij

m, training samples. 
 
Output: new weights. 
 
Computation steps: 
 
1. 

For each sample n, compute activations of internal and output units using (2.2) 
("forward pass"). 

2. 
Compute, by proceeding backward through m = k+1,k,...,1, for each unit xi

m the 
error propagation term δi

m(n)  
 

(2.8) 1

)())()(()(1 +=

+

∂
∂

−=δ k
izuii

k
i u

ufnyndn  

 
for the output layer and 
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for the hidden layers, where  
 

(2.10) ∑
−

=

−−=
1

1

11 )()(
mN

j

m
ij

m
j

m
i wnxnz  

 
is the internal state (or "potential") of unit xi

m. This is the error backpropagation 
pass. Mathematically, the error propagation term δi

m(n) represents the error 
gradient w.r.t. the potential of the unit unit xi

m. 
 

(2.10a) m
jzuu

E
=∂

∂
. 

 
3.  

Adjust the connection weights according to 
 

(2.11) ∑
=

−−− δγ+=
T

t

m
j

m
i

m
ij

m
ij nxnwwnew

1

111 )()( . 

 
After every such epoch, compute the error according to (2.4). Stop when the error 
falls below a predetermined threshold, or when the change in error falls below 
another predetermined threshold, or when the number of epochs exceeds a 
predetermined maximal number of epochs. Many (order of thousands in nontrivial 
tasks) such epochs may be required until a sufficiently small error is achieved. 
 
One epoch requires O(T M) multiplications and additions, where M is the total number 
of network connections.  
 
The basic gradient descent approach (and its backpropagation algorithm 
implementation) is notorious for slow convergence, because the learning rate γ must 
be typically chosen small to avoid instability. Many speed-up techniques are 
described in the literature, e.g. dynamic learning rate adaptation schemes. Another 
approach to achieve faster convergence is to use second-order gradient descent 
techniques, which exploit curvature of the gradient but have epoch complexity O(T 
M2).  
 
Like all gradient-descent techniques on error surfaces, backpropagation finds only a 
local error minimum. This problem can be addressed by various measures, e.g. 
adding noise during training (simulated annealing approaches) to avoid getting stuck 
in poor minima, or by repeating the entire learning from different initial weight 
settings, or by using task-specific prior information to start from an already plausible 
set of weights. Some authors claim that the local minimum problem is overrated.  
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Another problem is the selection of a suitable network topology (number and size of 
hidden layers). Again, one can use prior information, perform systematic search, or 
use intuition.  
 
All in all, while basic backpropagation is transparent and easily implemented, 
considerable expertise and experience (or patience) is a prerequisite for good results 
in non-trivial tasks.  
 

2.2. Backpropagation through time 
 
The feedforward backpropagation algorithm cannot be directly transferred to RNNs 
because the error backpropagation pass presupposes that the connections between 
units induce a cycle-free ordering. The solution of the BPTT approach is to "unfold" 
the recurrent network in time, by stacking identical copies of the RNN, and redirecting 
connections within the network to obtain connections between subsequent copies. 
This gives a feedforward network, which is amenable to the backpropagation 
algorithm. 
 

A. B. . . . 

. . . 

u( -1)n
x( -1)t

x( )t

x( 1)t+

y( -1)n

u n+( 1) y( 1)+n

u( )n y( )n

 
Figure 2.1: Schema of the basic idea of BPTT. A: the original RNN. B: The 
feedforward network obtained from it. The case of single-channel input and output is 
shown. 
 
The weights wij

in, wij, wij
out, wij

back are identical in/between all copies. The teacher data 
consists now of a single input-output time series  
 
(2.12)  Tnndndnnunun LK ……… ,1))'(,),(()(,))'(,),(()( 11 === du . 
 
The forward pass of one training epoch consists in updating the stacked network, 
starting from the first copy and working upwards through the stack. At each copy / 
time n input u(n) is read in, then the internal state x(n) is computed from u(n), x(n-1) 
[and from y(n-1) if nonzero wij

back exist], and finally the current copy's output y(n) is 
computed.  
 
The error to be minimized is again (like in 2.4) 
 
(2.13) ∑∑

==

=−=
TnTn
nEnnE

,...,1

2

,...,1

)()()( yd , 
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but the meaning of t has changed from "training instance" to "time". The algorithm is 
a straightforward, albeit notationally complicated, adaptation of the feedforward 
algorithm: 
 
 
Input: current weights wij, training time series. 
 
Output: new weights. 
 
Computation steps: 
 
1. 

Forward pass: as described above.  
2. 

Compute, by proceeding backward through n = T,...,1, for each time n and unit 
activation xi(n), yj(n) the error propagation term δi(n)  
 

(2.14) 
)(

)())()(()(
Tzujjj

ju
ufTyTdT

=∂
∂

−=δ  

 
for the output units of time layer T and 
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for internal units xi(T) at time layer T and 
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for the output units of earlier layers, and  
 

(2.17) 
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for internal units xi(n) at earlier times, where zi(n) again is the potential of the 
corresponding unit.  

 
3.  

Adjust the connection weights according to 
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(2.18) 

€ 

new wij = wij + g di (n) x j (n −1)
n=1

T

∑ [use x j (n −1) = 0 for n =1]

new wij
in = wij

in + g di (n)u j (n)
n=1

T

∑

new wij
out = wij

out + g×
di (n)u j (n), if j refers to input unit

n=1

T

∑

di (n) x j (n), if j refers to hidden unit
n=1

T

∑

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

new wij
back = wij

back + g di (n) y j (n −1)
n=1

T

∑ [use y j (n −1) = 0 for n =1]

 

 
Warning: programming errors are easily made but not easily perceived when they 
degrade performance only slightly. 
 
The remarks concerning slow convergence made for standard backpropagation carry 
over to BPTT. The computational complexity of one epoch is O(T N2), where N is 
number of internal units. Several thousands of epochs are often required.  
 
A variant of this algorithm is to use the teacher output )(nd  in the computation of 
activations in layer n+1 in the forward pass. This is known as teacher forcing. 
Teacher forcing typically speeds up convergence, or even may be necessary to 
achieve convergence at all, but when the trained network is exploited, it may exhibit 
instability. A general rule when to use teacher forcing cannot be given.  
 
A drawback of this "batch" BPTT is that the entire teacher time series must be used. 
This precludes applications where online adaptation is required. The solution is to 
truncate the past history and use, at time n, only a finite history  
 
(2.19)  )(,),1(),(,)(,),1(),( npnpnnpnpn ddduuu …… +−−+−−  
 
as training data. Since the error backpropagation terms δ need to be computed only 
once for each new time slice, the complexity is O(N2) per time step. A potential 
drawback of such truncated BPPT (or p-BPTT) is that memory effects exceeding a 
duration p cannot be captured by the model. Anyway, BPTT generally has difficulties 
capturing long-lifed memory effects, because backpropagated error gradient 
information tends to "dilute" exponentially over time. A frequently stated opinion is 
that memory spans longer than 10 to 20 time steps are hard to achieve. 
 
Repeated execution of training epochs shift a complex nonlinear dynamical system 
(the network) slowly through parameter (weight) space. Therefore, bifurcations are 
necessarily encountered when the starting weights induce a qualitatively different 
dynamical behavior than task requires. Near such bifurcations, the gradient 
information may become essentially useless, dramatically slowing down 
convergence. The error may even suddenly grow in the vicinity of such critical points, 
due to crossing bifurcation boundaries. Unlike feedforward backpropagation, BPTT is 
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not guaranteed to converge to a local error minimum. This difficulty cannot arise with 
feedforward networks, because they realize functions, not dynamical systems.   
 
All in all, it is far from trivial to achieve good results with BPTT, and much 
experimentation (and processor time) may be required before a satisfactory result is 
achieved.  
 
Because of limited processing time, BPTT is typically used with small networks sizes 
in the order of 3 to 20 units. Larger networks may require many hours of computation 
on current hardware.  
 
 
3. Real-time recurrent learning  
 
Real-time recurrent learning (RTRL) is a gradient-descent method which computes 
the exact error gradient at every time step. It is therefore suitable for online learning 
tasks. I basically quote the description of RTRL given in Doya (1995). The most often 
cited early description of RTRL is Williams & Zipser (1989).  
 
The effect of weight change on the network dynamics can be seen by simply 
differentiating the network dynamics equations (1.6) and (1.7) by its weights. For 
convenience, activations of all units (whether input, internal, or output) are 
enumerated and denoted by vi and all weights are denoted by wkl, with i = 1,...,N 
denoting internal units, i = N+1,...,N+L  denoting output units, and i = N+L+1,...,N+L+K  
denoting input units. The derivative of an internal or output unit  w.r.t. a weight wkl is 
given by 
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where k,l ≤ N + L + K,  zi(n) is again the unit's potential, but δik here denotes 
Kronecker's delta (δik =1 if i = k and 0 otherwise). The term δik vl(n) represents an 
explicit effect of the weight wkl onto the unit k, and the sum term represents an implicit 
effect onto all the units due to network dynamics. 
 
Equation (3.1) for each internal or output unit constitutes an N+L-dimensional 
discrete-time linear dynamical system with time-varying coefficients, where  
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is taken as a dynamical variable. Since the initial state of the network is independent 
of the connection weights, we can initialize (3.1) by  
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Thus we can compute (3.2) forward in time by iterating Equation (3.1) simultaneously 
with the network dynamics (1.6) and (1.7). From this solution, we can calculate the 
error gradient (for the error given in (2.13)) as follows: 
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A standard batch gradient descent algorithm is to accumulate the error gradient by 
Equation (3.4) and update each weight after a complete epoch of presenting all 
training data by 
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where γ is is a learning rate. An alternative update scheme is the gradient descent of 
current output error at each time step,  
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Note that we assumed wkl is a constant, not a dynamical variable, in deriving (3.1), so 
we have to keep the learning rate small enough. (3.6) is referred to as real-time 
recurrent learning.  
 
RTRL is mathematically transparent and in principle suitable for online training. 
However, the computational cost is O((N+L)4) for each update step, because we have 
to solve the (N+L)-dimensional system (3.1) for each of the weights. This high 
computational cost makes RTRL useful for online adaptation only when very small 
networks suffice.  
 
 
4. Higher-order gradient descent techniques 
 
Just a little note: Pure gradient-descent techniques for optimization generally suffer 
from slow convergence when the curvature of the error surface is different in different 
directions. In that situation, on the one hand the learning rate must be chosen small 
to avoid instability in the directions of high curvature, but on the other hand, this small 
learning rate might lead to unacceptably slow convergence in the directions of low 
curvature. A general remedy is to incorporate curvature information into the gradient 
descent process. This requires the calculation of the second-order derivatives, for 
which several approximative techniques have been proposed in the context of 
recurrent neural networks. These calculations are expensive, but can accelerate 
convergence especially near an optimum where the error surface can be reasonably 
approximated by a quadratic function. Dos Santos & von Zuben (2000) and 
Schraudolph (2002) provide references, discussion, and propose approximation 
techniques which are faster than naive calculations.  
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5. Extended Kalman-filtering approaches 
 

5.1 The extended Kalman filter 
 
The extended Kalman filter (EKF) is a state estimation technique for nonlinear 
systems derived by linearizing the well-known linear-systems Kalman filter around 
the current state estimate. We consider a simple special case, a time-discrete system 
with additive input and no observation noise: 
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where x(n) is the system's internal state vector, f is the system's state update function 
(linear in original Kalman filters), q(n) is external input to the system (an uncorrelated 
Gaussian white noise process, can also be considered as process noise), d(n) is the 
system's output, and hn is a time-dependent observation function (also linear in the 
original Kalman filter). At time n = 0, the system state x(0) is guessed by a 
multidimensional normal distribution with mean )0(x̂  and covariance matrix P(0). The 
system is observed until time n through d(0),..., d(n). The task addressed by the 
extended Kalman filter is to give an estimate )1(ˆ +nx  of the true state x(n+1), given 
the initial state guess and all previous output observations. This task is solved by the 
following two time update and three measurement update computations: 
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where we roughly follow the notation in Singhal and Wu (1989), who first applied 
extended Kalman filtering to (feedforward) network weight estimation. Here F(n) and 
H(n) are the Jacobians  
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of the components of f, hn with respect to the state variables, evaluated at the 
previous state estimate; ))(ˆ()()( nnn n xhd −=ξ  is the error (difference between 
observed output and output calculated from state estimate )(ˆ nx ), P(n) is an estimate 
of the conditional error covariance matrix E[ξξ | d(0),..., d(n)]; Q(n) is the (diagonal) 
covariance matrix of the process noise, and the time updates )(*),(*ˆ nn Px  of state 
estimate and state error covariance estimate are obtained from extrapolating the 
previous estimates with the known dynamics f.  
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The basic idea of Kalman filtering is to first update )(),(ˆ nn Px  to preliminary guesses 
)(*),(*ˆ nn Px  by extrapolating from their previous values, applying the known 

dynamics in the time update steps (5.2), and then adjusting these preliminary 
guesses by incorporating the information contained in d(n) – this information enters 
the measurement update in the form of ξ(n), and is accumulated in the Kalman gain 
K(n). 
 
In the case of classical (linear, stationary) Kalman filtering, F(n) and H(n) are constant, 
and the state estimates converge to the true conditional mean state E[x(n) | d(0),..., 
d(n)]. For nonlinear f, hn, this is not generally true, and the use of extended Kalman 
filters leads only to locally optimal state estimates.  
 

5.2 Applying EKF to RNN weight estimation 
 
Assume that there exists a RNN which perfectly reproduces the input-output time 
series of the training data 
 
(5.5) Tnndndnnunun t
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where the input / internal / output / backprojection connection weights are as usual 
collected in N x K / N x N / L x (K+N+L) / N x L  weight matrices 
 
(5.6) )(),(),(),( back

ij
backout

ij
out

ij
in
ij

in wwww ==== WWWW . 
 
In this subsection, we will not distinguish between all these different types of weights 
and refer to all of them by a weight vector w.  
 
In order to apply EKF to the task of estimating optimal weights of a RNN, we interpret 
the weights w of the perfect RNN as the state of a dynamical system. From a bird's 
eye perspective, the output d(n) of the RNN is a function h of the weights and input 
up to n: 
 
(5.7)  ))(),...,0(,()( nn uuwhd =  
 
where we assume that the transient effects of the initial network state have died out. 
The inputs can be integrated into the output function h, rendering it a time-dependent 
function hn. We further assume that the network update contains some process 
noise, which we add to the weights (!) in the form of a Gaussian uncorrelated noise 
q(n). This gives the following version of (5.1) for the dynamics of the perfect RNN: 
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Except for noisy shifts induced by process noise, the state "dynamics" of this system 
is static, and the input u(n) to the network is not entered in the state update equation, 
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but is hidden in the time-dependence of the observation function. This takes some 
mental effort to swallow! 
 
The network training task now takes the form of estimating the (static, perfect) state 
w(n) from an initial guess )0(ŵ  and the sequence of outputs d(0),..., d(n). The error 
covariance matrix P(0) is initialized as a diagonal matrix with large diagonal 
components, e.g. 100.  
 
The simpler form of (5.8) over (5.1) leads to some simplifications of the EKF 
recursions (5.2) and (5.3): because the system state (= weight!) dynamics is now 
trivial, the time update steps become unnecessary. The measurement updates 
become 
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A learning rate η (small at the beginning [!] of learning to compensate for initially bad 
estimates of P(n)) can be introduced into the Kalman gain update equation: 
 
(5.10) 1)]()()()/1)[(()()( −+η= nnnnnn t HPHIHPK , 
 
which is essentially the formulation given in Puskorius and Feldkamp (1994).  
 
Inserting process noise q(n) into EKF has been claimed to improve the algorithm's 
numerical stability, and to avoid getting stuck in poor local minima (Puskorius and 
Feldkamp 1994).  
 
EKF is a second-order gradient descent algorithm, in that it uses curvature 
information of the (squared) error surface. As a consequence of exploiting curvature, 
for linear noise-free systems the Kalman filter can converge in a single step. We 
demonstrate this by a super-simple feedforward network example. Consider the 
single-input, single-output network which connects the input unit with the output unit 
by a connection with weight w, without any internal unit  
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We inspect the running EKF (in the version of (5.9)) at some time n, where it has 
reached an estimate )(ˆ nw . Observing that the Jacobian H(n) is simply dwu(n)/dw = 
u(n), the next estimated state is 
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The EKF is claimed in the literature to exhibit fast convergence, which should have 
become plausible from this example at least for cases where the current estimate 
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)(ˆ nw  is already close to the correct value, such that the linearisation yields a good 
approximation to the true system.  
 
EKF requires the derivatives H(n) of the network outputs w.r.t. the weights evaluated 
at the current weight estimate. These derivatives can be exactly computed as in the 
RTRL algorithm, at cost O(N4). This is too expensive but for small networks. 
Alternatively, one can resort to truncated BPTT, use a "stacked" version of (5.8) 
which describes a finite sequence of outputs instead of a single output, and obtain 
approximations to H(n) by a procedure analogous to (2.14) – (2.17). Two variants of 
this approach are detailed out in Feldkamp et al. (1998). The cost here is O(pN2), 
where p is the truncation depth.  
 
Apart from the calculation of H(n), the most expensive operation in EKF is the update 
of P(n), which requires O(LN2) computations. By setting up the network architecture 
with suitably decoupled subnetworks, one can achieve a block-diagonal P(n), with 
considerable reduction in computations (Feldkamp et al. 1998).  
 
As far as I have an overview, it seems to me that currently the best results in RNN 
training are achieved with EKF, using truncated BPTT for estimating H(n), 
demonstrated especially in many remarkable achievements from Lee Feldkamp's 
research group (see references). As with BPTT and RTRL, the eventual success and 
quality of EKF training depends very much on professional experience, which guides 
the appropriate selection of network architecture, learning rates, the subtelties of 
gradient calculations, presentation of input (e.g., windowing techniques), etc.  
 
 
6. Echo state networks 

6.1 Training echo state networks 

6.1.1 First example: a sinewave generator 
 
In this subsection I informally demonstrate the principles of echo state networks 
(ESN) by showing how to train a RNN to generate a sinewave. 
 
The desired sinewave is given by d(n) = 1/2 sin(n/4). The task of generating such a 
signal involves no input, so we want a RNN without any input units and a single 
output unit which after training produces d(n). The teacher signal is a 300-step 
sequence of d(n).  
 
We start by constructing a recurrent network with 20 units, whose internal connection 
weights W are set to random values. We will refer to this network as the "dynamical 
reservoir" (DR). The internal weights W will not be changed in the training described 
later in this subsection. The network's units are standard sigmoid units, as in Eq. 
(1.6), with a transfer function f = tanh. 
 
A randomly constructed RNN, such as our DR, might develop oscillatory or even 
chaotic acitivity even in the absence of external excitation. We do not want this to 
occur: The ESN approach needs a DR which is damped, in the sense that if the 
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network is started from an arbitrary state x(0), the subsequent network states 
converge to the zero state. This can be achieved by a proper global scaling of W: the 
smaller the weights of W, the stronger the damping. We assume that we have scaled 
W such that we have a DR with modest damping. Fig. 6.1 shows traces of the 20 
units of our DR when it was started from a random initial state x(0). The desired 
damping is clearly visible. 
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Figure 6.1. The damped dynamics of our dynamical reservoir.  
 
 
We add a single output unit to this DR. This output unit features connections that 
project back into the DR. These backprojections are given random weights Wback, 
which are also fixed and do not change during subsequent training. We use a linear 
output unit in this example, i.e. fout = id. 
 
The only connections which are changed during learning are the weights Wout from 
the DR to the output unit. These weights are not defined (nor are they used) during 
training. Figure 6.2 shows the network prepared for training.  
 
 

linear output 
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fixed before 
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trained:

 
 
Figure 6.2: Schematic setup of ESN for training a sinewave generator. 
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The training is done in two stages, sampling and weight computation.  
 
Sampling. During the sampling stage, the teacher signal is written into the output 
unit for times n = 1,....,300. (Writing the desired output into the output units during 
training is often called teacher forcing). The network is started at time n = 1 with an 
arbitrary starting state; we use the zero state for starting but that is just an arbitrary 
decision. The teacher signal d(n) is pumped into the DR through the backprojection 
connections Wback and thereby excites an activation dynamics within the DR. Figure 
6.3 shows what happens inside the DR for sampling time steps n = 101,...,150.  
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Figure 6.3. The dynamics within the DR induced by teacher-forcing the sinewave 
d(n) in the output unit. 50-step traces of the 20 internal DR units and of the teacher 
signal (last plot) are shown.  
 
We can make two important observations: 
 

1. The activation patterns within the DR are all periodic signals of the same 
period length as the driving teacher d(n).  

2. The activation patterns within the DR are different from each other.  
 
During the sampling period, the internal states x(n) = (x1(n),...,x20(n)) for n = 101, ..., 300 
are collected into the rows of a state-collecting matrix M of size 200x20. At the same 
time, the teacher outputs d(n) are collected into the rows of a matrix T of size 200x1.  
 
We do not collect information from times n = 1, ..., 100, because the network's 
dynamics is initially partly determined by the network's arbitrary starting state. By 
time n = 100, we can safely assume that the effects of the arbitrary starting state have 
died out and that the network states are a pure reflection of the teacher-forced d(n), 
as is manifest in Fig. 6.3. 
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Weight computation. We now compute 20 output weights wi
out for our linear output 

unit y(n) such that the teacher time series d(n) is approximated as a linear 
combination of the internal activation time series xi(n) by   
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More specifically, we compute the weights wi

out such that the mean squared training 
error  
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is minimized.  
 
From a mathematical point of view, this is a linear regression task: compute 
regression weights wi

out for a regression of d(n) on the network states xi(n). [n = 101, 
..., 300].   
 
From an intuitive-geometrical point of view, this means combining the 20 internal 
signals seen in Fig. 6.3 such that the resulting combination best approximates the 
last (teacher) signal seen in the same figure.  
 
From an algorithmical point of view, this offline computation of regression weights 
boils down to the computation of a pseudoinverse: The desired weights which 
minimize MSEtrain are obtained by multiplying the pseudoinverse of M with T: 
 
(6.3) TMW 1out −=  
 
Computing the pseudoinverse of a matrix is a standard operation of numerical linear 
algebra. Ready-made functions are included in Mathematica and Matlab, for 
example.  
 
In our example, the training error computed by (6.2) with optimal output weights 
obtained by (6.3) was found to be MSEtrain.= 1.2e–13.  
 
The computed output weights are implemented in the network, which is then ready 
for use. 
 
Exploitation. After the learnt output weights were written into the output connections, 
the network was run for another 50 steps, continuing from the last training network 
state x(300), but now with teacher forcing switched off. The output y(n) was now 
generated by the trained network all on its own [n = 301, ..., 350]. The test error 
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was found to be MSEtest.= 5.6e–12. This is greater than the training error, but still very 
small. The network has learnt to generate the desired sinewave very precisely. An 
intuitive explanation of this precision would go as follows: 
 

• The sinewave y(n) at the output unit evokes periodic signals xi(n) inside the DR 
whose period length is identical to that of the output sine.  

• These periodic signals make a kind of "basis" of signals from which the target 
y(n) is combined. This "basis" is optimally "pre-adapted" to the target in the 
sense of identical period length. This pre-adaptation is a natural consequence 
of the fact that the "basis" signals xi(n) have been induced by the target itself, 
via the feedback projections.  

 
So, in a sense, the task [to combine y(n) from xi(n)] is solved by means [the xi(n)] 
which have been formed by the very task [by the backprojection of y(n) into the DR]. 
Or said in intuitive terms, the target signal y(n) is re-constituted from its own echos 
xi(n)! 
 
An immediate question concerns the stability of the solution. One may rightfully 
wonder whether the error in testing phase, small as it was in the first 50 steps, will 
not grow over time and finally render the network's global oscillation unstable. That 
is, we might suspect that the precise continuation of the sine output after the training 
is due to the fact that we start testing from state x(300), which was produced by 
teacher forcing. However, this is not usually the case. Most networks trained 
according to the prescription given here can be started from almost any arbitrary 
nonzero starting state and will lock into the desired sinewave. Figure 6.4 shows an 
example. In mathematical terms, the trained network is a dynamical system with a 
single attractor, and this attractor is the desired oscillation. However, the strong 
stability observed in this example is a pleasant side-effect of the simplicity of the 
sinewave generating task. When the tasks become more difficult, the stability of the 
trained dynamics is indeed a critical issue for ESN training.  
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Figure 6.4: Starting the trained network from a random starting state. Plot shows first 
50 outputs. The network quickly settles into the desired sinewave oscillation.  
 
 

6.1.2 Second Example: a tuneable sinewave generator 
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We now make the sinewave generation task more difficult by demanding that the 
sinewave be adjustable in frequency. The training data now consists of an input 
signal u(n), which sets the desired frequency, and an output d(n), which is a sinewave 
whose frequency follows the input u(n). Figure 6.5 shows the resulting network 
architecture and a short sequence of teacher input and output.  
 
 
 
 
 
 
 
 
 
 
Figure 6.5: Setup of tuneable sinewave generator task. Trainable connections 
appear as dotted red arrows, fixed connections as solid black arrows.  
 
 
Because the task is now more difficult, we use a larger DR with 100 units. In the 
sampling period, the network is driven by the teacher data. This time, this involves 
both inputting the slow signal u(n), and teacher-forcing the desired output d(n). We 
inspect the resulting activation patterns of internal units and find that they reflect, 
combine, and modify both u(n) and d(n) (Figure 6.6).  
 

u t( ) d t( )

four internal states
 

 
Figure 6.6: Traces of some internal DR units during the sampling period in the 
tuneable frequency generation task.  
 
In this example we use a sigmoid output unit. In order to make that work, during 
sampling we collect into T not the raw desired output d(n) but the transfer-inverted 
version tanh-1(d(n)). We also use a longer training sequence of 1200 steps of which 
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we discard the first 200 steps as initial transient. The training error which we 
minimize concerns the tanh-inverted quantities: 
 
(6.5)
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This is achieved, as previously, by computing TMW 1out −= . The training error was 
found to be 8.1e-6, and the test error on the first 50 steps after inserting the computed 
output weights was 0.0006. Again, the trained network stably locks into the desired 
type of dynamics even from a random starting state, as displayed in Figure 6.7. 
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Figure 6.7 Starting the trained generator from a random starting state.  
 
Stability of the trained network was not as easy to achieve here as in the previous 
example. In fact, a trick was used which was found empirically to foster stable 
solutions. The trick is to insert some noise into the network during sampling. That is, 
during sampling, the network was updated according to the following variant of (1.6): 
 

(6.6) )),()()()1(()1( nnnnn backin ν++++=+ yWWxuWfx  
 
where ν(n) is a small white noise term.  
 
 

6.2 Training echo state networks: mathematics of echo states 
 
In the two introductory examples, we rather vaguely said that the DR should exhibit a 
"damped" dynamics. We now describe in a rigorous way what kind of "damping" is 
required to make the ESN approach work, namely, that the DR must have echo 
states.  
 
The key to understanding ESN training is the concept of echo states. Having echo 
states (or not having them) is a property of the network prior to training, that is, a 
property of the weight matrices Win, W, and (optionally, if they exist) Wback. The 
property is also relative to the type of training data: the same untrained network may 
have echo states for certain training data but not for others. We therefore require that 
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the training input vectors u(n) come from a compact interval U and the training output 
vectors d(n) from a compact interval D. We first give the mathematical definition of 
echo states and then provide an intuitive interpretation. 
 

Definition 6.1 (echo states). Assume an untrained network with weights Win, 
W, and Wback is driven by teacher input u(n) and teacher-forced by teacher 
output d(n) from compact intervals U and D. The network (Win, W, Wback) has 
echo states w.r.t. U and D, if for every left-infinite input/output sequence (u(n), 
d(n-1)), where n = ..., -2,-1,0, and for all state sequences x(n), x'(n) compatible 
with the teacher sequence, i.e. with 
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it holds that x(n) = x'(n) for all n ≤  0.  

 
Intuitively, the echo state property says, "if the network has been run for a very long 
time [from minus infinity time in the definition], the current network state is uniquely 
determined by the history of the input and the (teacher-forced) output". An equivalent 
way of stating this is to say that for every internal signal xi(n) there exists an echo 
function ei which maps input/output histories to the current state: 
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We often say, somewhat loosely, that a (trained) network (Win, W, Wout, Wback) is an 
echo state network if its untrained "core" (Win, W, Wback) has the echo state property 
w.r.t. input/output from any compact interval UxD.  
 
Several conditions, which have been shown to be equivalent to echo states, are 
collected in Jaeger (2001a). We provide one for illustration. 
 

Definition 6.2 (state contracting). With the same assumptions as in Def. 6.1, 
the network (Win, W, Wback) is state contracting w.r.t. U and D, if for all right-
infinite input/output sequences (u(n), d(n-1)) ∈ UxD, where n = 0,1,2,... there 
exists a null sequence (δn)n ≥ 1, such that for all starting states x(0), x'(0) and for 
all n>0 it holds that | x(n) − x'(n) | < δn , where x(n) [resp. x'(n)] is the network 
state at time n obtained when the network is driven by (u(n), d(n-1)) up to time 
n after having been started in x(0), [resp. in x'(0)]. 

 
Intuitively, the state forgetting property says that the effects on initial network state 
wash out over time. Note that there is some subtelty involved here in that the null 
sequence used in the definition depends on the the input/output sequence.  
 
The echo state property is connected to algebraic properties of the weight matrix W. 
Unfortunately, there is no known necessary and sufficient algebraic condition which 
allows one to decide, given (Win, W, Wback), whether the network has the echo state 
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property. For readers familiar with linear algebra, we quote here from Jaeger (2001) 
a sufficient condition for the non-existence of echo states.  
 

Proposition 6.1 Assume an untrained network (Win, W, Wback) with state 
update according to (1.6) and with transfer functions tanh. Let W have a 
spectral radius |λmax| > 1, where |λmax| is the largest absolute value of an 
eigenvector of W. Then the network has no echo states with respect to any 
input/output interval U x D containing the zero input/output (0,0).  

 
At face value, this proposition is not helpful for finding echo state networks. However, 
in practice it was consistently found that when the condition noted in Proposition 6.1 
is not satisfied, i.e. when the spectral radius of the weight matrix is smaller than unity, 
we do have an echo state network. For the mathematically adventurous, here is a 
conjecture which remains to be shown: 
 

Conjecture 6.1 Let δ,ε be two small positive numbers. Then there exists a 
network size N, such that when an N –sized dynamical reservoir is randomly 
constructed by (1) randomly generating a weight matrix W0 by sampling the 
weights from a uniform distribution over [−1,1], (2) normalizing W0 to a matrix 
W1 with unit spectral radius by putting W1 =1/|λmax| W0, where |λmax| is the 
spectral radius of W0, (3) scaling W1 to W2 = (1− δ) W1, whereby W2 obtains a 
spectral radius of (1− δ), then the network (Win, W3, Wback) is an echo state 
network with probability 1−ε. 

 
Note that both in Proposition 6.1 and Conjecture 6.1 the input and backprojection 
weights are not used for the claims. It seems that these weights are irrelevant for the 
echo state property. In practice, it is found that they can be freely chosen without 
affecting the echo state property. Again, a mathematical analysis of these 
observations remains to be done.  
 
For practical purposes, the following procedure (also used in the conjecture) seems 
to guarantee echo state networks: 
 

1. Randomly generate an internal weight matrix W0.  
2. Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =1/|λmax| 

W0, where |λmax| is the spectral radius of W0. 
3. Scale W1 to W = α W1, where α < 1, whereby W has a spectral radius of  α. 
4. Then, the untrained network (Win, W, Wback) is (or more precisely, has always 

been found to be) an echo state network, regardless of how Win, Wback are 
chosen. 

 
The diligent choice of the spectral radius α of the DR weight matrix is of crucial 
importance for the eventual success of ESN training. This is because α is intimately 
connected to the intrinsic timescale of the dynamics of the DR state. Small α means 
that one has a fast DR, large α (i.e., close to unity) means that one has a slow DR. 
The intrinsic timescale of the task should match the DR timescale. For example, if 
one wishes to train a sine generator as in the example of Subsection 6.1.1, one 
should use a small α for fast sinewaves and a large α for slow sinewaves.  
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Note that the DR timescale seems to depend exponentially on 1−α, so e.g. settings of 
α = 0.99, 0.98, 0.97 will yield an exponential speedup of DR timescale, not a linear 
one. However, these remarks rest only on empirical observations; a rigorous 
mathematical investigation remains to be carried out. An illustrative example for a 
fast task is given in Jaeger (2001, Section 4.2), where very fast "switching"-type of 
dynamics was trained with a DR whose spectral radius was set to 0.44, which is quite 
small considering the exponential nature of time scale dependence on α. Standard 
settings of α lie in a range between 0.7 and 0.98. The sinewave generator presented 
in Section 6.1.1 and the tuneable sinewave generator from Section 6.1.2 both used a 
DR with α = 0.8.  
 
Figure 6.8 gives a plot of the training log error log(MSEtrain) of the sinewave generator 
training task considered in Section 6.1.1 obtained with different settings of α. It is 
evident that a proper setting of this parameter is crucial for the quality of the resulting 
generator network.  
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Figure 6.8: log10(MSEtrain) vs. spectral radius of the DR weight matrix for the 
sinewave generator experiment from Section 6.1.1. 
 
 

6.3 Training echo state networks: algorithm 
 
With the solid grasp on the echo state concept procured by Section 6.2, we can now 
give a complete description of training ESNs for a given task. In this description we 
assume that the output unit(s) are sigmoid units; we further assume that there are 
output-to-DR feedback connections. This is the most comprehensive version of the 
algorithm. Often one will use simpler versions, e.g. linear output units; no output-to-
DR feedback connections; or even systems without input (such as the pure sinewave 
generator). In such cases, the algorithm presented below has to be adapted in 
obvious ways.  
 
Given: A training input/output sequence (u(1), d(1)), ..., (u(T), d(T)).  
 
Wanted: A trained ESN (Win, W, Wback, Wout) whose output y(n) approximates the 
teacher output d(n), when the ESN is driven by the training input u(n).  
 
Notes: 
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1. We can merely expect that the trained ESN approximates the teacher output 

well after initial transient dynamics have washed out, which are invoked by the 
(untrained, arbitrary) network starting state. Therefore, more precisely what we 
want is that the trained ESN approximates the teacher output for times n = T0, 
..., T, where T0 > 1. Depending on network size and intrinsic timescale, typical 
ranges for T0 are 10 (for small, fast nets) to 500 (for large, slow nets).  

2. What we actually want is not primarily a good approximation of the teacher 
output, but more importantly, a good approximation of testing output data from 
independent test data sets generated by the same (unknown) system which 
also generated the teacher data. This leads to the question of how good 
generalization performance of a trained model can be ascertained, a far from 
trivial topic. This question is central to statistical learning theory, and we 
simply ignore it in this tutorial. However, if one wishes to achieve real-world 
problem solutions with blackbox models, it becomes mandatory to deal with 
this issue.  

 
Step 1. Procure an untrained DR network (Win, W, Wback) which has the echo state 
property, and whose internal units exhibit mutually interestingly different dynamics 
when excited.  
 
This step involves many heuristics. The way I proceed most often involves the 
following substeps. 
 

1. Randomly generate an internal weight matrix W0.  
2. Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =1/|λmax| 

W0, where |λmax| is the spectral radius of W0. Standard mathematical packages 
for matrix operations all include routines to determine the eigenvalues of a 
matrix, so this is a straightforward thing.  

3. Scale W1 to W = α W1, where α < 1, whereby W obtains a spectral radius of  α. 
4. Randomly generate input weights Win and output backpropagation weights 

Wback. Then, the untrained network (Win, W, Wback) is (or more honestly, has 
always been found to be) an echo state network, regardless of how Win, Wback 
are chosen. 

 
Notes: 
 

1. The matrix W0 should be sparse, a simple method to encourage a rich variety 
of dynamics of different internal units. Furthermore, the weights should be 
roughly equilibrated, i.e. the mean value of weights should be about zero. I 
usually draw nonzero weights from a uniform distribution over [– 1, 1], or I set 
nonzero weights randomly to –1 or 1.  

2. The size N of W0 should reflect both the length T of training data, and the 
difficulty of the task. As a rule of thumb, N should not exceed an order of 
magnitude of T/10 to T/2 (the more regular-periodic the training data, the closer 
to T/2 can N be chosen). This is a simple precaution against overfitting. 
Furthermore, more difficult tasks require larger N.  

3. The setting of α is crucial for subsequent model performance. It should be 
small for fast teacher dynamics and large for slow teacher dynamics, 



 31 

according to the observations made above in Section 6.2. Typically, α needs 
to be hand-tuned by trying out several settings.  

4. The absolute size of input weights Win is also of some importance. Large 
absolute Win imply that the network is strongly driven by input, small absolute 
values mean that the network state is only slightly excited around the DR's 
resting (zero) state. In the latter case, the network units operate around the 
linear central part of the sigmoid, i.e. one obtains a network with an almost 
linear dynamics. Larger Win drive the internal units closer to the saturation of 
the sigmoid, which results in a more nonlinear behavior of the resulting model. 
In the extreme, when Win becomes very large, the internal units will be driven 
into an almost pure – 1 / +1 valued, binary dynamics. Again, manual 
adjustment and repeated learning trials will often be required to find the task-
appropriate scaling.  

5. Similar remarks hold for the absolute size of weights in Wback.  
 
 
Step 2. Sample network training dynamics.  
 
This is a mechanical step, which involves no heuristics. It involves the following 
operations: 
 

1. Initialize the network state arbitrarily, e.g. to zero state x(0) = 0.  
2. Drive the network by the training data, for times n = 0, ..., T, by presenting the 

teacher input u(n), and by teacher-forcing the teacher output d(n-1), by 
computing  
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3. At time n = 0, where d(n) is not defined, use d(n) = 0.  
4. For each time larger or equal than an initial washout time T0, collect the 

concatenated input/reservoir/previous-output states (u(n) x(n) y(n –1)) as a new 
row into a state collecting matrix M. In the end, one has obtained a state 
collecting matrix of size (T – T0 +1 ) x (K + N + L).  

5. Similarly, for each time larger or equal to T0, collect the sigmoid-inverted 
teacher output tanh-1d(n) row-wise into a teacher collection matrix T, to end up 
with a teacher collecting matrix T of size (T – T0 +1 ) x L. 

 
Note: Be careful to collect into M and T the vectors x(n) and tanh-1d(n), not x(n) and 
tanh-1d(n-1)! 
 
Step 3: Compute output weights. 
 

1. Concretely, multiply the pseudoinverse of M with T, to obtain a (K + N + L) 
x L sized matrix (Wout)t whose i-th column contains the output weights from 
all network units to the i -th output unit: 
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Every programming package of numerical linear algebra has optimized 
procedures for computing pseudoinverses. 

2. Transpose (Wout)t to Wout in order to obtain the desired output weight 
matrix. 

 
Step 4: Exploitation. 
 
The network (Win, W, Wback, Wout) is now ready for use. It can be driven by novel input 
sequences u(n), using the update equations (1.6) and (1.7), which we repeat here for 
convenience: 
 

(1.6) )),()()1(()1( nnnn backin yWWxuWfx +++=+  

(1.7) )).(),1(),1((()1( nnnn outout yxuWfy ++=+  
 
Variants.  
 

1. If stability problems are encountered when using the trained network, it 
very often helps to add some small noise during sampling, i.e. to use an 
update equation  

 

(6.12) )),()()()1(()1( nnnnn backin ν++++=+ dWWxuWfx  
 

where ν(n) is a small uniform white noise term (typical sizes 0.0001 to 
0.01). The rationale behind this is explained in Jaeger 2001.  

2. Often one does not desire to have trained output-to-output connections. In 
that case, collect during sampling only network states stripped off the 
output unit values, which will yield a (K + N ) x L sized matrix Wout. In 
exploitation, instead of (1.7) use  
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3. When the system to be modeled is highly nonlinear, better models are 
sometimes obtained by using "augmented" network states for training and 
exploitation. This means that in addition to the original network states x(n), 
nonlinear transformations thereof are also included into the game. A simple 
case is to include the squares of the original state. During sampling, 
instead of collecting pure states x(n) = (x1(n), ..., xK+N+L(n)), collect the 
double-sized "augmented" states (x(n), x2(n))  = (x1(n), ..., xK+N+L(n), x1

2(n), ..., 
xK+N+L

2 (n)) into the state collecting matrix. This will yield an output weight 
matrix Wout of size L x 2(K + N + L). During exploitation, instead of (1.7) use 
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The paper (Jaeger 2002) uses augmented states.  
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6.4 Why echo states? 
 
Why must the DR have the echo state property to make the approach work?  
 
From the perspective of systems engineering, the (unknown) system's dynamics is 
governed by an update equation of the form  
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where e is a (possibly highly complex, nonlinear) function of the previous inputs and 
system outputs. (6.13) is the most general possible way of describing a deterministic, 
stationary system. In engineering problems, one typically considers simpler versions, 
for example, where e is linear and has only finitely many arguments (i.e., the system 
has finite memory). Here we will however consider the fully general version (6.13).   
 
The task of finding a black-box model for an unknown system (6.13) amounts to 
finding a good approximation to the system function e. We will assume an ESN with 
linear output units to facilitate notation. Then, the network output of the trained 
network is a linear combination of the network states, which in turn are governed by 
the echo functions, see (6.9). We observe the following connection between (6.13) 
and (6.9): 
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It becomes clear from (6.14) how the desired approximation of the system function e 
can be interpreted as a linear combination of echo functions ei. This transparent 
interpretatation of the system approximation task directly relies on the interpretation 
of network states as echo states. The arguments of e and ei are identical in nature: 
both are collections of previous inputs and system (or network, respectively) outputs. 
Without echo states, one could neither mathematically understand the relationship 
between network output and original system output, nor would the training algorithm 
work.  
 
 

6. 5 Liquid state machines 
 
An approach very similar to the ESN approach has been independently explored by 
Wolfgang Maass et al. at Graz Technical University. It is called the "liquid state 
machine" (LSM) approach. Like in ESNs, large recurrent neural networks are 
conceived as a reservoir (called "liquid" there) of interesting excitable dynamics, 
which can be tapped by trainable readout mechanisms. LSMs compare with ESNs as 
follows: 
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• LSM research focuses on modeling dynamical and representational 

phenomena in biological neural networks, whereas ESN research is aimed 
more at engineering applications. 

• The "liquid" network in LSMs is typically made from biologically more 
adequate, spiking neuron models, whereas ESNs "reservoirs" are typically 
made up from simple sigmoid units.  

• LSM research considers a variety of readout mechanisms, including trained 
feedforward networks, whereas ESNs typically make do with a single layer of 
readout units.  

 
An introduction to LSMs and links to publications can be found at 
http://www.lsm.tugraz.at/.  
 
 
 
7. Short term memory in ESNs 
 
Many time-series processing tasks involve some form of short term memory (STM). 
By short-term memory we understand the property of some input-output systems, 
where the current output y(n) depends on earlier values u(n-k) of the input and/or 
earlier values y(n-k) of the output itself. This is obvious, for instance, in speech 
processing. Engineering tasks like suppressing echos in telephone channels or the 
control of chemical plants with attenuated chemical reactions require system models 
with short-term memory capabilities. 
 
We saw in Section 6 that the DR unit's activations xi(n) can be understood in terms of 
echo functions ei which maps input/output histories to the current state. We repeat 
the corresponding Equation (6.9) here for convenience: 
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The question which we will now investigate more closely is how many of the previous 
inputs/output arguments (u(n-k), y(n-k-1)) are actually relevant for the echo function? 
or asked in other words, how long is the effective short-term memory of an ESN? 
 
A good intiuitive grasp on this issue is important for successful practical work with 
ESNs because as we will see, with a suitable setup of the DR, one can control to 
some extent the short-term memory characteristics of the resulting ESN model.  
 
We will provide here only an intuitive introduction; for a more detailed treatment 
consult the technical report devoted to short-term memory (Jaeger 2001a) and the 
mathematically-oriented Master thesis (Bertschinger 2002).  
 



 35 

7.1 First example: training an ESN as a delay line 
 
Much insight into the STM of ESNs can be gained when we train ESNs on a pure 
STM task. We consider an ESN with a single input channel and many output 
channels. The input u(n) is a white noise signal generated by sampling at each time 
independently from a uniform distribution over [–0.5, 0.5]. We consider delays k = 1, 2, 
... . For each delay k, we train a separate output unit with the training signal dk(n) = 
u(n-k). We do not equip our network with feedback connections from the output units 
to the DR, so all output units can be trained simultaneously and independently from 
each each other. Figure 7.1 depicts the setup of the network.  
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Figure 7.1: Setup of delay learning task. 
 
Concretely, we use a 20-unit DR with a connectivity of 15%, that is, 15% of the 
entries of the weight matrix W are non-null. The non-null weights were sampled 
randomly from a uniform distribution over [–1,1], and the resulting weigth matrix was 
rescaled to a spectral radius of α = 0.8, as described in Section 6.2. The input 
weights were put to values of –0.1 or +0.1  with equal probability. We trained 4 output 
units with delays of k = 4, 8, 16, 20. The training was done over 300 time steps, of 
which the first 100 were discarded to wash out initial transients. On test data, the 
trained network showed testing mean square errors of MSEtest.= 0.0000047, 0.00070, 
0.040, 0.12 for the four trained delays. Figure 7.2 (upper diagrams) shows an overlay 
of the correct delayed signals (solid line) with the trained network output.  
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Figure 7.2: Results of training delays k = 4, 8, 16, 20 with a 20-unit DR. Top row: input 
weights of size –0.1 or +0.1, bottom row: input weights sized –0.001 or +0.001. 
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When the same experiment is redone with the same DR, but with much smaller input 
weights set to random values of –0.001 or +0.001, the performance greatly improves: 
testing errors MSEtest.= 0.000035, 0.000038, 0.000034, 0.0063 are now obtained.  
 
Three fundamental observations can be gleaned from this simple example: 
 

1. The network can master the delay learning task, which implies that the current 
network state x(n) retains extractable information about previous inputs u(n-k).  

2. The longer the delay, the poorer the delay learning performance. 
3. The smaller the input weights, the better the performance. 

 
 

7.2 Theoretical insights 
 
I now report some theoretical findings (from Jaeger 2001a), which explain the 
observations made in the previous subsection.  
 
First, we need a precise version of the intuitive notion of "network performance for 
learning the k-delay task". We consider the correlation coefficient r(u(n-k), yk(n)) 
between the correct delayed signal u(n-k) and the network ouput yk(n) of the unit 
trained on the delay k. It ranges between –1 and 1. By squaring it, we obtain a 
quantity called in statistics the determination coefficient r2(u(n-k), yk(n)). It ranges 
between 0 and 1. A value of 1 indicates perfect correlation between correct signal 
and network output,k a value of 0 indicates complete loss of correlation. (In statistical 
terms, the determination coefficient gives the proportion of variance in one signal 
explained by the other). Perfect recall of the k –delayed signal thus would be 
indicated by r2(u(n-k), yk(n)) = 1, complete failure by r2(u(n-k), yk(n)) = 0.  
 
Next, we define the overall delay recalling performance of a network, as the sum of 
this coefficient over all delays. We define the memory capacity MC of a network by 
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Without proof, we cite (from Jaeger 2001a) some fundamental results concerning the 
memory capacity of ESNs: 
 
Theorem 7.1. In a network whose DR has N nodes, MC ≤ N. That is, the maximal 
possible memory capacity is bounded by DR size.  
 
Theorem 7.2. In a linear network with N nodes, generically MC = N. That is, a linear 
network will generically reach maximal network capacity. Notes: (i) a linear network is 
a network whose internal units have a linear transfer function, i.e. f = id. (ii) 
"Generically" means: if we randomly construct such a network, it will have the desired 
property with probability one.  
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Theorem 7.3. In a linear network, long delays can never be learnt better than short 
delays ("monotonic forgetting") 
 
 
When we plot the determination coefficient against the delay, we obtain the forgetting 
curves of an ESN. Figure 7.3 shows some forgetting curves obtained from various 
400-unit ESNs.  
 
 

 
 
Figure 7.3: Forgetting curves of various 400-unit networks. A: randomly created 
linear DR. B: randomly created sigmoid DR. C: like A, but with noisy state update of 
DR. D: almost unitary weight matrix, linear update. E: same as D, but with noisy state 
update. F: same as D, but with spectral radius α = 0.999. Mind the different scalings 
of the x-axis! 
 
The forgetting curves in Figure 7.3 exhibit some interesting phenomena:  
 

• According to theorem 7.2, the forgetting curve in curve A should reflect a 
memory capacity of 400 (= network size). That is, the area under the curve 
should be 400. However, we find an area (= memory capacity) of about 120 
only. This is due to rounding errors in the network update. The longer the 
delay, the more severe the effect of accumulated rounding errors, which 
reduce the effectively achievable memory capacity.  

• The curve B was generated with a DR made from the same weight matrix as 
in A, but this time, the standard sigmoid transfer funtion tanh was used for 
network update. Compared to A, we observe a drop in memory capacity. It is a 
general empirical observation that the more nonlinear a network, the lower its 
memory capacity. This also explains the finding from Section 7.1, namely, that 
the STM of a network is improved when the input weights are made very 
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small. Very small input weights make the input drive the network only 
minimally around its zero resting state. Around the zero state, the sigmoids 
are almost linear. Thus, small input weights yield an almost linear network 
dynamics, which is good for its memory capacity.  

• Curve C was generated like A, but the (linear) network was updated with a 
small noise term added to the states. As can be expected, this decreases the 
memory capacity. What is worth mentioning is that the effect is quite strong. 
An introductory discussion can be found in Jaeger (2001a), and a detailed 
analytical treatment is given in Bertschinger (2002).  

• The forgetting curve D comes close to the theoretical optimum of MC = 400. 
The trick was to use an almost unitary weight matrix, again with linear DR 
units. Intuitively, this means that a network state x(n), which carries the 
information about the current input, "revolves" around the state space �N 
without interaction with succeeding states, for N update steps. There is more 
about this in Jaeger (2001a) and Bertschinger (2002). 

• The forgetting curve E was obtained from the same linear unitary network as 
D, but noise was added to state update. The corruption of memory capacity is 
less dramatic as in curve C. 

• Finally, the forgetting curve F was obtained by scaling the (linear, unitary) 
network from D to a spectral radius α = 0.999. This leads to long-term 
"reverberations" of input. On the one hand, this yields a forgetting curve with a 
long tail – in fact, it extends far beyond the value of the network size, N = 400. 
On the other hand, "reverberations" of long-time past inputs still occupying the 
present network state lead to poor recall of even the immediately past input: 
the forgetting curve is only about 0.5 right at the beginning. The area under the 
forgetting curve, however, comes close to the theoretical optimum of 400.  

 
For practical purposes, when one needs ESNs with long STM effects, on can resort 
to a combination of the following approaches: 
 

• Use large DRs. This is the most efficient and generally applicable method, but 
it requires sufficiently large training data sets.  

• Use small input weights, to work in the almost linear working range of the 
network. This might conflict with nonlinear task characteristics. 

• Use linear update for the DR. Again, might conflict with nonlinear task 
characteristics. 

• Use specially prepared DRs with almost unitary weight matrices. 
• Use a spectral radius α close to 1. This would work only with "slow" tasks (for 

instance, it would not work if one wants to have fast oscillating dynamics with 
long STM effects).  

 
 
 
8. ESNs with leaky integrator neurons 
 
The ESN approach is not confined to standard sigmoid networks. The basic idea of a 
dynamical reservoir works with any kind of dynamical system which has the echo 
state property. Other kind of systems which one might consider are, for instance,  
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• neural network with biologically more adequate, spiking neuron models (as in 
most of the research on the related "liquid state machines" of Maass et al. 
http://www.lsm.tugraz.at/.), 

• continuous-time neural networks described by differential equations, 
• coupled map lattices, 
• excitable media models and reaction-diffusion systems. 

 
More or less for historical (random) reasons, the ESN approach has so far been 
worked out almost exclusively using standard sigmoid networks. However, one 
disadvantage of these networks is that they do not have a time constant – their 
dynamics cannot be "slowed down" like the dynamics of a differential equation, if one 
would wish to do so. It is, for instance, almost impossible with standard sigmoid 
networks to obtain ESN generators of very slow sinewaves. In this section, we will 
consider ESNs made from a continous-time neuron model, leaky integrator neurons, 
which incorporate a time constant and which can be slowed down. This model was 
first used in an ESN context in Jaeger 2001.  
 

8.1 The neuron model 
 
The continuous-time dynamics x(t) of a leaky integrator neuron is described by the 
differential equation 
 

(8.1) ( ),)(1 xwfaxx +−
τ

=!  

 
where w is the weight vector of connections from all units x which feed into neuron x, 
and f is the neuron's output nonlinearity (typically a sigmoid; we will use tanh again). 
The positive quantity τ is the time constant of this equation – the larger, the slower 
the (otherwise identical) resulting dynamics. The term –ax models a decaying 
potential of the neuron; by virtue of this term, the neuron retains part of its previous 
state. The nonnegative constant a is the neuron's decay constant. The larger a, the 
faster the decay of previous state, and the larger the relative influence of input from 
other neurons. If an entire DR of an ESN is made from leaky integrator neurons xi 
with decay constants ai, we obtain the following DR dynamics: 
 

(8.2) ( ),)(1 yWxWuWfAxx backin +++−
τ

=!  

 
where A is a diagonal matrix with the decay constants on its diagonal. In order to 
sumulate (8.2) on digital machines, we must discretize it by some stepsize δ. An 
approximate discretized version, which gives δ-time increments of the DR state for 
each discrete simulation step n, reads like this: 
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τ
δ
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τ
δ

−=+  
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where I is the identity matrix. For numerical stability reasons, δ, τ, A must be chosen 
such that the matrix I - δ/τ A has no entry of absolute value greater or equal to 1. In 
the following we consider only the case δ = τ = 1, whereby (8.3) simplifies to  
 
(8.4) )).()()1(()()()1( nnnnn backin yWxWuWfxAIx ++++−=+  
 
By substituting 1 - ai with the "retainment rate" ri = 1 - ai, we arrive at the more 
convenient version 
 
(8.5) )),()()1(()()1( nnnnn backin yWxWuWfxRx ++++=+  
 
where R is a diagonal matrix with the retainment rates. The retainment rates must 
range between 0 ≤ ri < 1. A value of zero means that the unit does not retain any 
information about its previous state; the unit's dynamics then degenerates to the kind 
of standard sigmoid units which we used in previous sections. A value close to 1 
means that the unit's dynamics is dominated by retaining (most of) its previous state.  
 
Choosing appropriate values for R and W becomes a more subtle task than choosing 
W in standard sigmoid DRs. Two effects have to be considered: the echo state 
property must be ensured, and the absolute values of resulting network states should 
be kept small enough. We consider both effects in turn, in reverse order.  
 
Small enough network states. Because of the (leaky) integration nature of (8.4), 
activation states of arbitrary size can build up. These are fed into the sigmoid f by 
virtue of the second term in (8.5). f can easily be driven into saturation due to the 
integration-buildup of state values. Then, the second term in (8.5) will yield 
essentially a binary, [-1, 1]-valued contribution, and the network dynamics will tend to 
oscillate. A way to avoid this condition is to use a weight matrix W with small values. 
Since the tendency to grow large activation states is connected to the retainment 
rates (larger rates lead to stronger growth), an ad-hoc counter-measure is to 
"renormalize" states by multiplication with I – R before feeding them into f. That is, 
one uses 
 
(8.6) ))()()()1(()()1( nnnnn backin yWxWRIuWfxRx +−+++=+  
 
instead of (8.5).  
 
Echo state property. It can be shown (a simple linearization argument, see Jaeger 
2001) that the echo state property does not hold if the matrix (I - R)W + R has a 
spectral radius greater or equal to 1 (this refers to an update according to (8.6); if 
(8.5) is used, consider the spectral radius of W + R instead). Conversely, and 
similarly as discussed in Section 6 (discussion of Proposition 6.1), empirically it has 
always been found that the echo state property does hold when (I - R)W + R has a 
spectral radius smaller than 1.  
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8.2 Example: slow sinewave generator 
 
Like in Section 6.1, we consider the task of generating a sinewave, using an ESN 
with a single output unit and no input. This time, however, the desired sinewave is 
very slow: we want d(n) = 1/5 sin(n/100). This is hard to impossible to achieve with 
standard sigmoid ESNs, but easy with a leaky integrator network. 
 
We select again a 20-unit DR, whose weight matrix has sparse connectivity of 20% 
and which is scaled to a spectral radius of 0.2. We choose a retainment rate of 0.98 
for all units. Output feedback connection weights are sampled from a uniform 
distribution over [-1, 1]. Training is run over 4000 steps, of which the first 2000 are 
discarded. A long initial washout is required here because the retainment rates close 
to 1 imply a long initial transient – after all, we are dealing with slow dynamics here 
(2000 steps of sampling boil down to roughly 3 cycles of the sinewave).  
 
This task is found to easily lead to unstable solutions. Some hand-tuning is 
necessary to find appropriate scaling ranges for R and W. Additionally, it is essential 
that during sampling a small noise term (of size 0.000001) is added to network states. 
With the settings mentioned above and this noise term, the training produced 10 
stable solutions in 10 runs with different, randomly generated weight matrices. The 
test MSEs obtained on a 2000 step test sequence ranged between 1.8e-6 and 3.0e-7.  
 
 
 
9. Tricks of the trade 
 
The basic idea of ESNs for black-box-modeling can be condensed into the following 
statement:  
 
"Use an excitable system [the DR] to give a high-dimensional dynamical 
representation of the task input dynamics and/or output dynamics, and extract from 
this reservoir of task-related dynamics a suitable combination to make up the desired 
target signal."   
 
Obviously, the success of the modeling task depends crucially on the nature of the 
excited dynamics – it should be adapted to the task at hand. For instance, if the 
target signal is slow, the excited dynamics should be slow, too. If the target signal is 
very nonlinear, the excited dynamics should be very nonlinear, too. If the target 
signal involves long short-term memory, so should the excited dynamics. And so 
forth.  
 
Successful application of the ESN approach, then, involves a good judgement on 
important characteristics of the dynamics excited inside the DR. Such judgement can 
only grow with the experimenter's personal experience. However, a number of 
general practical hints can be given which will facilitate this learning process. All hints 
refer to standard sigmoid networks.  
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Plot internal states 
 
Since the dynamics within the DR is so essential for the task, you should always 
visually inspect it. Plot some of the internal units xi(n) during sampling and/or testing. 
These plots can be very revealing about the cause of failure. If things don't go well, 
you will frequently observe in these plots one or two of the following misbehaviors: 
 

• Fast oscillations. In tasks where you don't want fast oscillations, this 
observation indicates a too large spectral radius of the weight matrix W, 
and/or too large values of the output feedback weights (if they exist). Remedy: 
scale them down. 

• Almost saturated network states. Sometimes you will observe that the DR 
units almost always take extreme values near 1 or –1. This is caused by a 
large impact of incoming signals (input and/or output feedback). It is only 
desirable when you want to achieve some almost binary, "switching" type of 
target dynamics. Otherwise it's harmful. Remedy: scale down the input and/or 
output feedback weights.  

 
Plot output weights 
 
You should always inspect the output weights obtained from the learning procedure. 
The easiest way to do this is to plot them. They should not become too large. 
Reasonable absolute values are not greater than, say, 50. If the learnt output weights 
are in the order of 1000 and larger, one should attempt to bring them down to smaller 
ranges. Very small values, by contrast, do not indicate anything bad.  
 
When judging the size of output weights, however, you should put them into relation 
with the range of DR states. If the DR is only minimally excited (let's say, DR unit 
activations in the range of 0.005 – this would for instance make sense in almost 
linear tasks with long-term memory characteristics), and if the desired output has a 
range up to 0.5, then output weights have to be around 100 just in order to scale up 
from the internal state range to the output range.  
 
If after factoring out the range-adaptation effect just mentioned, the output weights 
still seem unreasonably large, you have an indication that the DR's dynamics is 
somehow badly adapted to your learning task. This is because large output weights 
imply that the generated output signal exploits subtle differences between the DR 
unit's dynamics, but does not exploit the "first order" phenomena inside the DR (a 
more mathematical treatment of large output weights can be found in Jaeger 
(2001a)).  
 
It is not easy to suggest remedies against too large output weights, because they are 
an indication that the DR is generally poorly matched with the task. You should 
consider large output values as a symptom, not as the cause of a problem. Good 
doctors do not cure the symptoms, but try to address the cause.  
 
Large output values will occur only in high-precision tasks, where the training 
material is mathematical in origin and intrinsically very accurate. Empirical training 
data will mostly contain some random noise component, which will lead to 
reasonably scaled output weights anyway. Adding noise during training is a safe 
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method to scale output weights down, but is likely to impair the desired accuracy as 
well. 
 
Find a good spectral radius 
 
The single most important knob to tune an ESN is the spectral radius of the DR 
weight matrix. The general rule: for fast, short-memory tasks use small α, for slow, 
long-memory tasks use large α. Manual experimentation will be necessary in most 
cases. One does not have to care about finding the precise best value for α, 
however. The range of optimal settings is relatively broad, so if an ESN works well 
with α = 0.8, it can also be expected to work well with α = 0.7 and with α = 0.85. The 
closer you get to 1, the smaller the region of optimality.  
 
Find an appropriate model size 
 
Generally, with larger DR one can learn more complex dynamics, or learn a given 
dynamics with greater accuracy. However, beware of overfitting: if the model is too 
powerful (i.e. the DR too large), irrelevant statistical fluctuations in the training data 
will be learnt by the model. That leads to poor generalization on test data. Try 
increasing network sizes until performance on test data deteriorates.  
 
The problem of overfitting is particularly important when you train on empirical, noisy 
data. It is not theoretically quite clear (at least not to me) whether the concept of 
overfitting also carries over to non-statistical, deterministic, 100%-precisely defined 
training tasks, for example training a chaotic attractor described by a differential 
equation (as in Jaeger 2001). The best results I obtained in that task were achieved 
with a 1000-unit network trained on 2000 data points, which means that 1000 
parameters were estimated from 2000 data points. For empirical, statistical tasks, 
this would normally lead to overfitting (a rule of thumb in statistical learning is to have 
at least 10 data points per estimated parameter).   
 
Add noise during sampling 
 
When you are training an ESN with output feedback from accurate (mathematical, 
noise-free) training data, stability of the trained network is often difficult to achieve. A 
method that works wonders is to inject noise into the DR update during sampling, as 
described in Section 6, Eqn. (6.6). It is not clearly understood why this works. 
Attempts at an explanation are made in Jaeger (2001).  
 
In tasks with empirical, noisy training data, noise insertion does not a priori make 
sense. Nor is it required when there are no output feedback connections.  
 
There is one situation, however, where noise insertion might make sense even with 
empirical data and without output feedback connections. That is when the learnt 
model overfits data, which is revealed by a small training and a large test error. In 
this condition, injection of extra noise works as a regularizer in the sense of statistical 
learning theory. The training error will increase, but the test error will go down. 
However, a more appropriate way to avoid overfitting is to use smaller networks. 
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Use an extra bias input 
 
When the desired output has a mean value that departs from zero, it is a good idea 
to invest an extra input unit and feed it with a constant value ("bias") during training 
and testing. This bias input will immediately enable the training to set the trained 
output to the correct mean value.  
 
A relatively large bias input will shift many internal units towards one of the extremer 
outer ranges of their sigmoids; this might be advisable when you want to achieve a 
strongly nonlinear behavior. 
 
Sometimes you do not want to affect the DR strongly by the bias input. In such 
cases, use a small value for the bias input (for instance, a value of 0.01), or connect 
the bias only to the output (i.e., put all bias-to-DR connections to zero). 
 
Beware of symmetric input 
 
Standard sigmoid networks are "symmetric" devices in the sense that when an input 
sequence u(n) gives an output sequence y(n), then the input sequence –u(n) will yield 
an output sequence – y(n). For instance, you can never train an ESN to produce an 
output y(n) = u(n)2 from an input u(n) which takes negative and positive values. There 
are two simple methods to succeed in "asymmetric" tasks: 
 

• Feed in an extra constant bias input. This will effectively render the DR an 
unsymmetric device.  

• Shift the input. Instead of using the original input signal, use a shifted version 
which only takes positive sign.  

 
The symmetric-input fallacy comes in many disguises and is often not easy to 
recognize. Generally be cautious when the input signal has a range that is roughly 
symmetrical around zero. It almost never harms to shift it into an asymmetrical range. 
Nor does a small bias input usually harm.  
 
Shift an scale input 
 
You are free to transform the input into any value range [a, b] by scaling and/or 
shifting it. A rule I work with: the more nonlinear the task, the more extravagantly I 
shift the input range. For instance, in a difficult nonlinear system identification task 
(30th order NARMA system) I once got best models with an input range [a, b] = [3, 
3.5]. The apparent reason is that shifting the input far away from zero made the DR 
work in a highly nonlinear range of its sigmoid units.  
 
Blackbox modeling generals 
 
Be aware of the fact that ESN is a blackbox modeling technique. This means that you 
cannot expect good results on test data which operate in a working range that was 
never visited during training. Or to put it the other way round, make sure that your 
training data visit all the working conditions that you will later meet when using the 
trained model.  
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This is sometimes not easy to satisfy with nonlinear systems. For instance, a typical 
approach to obtain training data is to drive the empirical system with white noise 
input. This approach is well-motivated with linear systems, where white noise input in 
training data generally reveals the most about the system to be identified. However, 
this may not be the case with nonlinear systems! By contrast, what typically happens 
is that white noise input keeps the nonlinear system in a small subregion of its 
working range. When the system (the original system or the trained model) is later 
driven with more orderly input (for instance, slowly changing input), it will be driven 
into a quite different working range. A black-box model trained from data with white 
noise input will be unable to work well in another working range.  
 
On the other hand, one should also not cover in the training data more portions of the 
working range than will be met in testing / exploitation. Much of the modeling capacity 
of you model will then be used up to model those working regions which are later 
irrelevant. As a consequence, the model accuracy in the relevant working regions will 
be poorer.  
 
The golden rule is: use basically the same kind of input during training as you will 
later encounter in testing / exploitation, but make the training input a bit more varied 
than you expect the input in the exploitation phase. 
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