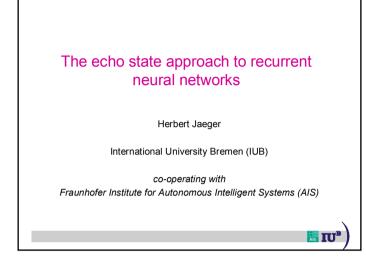
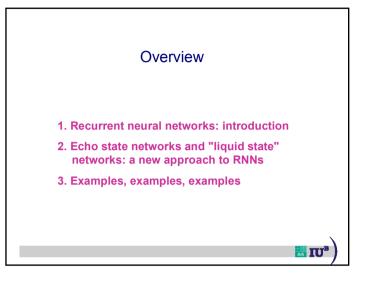
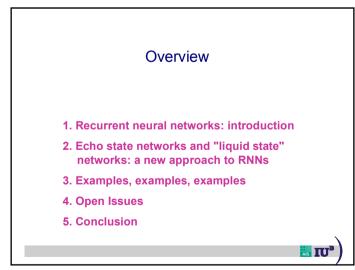
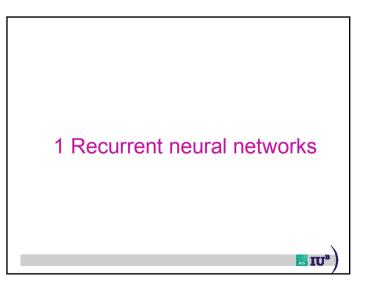
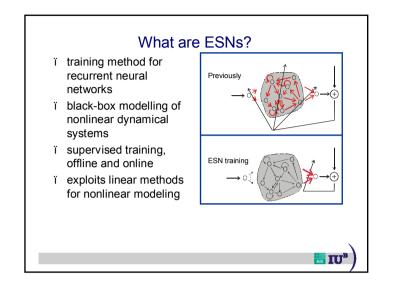
I must have created this (by now historical) slideset around the year 2004. May still be useful as a visual tour through the basic ideas of echo state networks. -- Herbert Jaeger, November 2023

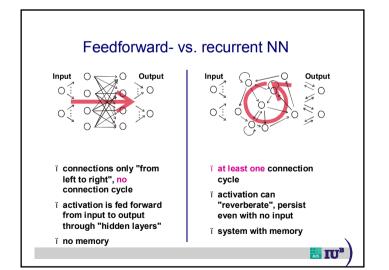


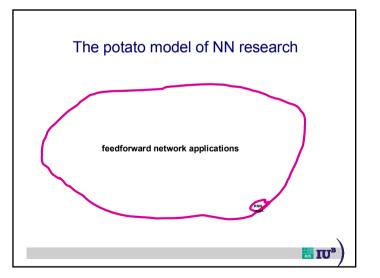


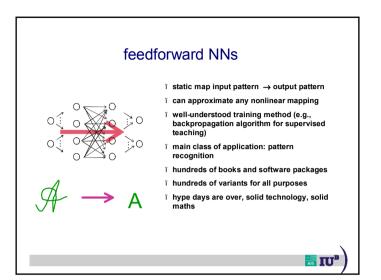


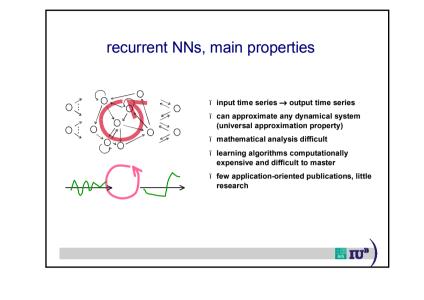


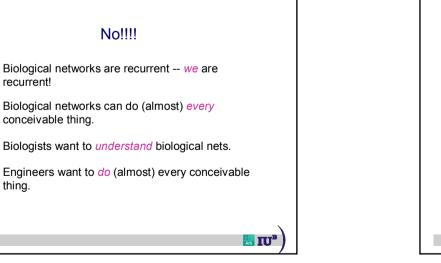












RNN models in neuroscience

bottom-up, detailed neurosimulation

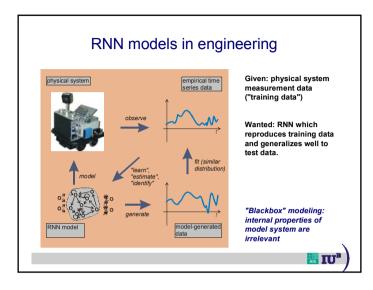
- ï compartment models (e.g. G, nt, rk, n's PFC model)
- i complex network architectures (e.g. Freeman's olfactory bulb models)

top-down, investigation of principles

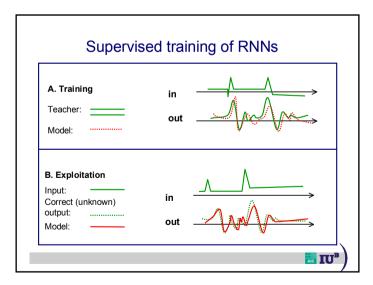
- i complete mathematical study of tiny networks (Pasemann, Giannakopoulos)
- i universal properties of dynamical systems as "explanations" for cognitive neurodynamics
 - ñ concept ~ attractor state; learning ~ parameter change; bifurcations ~ jumps in learning and development

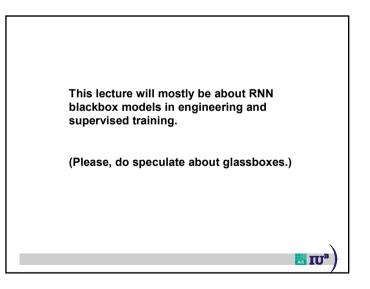
- ï demonstration of dynamical working principles
 - ñ synaptic dynamics and conditioning
 - ñ synfire chains

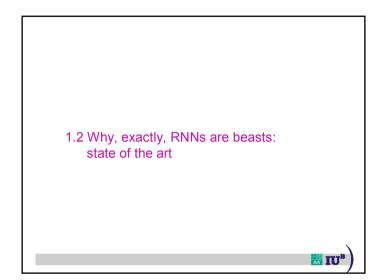
"Glassbox" modeling: internal properties of model system are crucial

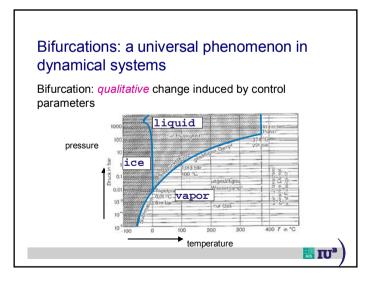


Task type	Application examples
Dynamic pattern classification	Fault detection in machines; speech recognition; brain- computer-interfacing
Control	Control of novel electrical machines; dynamic combustion control in automobiles
Filtering, denoising, equalization	Channel equalization in satellite channels; hearing aids and hearing implants
Pattern generation	Computer game animation; dynamical models of humans, machines, natural systems; speech synthesis
Time series prediction	Prediction of currency exchange rates; prediction of coronary attacks

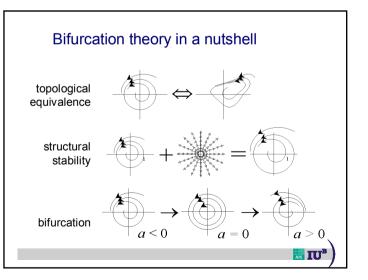


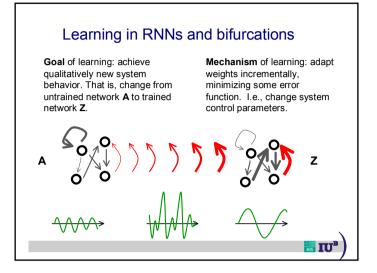






They are beasts because they are high-dimensional, nonlinear, dynamical systems. And nobody understands highdimensional, nonlinear, dynamical systems!

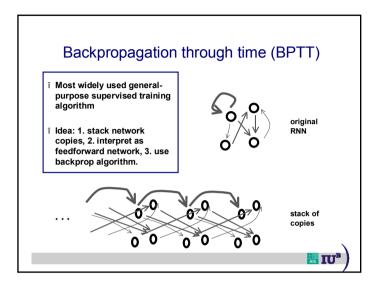




problems with gradient-based training methods

- ï passing through bifurcation → error function does not change smoothly, local gradient information of limited value
- $\ddot{i}~$ error gradient information shrinks exponentially \rightarrow no long memory effects trainable (more than order of magnitude 10 time steps difficult)
- $\ddot{\ }$ can get trapped in local optimum \rightarrow costly search of error surface
- \ddot{i} non-local information needed \rightarrow biologically impossible

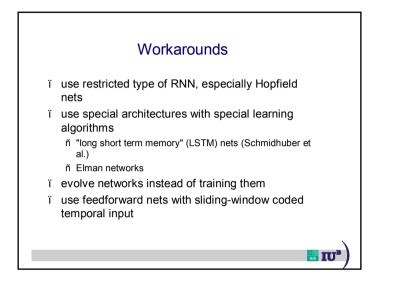
- \ddot{i} computationally costly \rightarrow only small networks trainable
- $\ddot{\ }$ algorithms and maths are difficult \rightarrow experienced professionals needed
- ï But: very powerful in the hands of experts

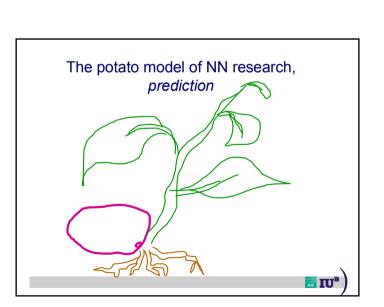


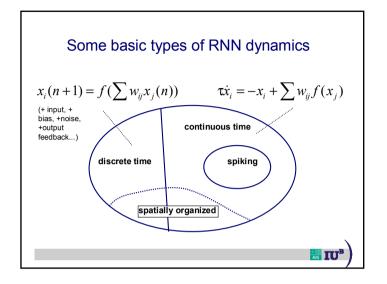
Consequences for glassbox models of RNN learning

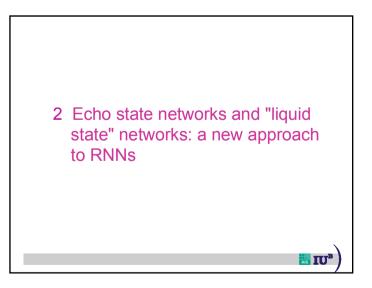
- If learning is synaptic weight adaptation, and if weight adaptation is change of control parameters, and if change of control parameters induces bifurcations, how is learning possible? (no way out: "well, learning comes about in jumps, doesn't it?")
- If brains are recurrent dynamical systems, and if in recurrent systems everything dynamically influences everything else, how is it possible that learning in one place does not disrupt the learnt in other places? (*no way out: sparse coding, redundancy, "plasticity-stability dilemma"*)

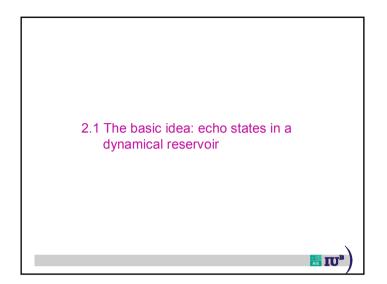
ΠΤ

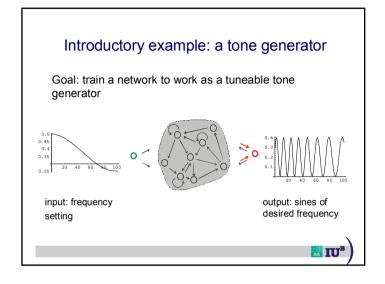


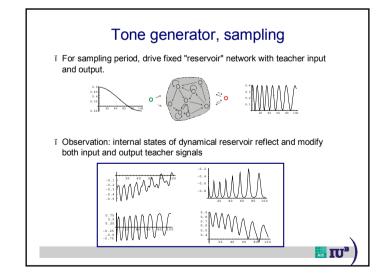


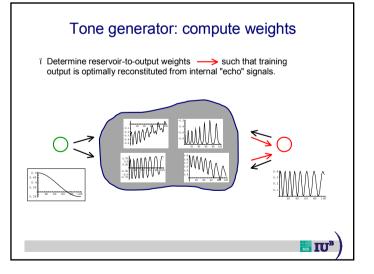


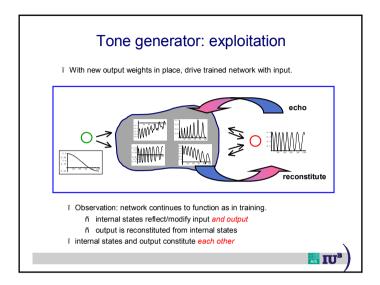


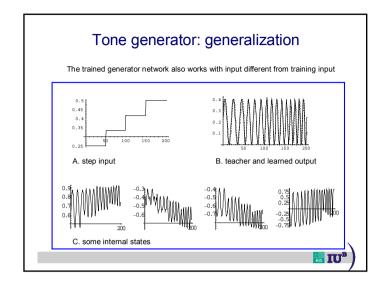


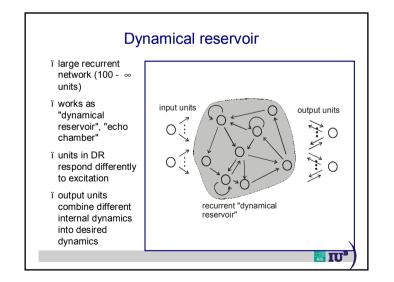


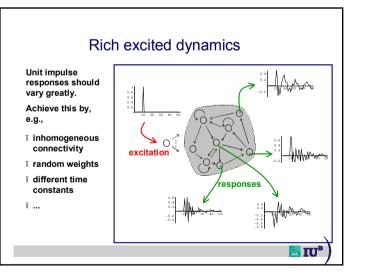


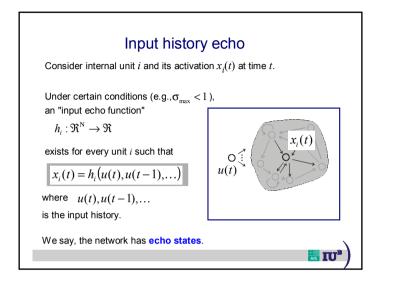


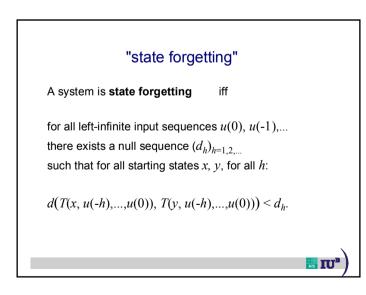


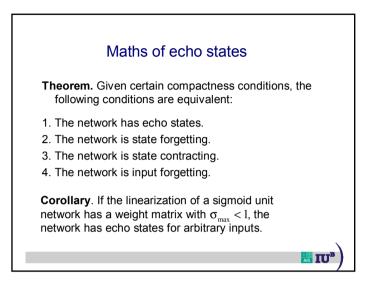


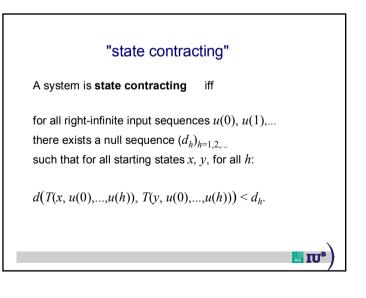


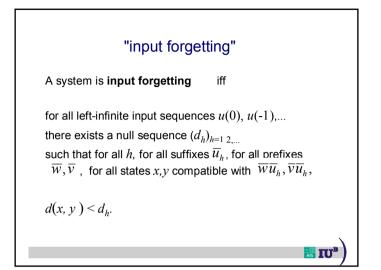


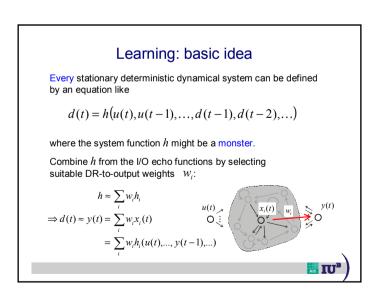


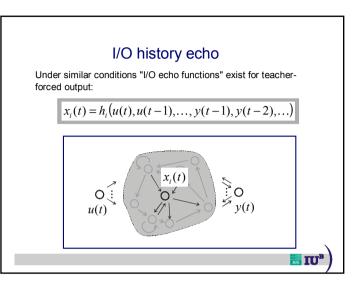


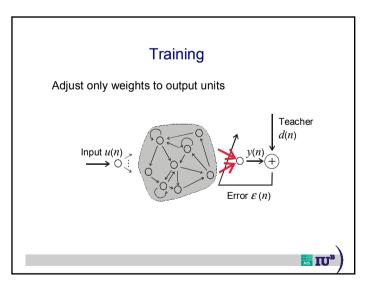


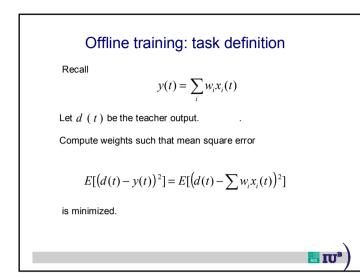


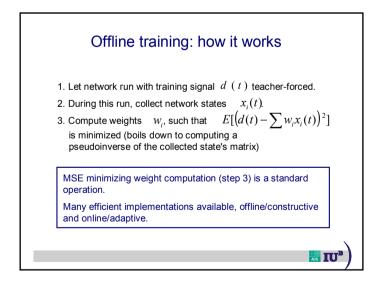


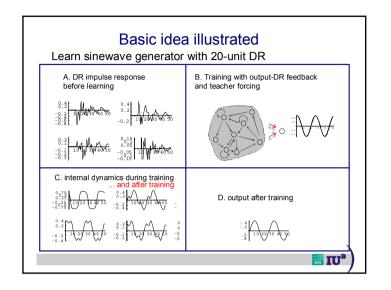


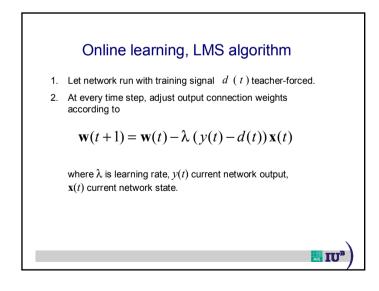


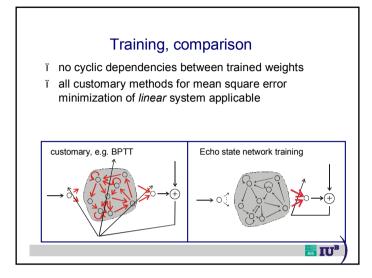


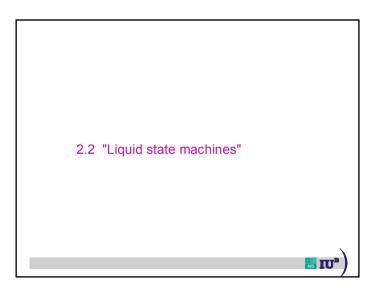


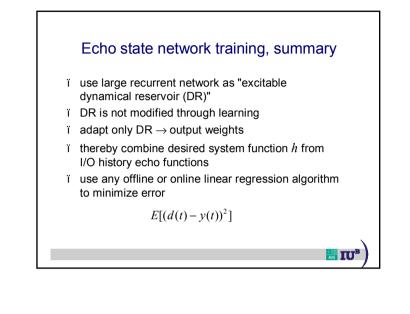


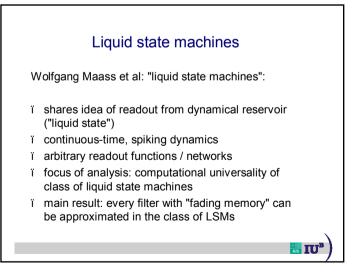


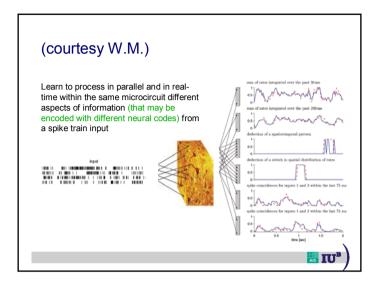


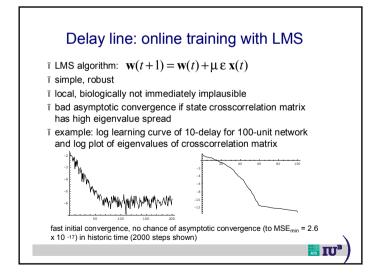


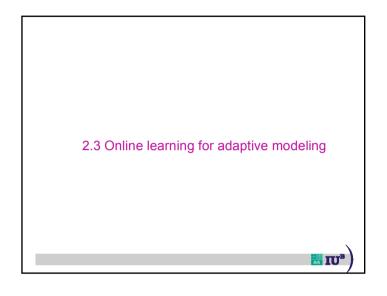


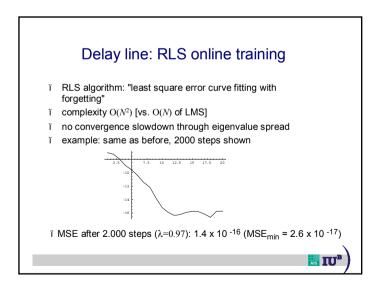


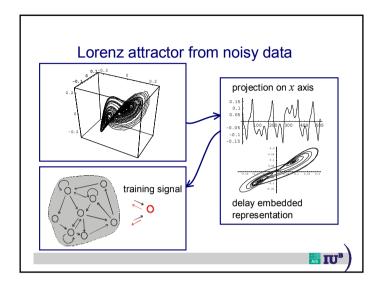


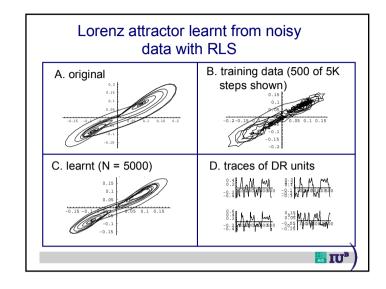


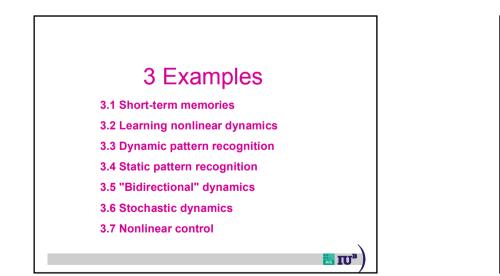


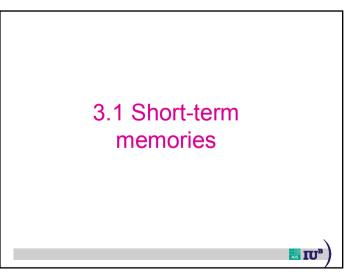


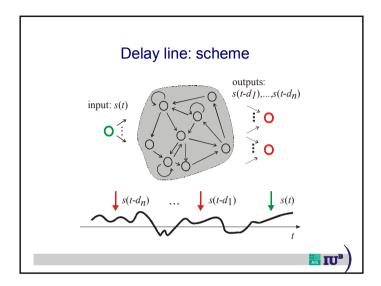


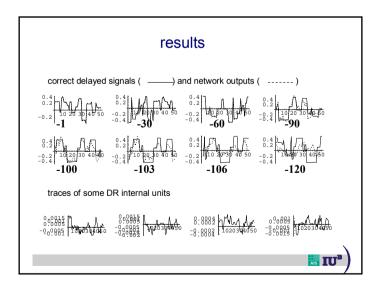


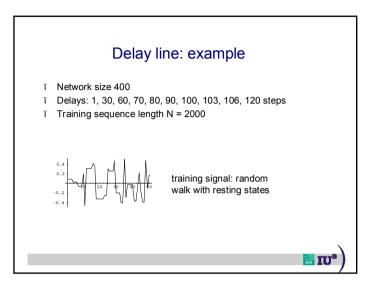


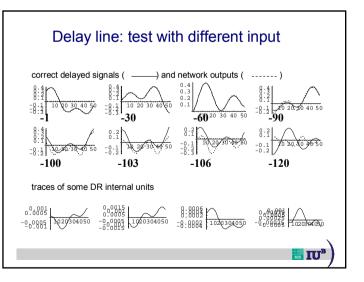


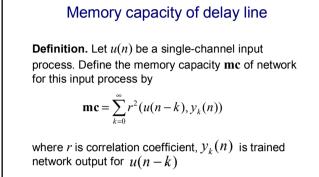












🔣 ЮВ)

Theorem. In a network with N nodes, i.i.d. input, $\mathbf{mc} \leq N$.

Theorem. In a linear network with N nodes, i.i.d. input, generically $\mathbf{mc} = N$.

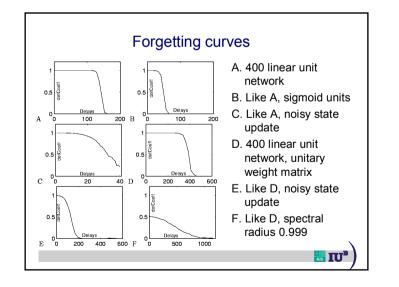
Theorem. In a linear network, long delays can never be learnt better than short delays ("monotonic forgetting")

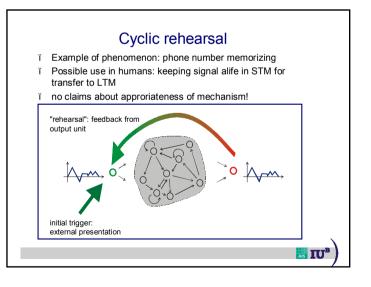
Notes.

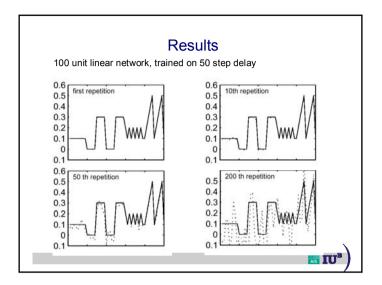
1. In networks with nonlinear readout functions, $\mathbf{mc} = \infty$ may occur.

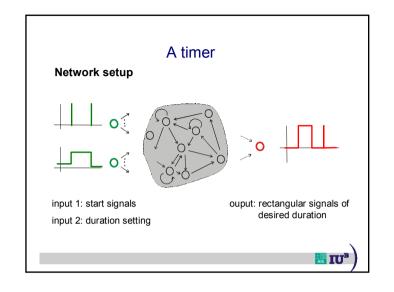
IU^B

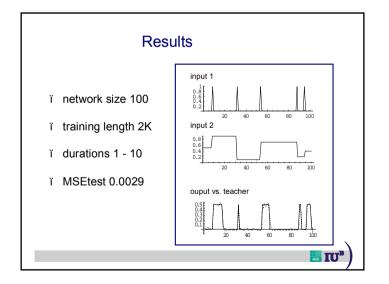
2. Input not i.i.d: $\mathbf{mc} > N$ is possible (network can exploit regularities in signal for longer memory span)

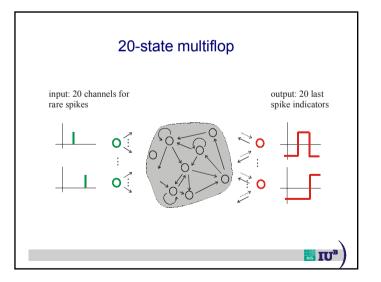


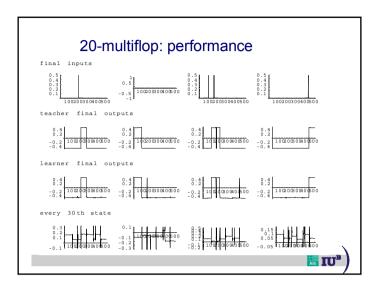


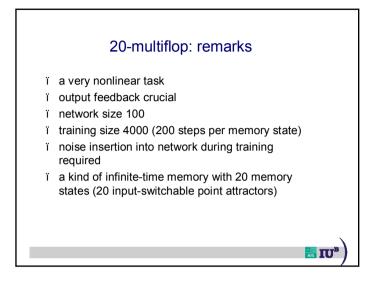


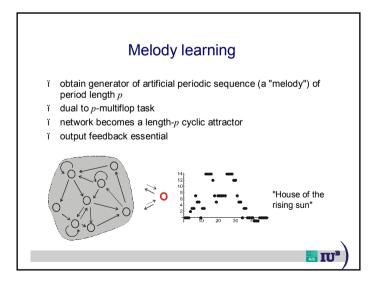


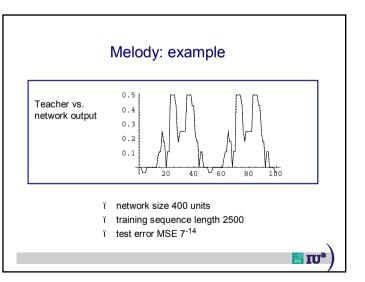


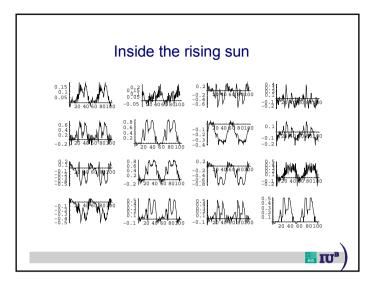


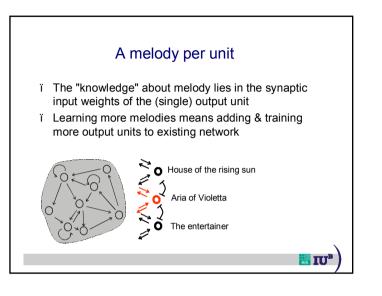


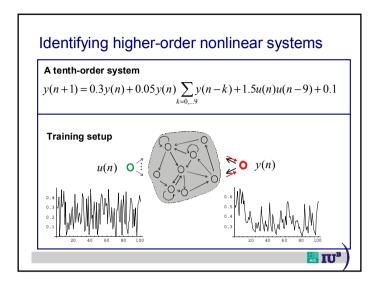


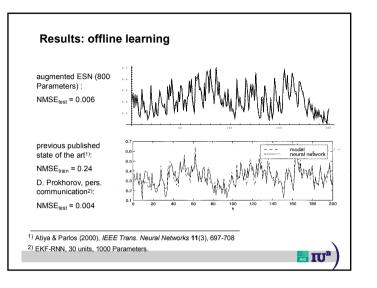


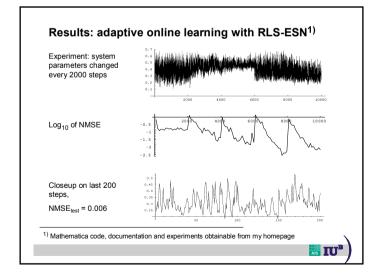


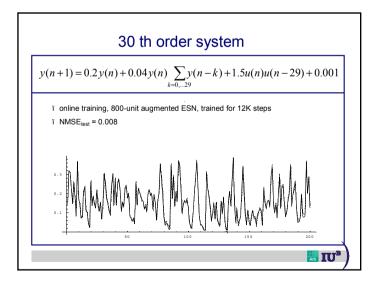


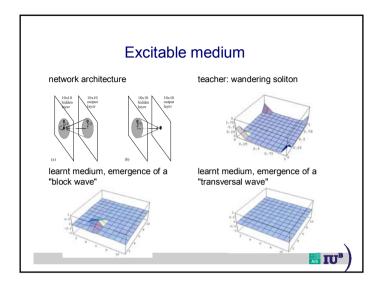


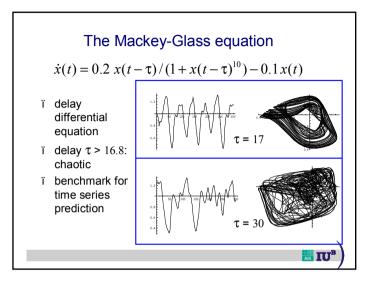


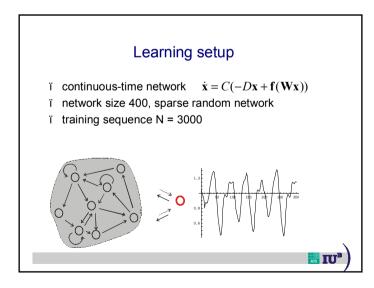


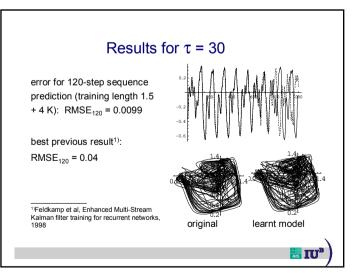


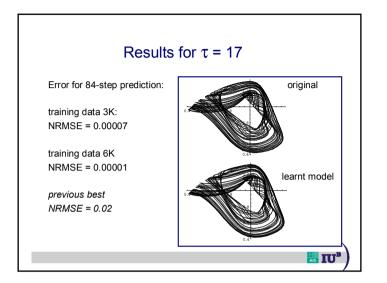


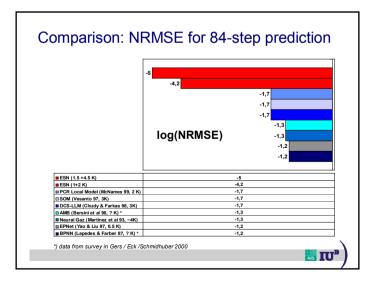


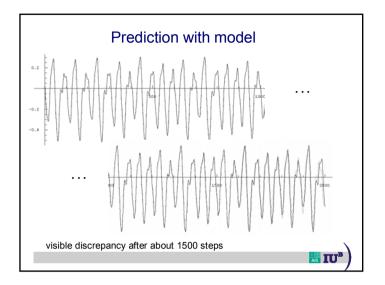


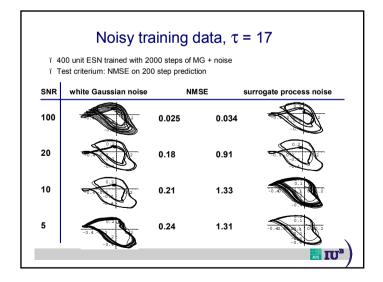


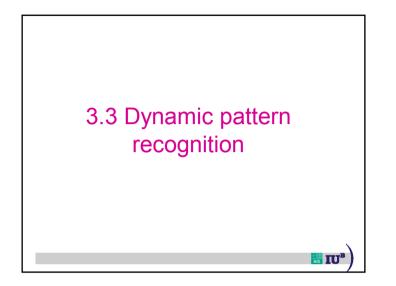


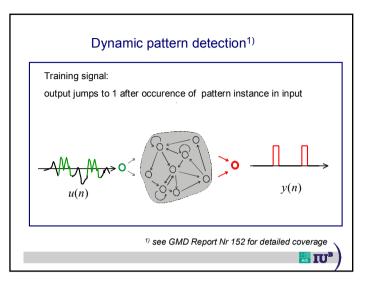


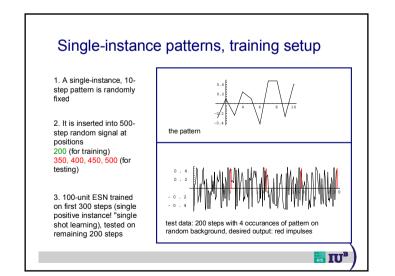


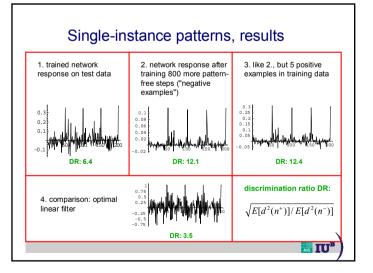


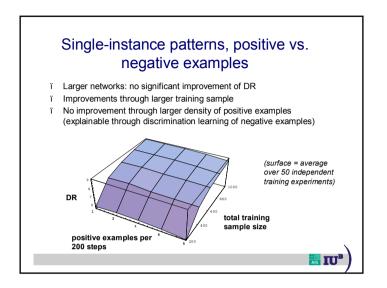


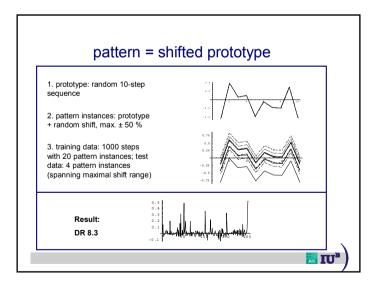


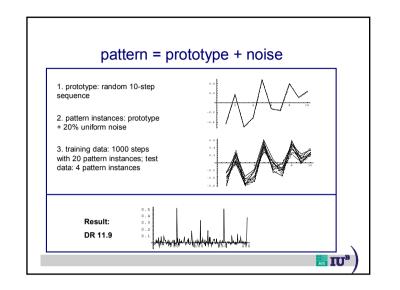


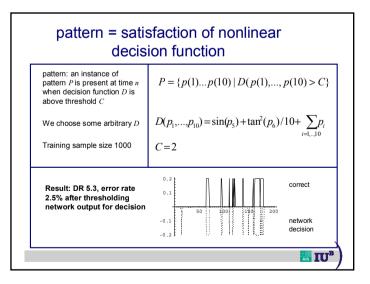


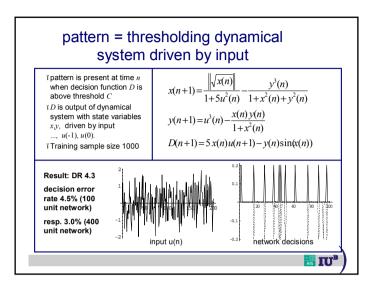


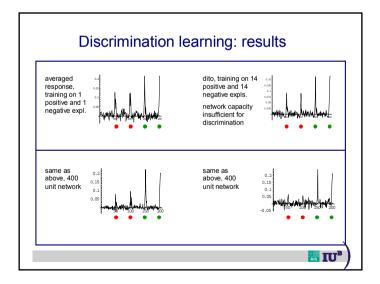


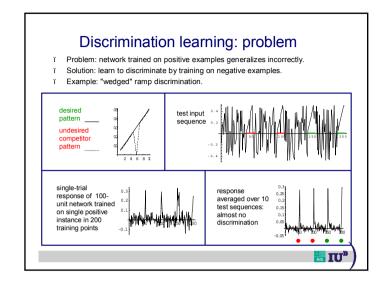


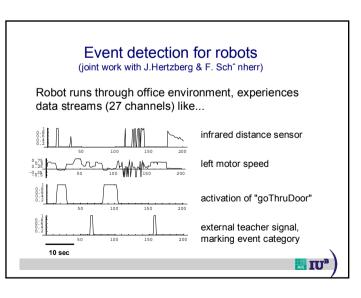


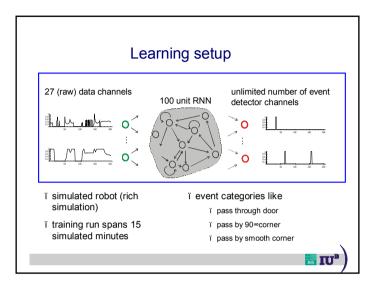


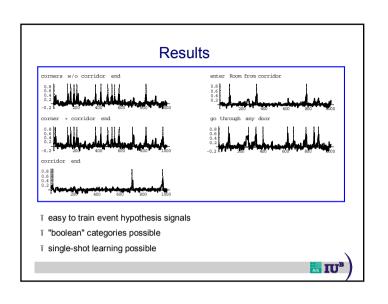


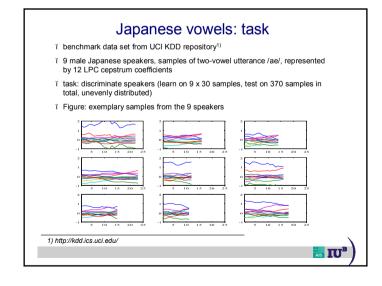


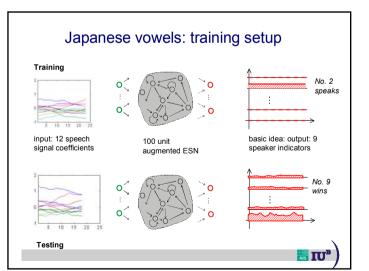


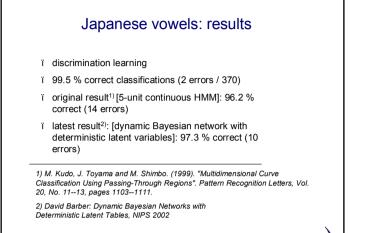




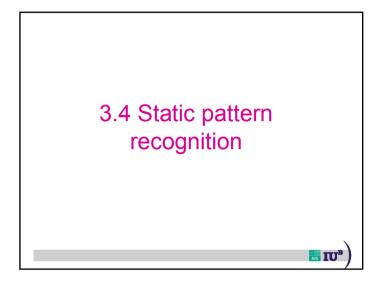


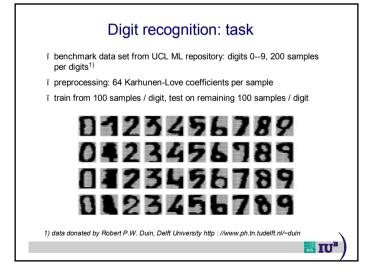


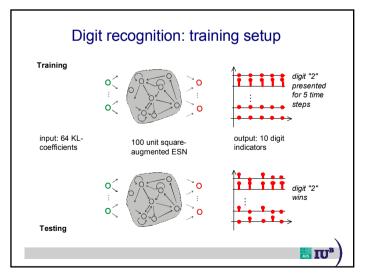


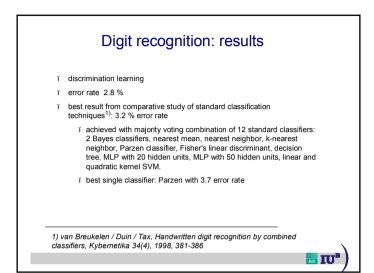


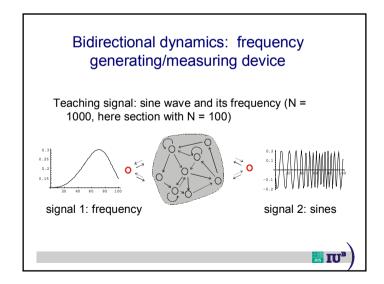
<u>ы</u> ПО_В)

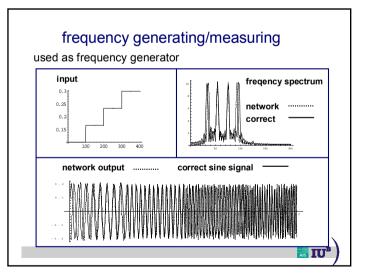


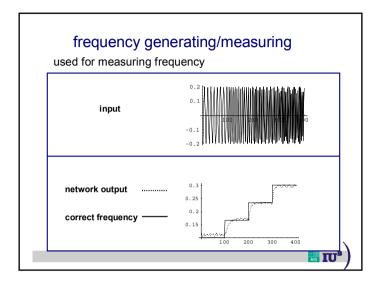


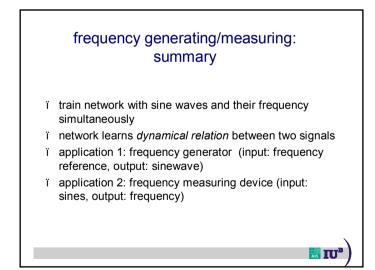


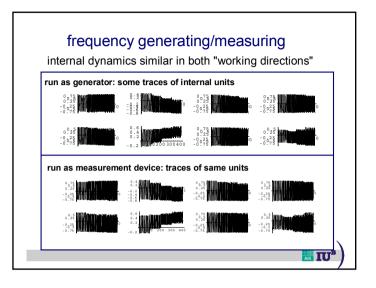


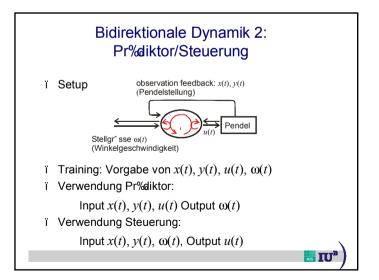




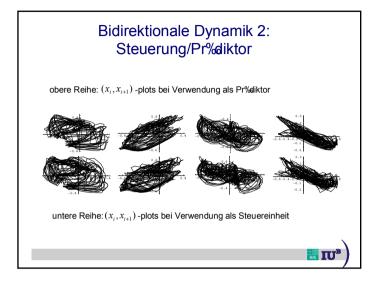


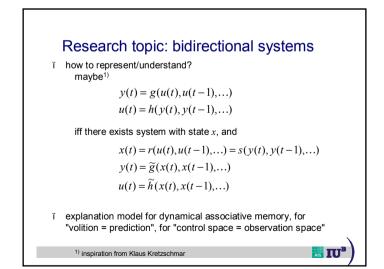


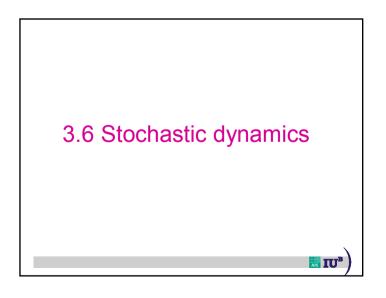


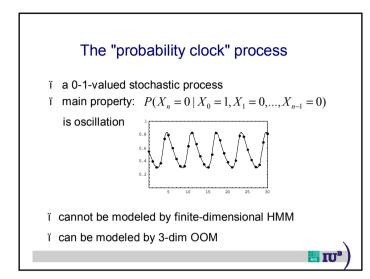


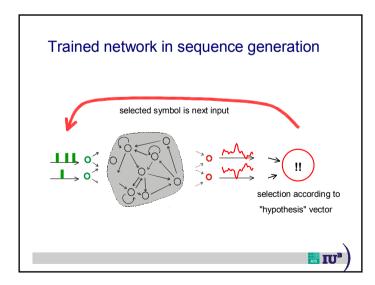
Bidirektionale Dynamik 2: Steuerung/Pr%diktor Trainingsdaten $\omega(t)$, x(t), y(t), u(t) (N = 1000) Verwendung als Pr[‰] Verwendung als controller diktor, output $\omega(t)$ A. output u(t) B. geregeltes $\omega(t)$ Π

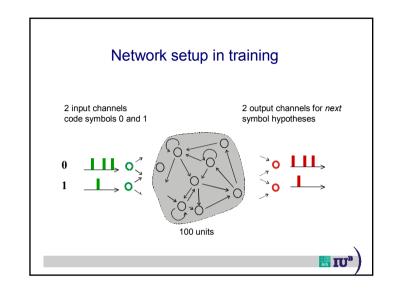


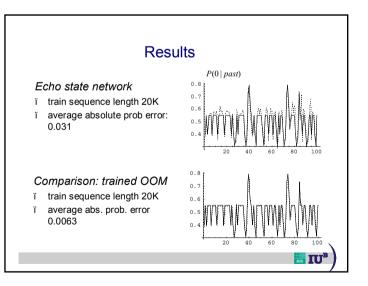












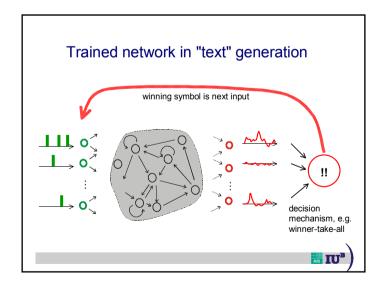
Little Red Riding Hood

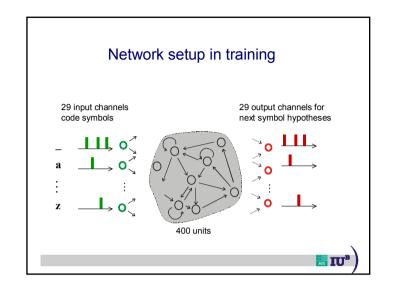
training data: 3412-symbol sequence, shown here: first and last 500

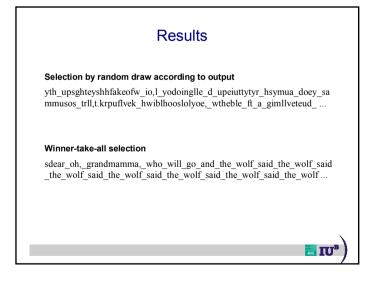
once_upon_a_time_there_was_a_little_village_girl,_the_prettiest_ever_seen_her_mot her_doted_upon_her,_and_so_did_her_grandmother._she,_good_woman,_made_for_ her_a_little_red_hood_which_suited_her_so_well, that_everyone_called_her_little_re d_riding_hood__one_day_her_mother,_who_had_just_made_some_cakes__said_to_he r_my_dear,_you_shall_go_and_see_how_your_grandmother_is,_for_i_have_heard_sh e_is_ailing_take_her_this_cake_and_this_little_pot_of_butter._little_red_riding_hood _started_off_at_once_for_he

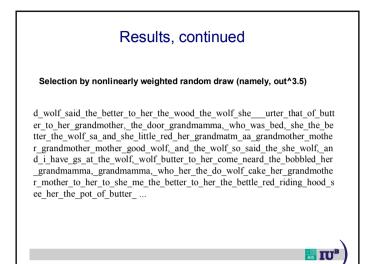
oh, grandmamma, grandmamma, what_great_arms_you_have_got_all_the_better_to _hug_you_with, my_dear_oh, grandmamma, grandmamma, what_great_legs_you_h ave_got_all_the_better_to_run_with,_my_dear_oh, grandmamma, grandmamma, wh at_great_eyes_you_have_got_all_the_better_to_see_with,_my_dear_oh, grandmamma a, grandmamma, what_great_teeth_you_have_got_all_the_better_to_gobble_you_up _so_saying_the_wicked_wolf_leaped_on_little_red_riding_hood_and_gobbled_her_u p._here_endeth_the_tale_of_little_red_riding_hood.

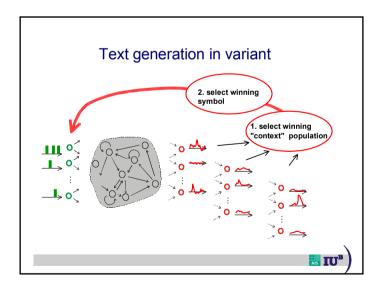
🔣 ПЈВ)

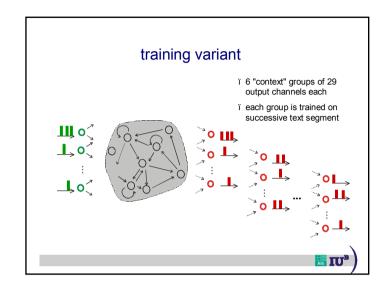


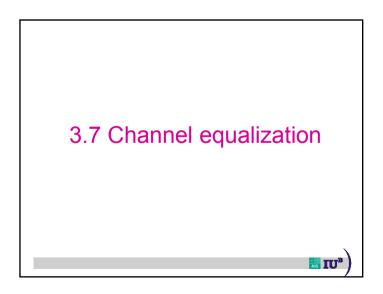


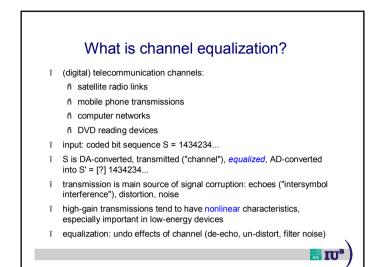


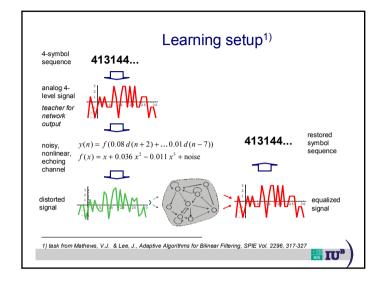


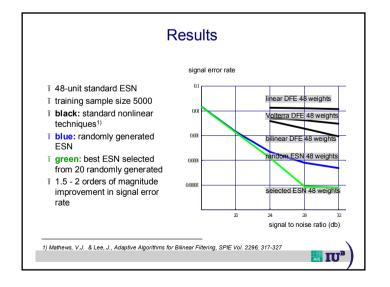


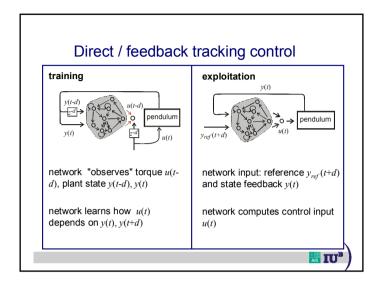


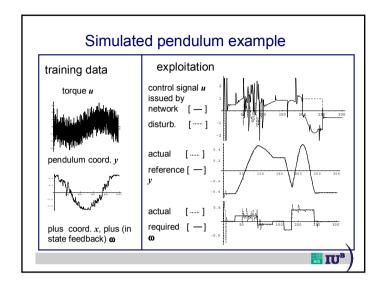


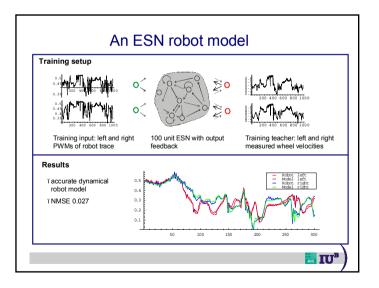












<section-header><section-header>

 Case

 Task

 reate motor controllers for AISes

 coccer robots

 Data ender sontinear and has hysteresis effects due to soft carpet, sliding, high motor load

 Gaal

 Chrole curve driving at 2 m/sec

 Project status

IU^B

2 PhD projects have started at AIS (A. Arghir, M. Oubbati)

