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1.1 A first overview

What are ESNs?
ï training method for 

recurrent neural 
networks

ï black-box modelling of  
nonlinear dynamical 
systems

ï supervised training, 
offline and online

ï exploits linear methods 
for nonlinear modeling

... +

+

Previously

ESN training

Feedforward- vs. recurrent NN
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.

..
.

..
.

..
.

...
..

.

Input InputOutput Output

ï connections only "from 
left to right", no 
connection cycle

ï activation is fed forward 
from input to output 
through "hidden layers"

ï no memory

ï at least one connection 
cycle

ï activation can 
"reverberate", persist 
even with no input

ï system with memory

The potato model of NN research

feedforward network applications 

RNN
appl.



feedforward NNs

..
.

..
.

...
..

.

ï static map input pattern  → output pattern 

ï can approximate any nonlinear mapping

ï well-understood training method (e.g., 
backpropagation algorithm for supervised
teaching)

ï main class of application: pattern 
recognition

ï hundreds of books and software packages

ï hundreds of variants for all purposes

ï hype days are over, solid technology, solid 
mathsA

recurrent NNs, main properties 

ï input time series → output time series

ï can approximate any dynamical system 
(universal approximation property)

ï mathematical analysis difficult

ï learning algorithms computationally 
expensive and difficult to master

ï few application-oriented publications, little 
research

..
.

..
.

No!!!!

Biological networks are recurrent -- we are 
recurrent! 

Biological networks can do (almost) every
conceivable thing.

Biologists want to understand biological nets.

Engineers want to do (almost) every conceivable
thing. 

RNN models in neuroscience

bottom-up, detailed neurosimulation

ï compartment models (e.g. G¸ nt¸ rk¸ n's PFC model)

ï complex network architectures (e.g. Freeman's olfactory bulb 
models)

top-down, investigation of principles

ï complete mathematical study of tiny networks (Pasemann, 
Giannakopoulos)

ï universal properties of dynamical systems as "explanations" for 
cognitive neurodynamics  

ñ concept ~ attractor state; learning ~ parameter change; bifurcations ~ 
jumps in learning and development

ï demonstration of dynamical working principles
ñ synaptic dynamics and conditioning

ñ synfire chains

"Glassbox" modeling: internal properties of model system are crucial



RNN models in engineering 

"Blackbox" modeling: 
internal properties of 
model system are 
irrelevant

physical system empirical time 
series data

RNN model model-generated 
data

observe

model

generate

fit (similar 
distribution)"learn", 

"estimate",
"identify"

...
...

Given: physical system 
measurement data 
("training data")

Wanted: RNN which 
reproduces training data 
and generalizes well to 
test data. 

Nonlinear blackbox modeling 
applications

Task type

Dynamic pattern 
classification

Control

Filtering, denoising, 
equalization

Pattern generation

Time series prediction

Application examples

Fault detection in machines; speech recognition; brain-
computer-interfacing

Control of novel electrical machines; dynamic 
combustion control in automobiles

Channel equalization in satellite channels; hearing aids 
and hearing implants

Computer game animation; dynamical models of 
humans, machines, natural systems; speech synthesis

Prediction of currency exchange rates; prediction of 
coronary attacks

Supervised training of RNNs

A. Training

Teacher:

Model:

B. Exploitation

Input: 
Correct (unknown) 
output:

Model:

in

out

in

out

This lecture will mostly be about RNN 
blackbox models in engineering and 
supervised training.

(Please, do speculate about glassboxes.)



1.2 Why, exactly, RNNs are beasts: 
state of the art

They are beasts because they are
high-dimensional, nonlinear, 
dynamical systems.

And nobody understands high-
dimensional, nonlinear, dynamical
systems!

Bifurcation: qualitative change induced by control 
parameters

temperature 

pressure 

liquid

vapor

ice

Bifurcations: a universal phenomenon in 
dynamical systems

Bifurcation theory in a nutshell

topological 
equivalence

structural 
stability

bifurcation



Learning in RNNs and bifurcations

Goal of learning: achieve 
qualitatively new system 
behavior. That is, change from 
untrained network A to trained 
network Z. 

Mechanism of learning: adapt 
weights incrementally, 
minimizing some error 
function.  I.e., change system 
control parameters. 

A Z

Backpropagation through time (BPTT) 

ï Most widely used general-
purpose supervised training 
algorithm

ï Idea: 1. stack network 
copies, 2. interpret as 
feedforward network, 3. use 
backprop algorithm.

. . .

original 
RNN

stack of 
copies

problems with gradient-based 
training methods

ï passing through bifurcation → error function does not change 
smoothly, local gradient information of limited value 

ï error gradient information shrinks exponentially → no long 
memory effects trainable (more than order of magnitude 10 
time steps difficult)

ï can get trapped in local optimum → costly search of error 
surface

ï non-local information needed → biologically impossible

ï computationally costly → only small networks trainable 

ï algorithms and maths are difficult → experienced 
professionals needed

ï But: very powerful in the hands of experts

Consequences for glassbox models 
of RNN learning

If learning is synaptic weight adaptation, and if weight 
adaptation is change of control parameters, and if change of 
control parameters induces bifurcations, how is learning 
possible? (no way out: "well, learning comes about in jumps, 
doesn't it?")

If brains are recurrent dynamical systems, and if in recurrent 
systems everything dynamically influences everything else, 
how is it possible that learning in one place does not disrupt 
the learnt in other places? (no way out: sparse coding, 
redundancy, "plasticity-stability dilemma")



Workarounds

ï use restricted type of RNN, especially Hopfield 
nets 

ï use special architectures with special learning 
algorithms
ñ "long short term memory" (LSTM) nets (Schmidhuber et 

al.)

ñ Elman networks

ï evolve networks instead of training them

ï use feedforward nets with sliding-window coded 
temporal input

Some basic types of RNN dynamics

discrete time 

continuous time

spiking

spatially organized

))(()1( �=+ nxwfnx jiji )(�+−=τ jijii xfwxx�

(+ input, + 
bias, +noise, 
+output
feedback...)

The potato model of NN research, 
prediction

2  Echo state networks and "liquid 
state" networks: a new approach
to RNNs



2.1 The basic idea: echo states in a 
dynamical reservoir 

Introductory example: a tone generator

Goal: train a network to work as a tuneable tone 
generator

input: frequency 

setting

output: sines of 
desired frequency
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Tone generator, sampling

ï For sampling period, drive fixed "reservoir" network with teacher input 
and output.
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ï Observation: internal states of dynamical reservoir reflect and modify 
both input and output teacher signals
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Tone generator: compute weights

ï Determine reservoir-to-output weights             such that training 
output is optimally reconstituted from internal "echo" signals.
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Tone generator: exploitation

ï With new output weights in place, drive trained network with input. 

ï Observation: network continues to function as in training. 

ñ internal states reflect/modify input and output

ñ output is reconstituted from internal states

ï internal states and output constitute each other
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echo

reconstitute

Tone generator: generalization

The trained generator network also works with input different from training input
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A. step input B. teacher and learned output

C. some internal states

Dynamical reservoir

ï large recurrent 
network (100 - ∞
units)

ï works as 
"dynamical 
reservoir", "echo 
chamber"

ï units in DR 
respond differently 
to excitation 

ï output units 
combine different 
internal dynamics 
into desired 
dynamics

..
.

...

input units output units

recurrent "dynamical 
reservoir"

Rich excited dynamics

..
.
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excitation

responses

Unit impulse 
responses should 
vary greatly.

Achieve this by, 
e.g.,

ï inhomogeneous 
connectivity

ï random weights

ï different time 
constants

ï ...



Input history echo
Consider internal unit i and its activation xi(t) at time t.

Under certain conditions (e.g.,              ), 

an "input echo function" 

exists for every unit i such that 

ℜ→ℜ Ν:ih

( )�),1(),()( −= tutuhtx ii

where

is the input history.

We say, the network has echo states.

�),1(),( −tutu

1max <σ

)(txi

)(tu

Maths of echo states

Theorem. Given certain compactness conditions, the 
following conditions are equivalent:

1. The network has echo states. 

2. The network is state forgetting.

3. The network is state contracting.

4. The network is input forgetting.

Corollary. If the linearization of a sigmoid unit 
network has a weight matrix with             , the 
network has echo states for arbitrary inputs.

1max <σ

"state forgetting"

A system is state forgetting iff

for all left-infinite input sequences u(0), u(-1),...

there exists a null sequence (dh)h=1,2,...

such that for all starting states x, y, for all h: 

d(T(x, u(-h),...,u(0)), T(y, u(-h),...,u(0))) < dh.

"state contracting"

A system is state contracting iff

for all right-infinite input sequences u(0), u(1),...

there exists a null sequence (dh)h=1,2,...

such that for all starting states x, y, for all h: 

d(T(x, u(0),...,u(h)), T(y, u(0),...,u(h))) < dh.



"input forgetting"

A system is input forgetting iff

for all left-infinite input sequences u(0), u(-1),...

there exists a null sequence (dh)h=1,2,...

such that for all h, for all suffixes     , for all prefixes                  

,  for all states x,y compatible with

d(x, y ) < dh.

hu
vw, ,, hh uvuw

I/O history echo
Under similar conditions "I/O echo functions" exist for teacher-
forced output:

( )�� ),2(),1(,),1(),()( −−−= tytytutuhtx ii

)(txi

)(ty)(tu

Learning: basic idea

Every stationary deterministic dynamical system can be defined 
by an equation like

( )�� ),2(),1(,),1(),()( −−−= tdtdtutuhtd

where the system function h might be a monster. 

Combine h from the I/O echo functions by selecting
suitable DR-to-output weights       :  

�

�

�

−=

=≈�

≈

i

ii

i
ii

i
ii

tytuhw

txwtytd

hwh

),...)1(),...,((

)()()(

iw

)(txi iw
)(ty)(tu

Training

Adjust only weights to output units

..
. +

Input u(n)

Teacher

d(n)

Error ε (n)

y(n)



Offline training: task definition

�=
i

ii txwty )()(

Let             be the teacher output.               . )( td

Compute weights such that mean square error

( ) ( ) ])()([])()([ 22
�−=− txwtdEtytdE ii

is minimized.            

Recall 

Basic idea illustrated
Learn sinewave generator with 20-unit DR
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A. DR impulse response 
before learning

C. internal dynamics during training
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B. Training with output-DR feedback 
and teacher forcing

...

D. output after training

... and after training

Offline training: how it works

1. Let network run with training signal              teacher-forced.

2. During this run, collect network states             .

3. Compute weights        , such that 

)( td

)(txi

iw ( ) ])()([ 2
�− txwtdE ii

is minimized (boils down to computing a 
pseudoinverse of the collected state's matrix) 

MSE minimizing weight computation (step 3) is a standard 
operation. 

Many efficient implementations available, offline/constructive
and online/adaptive.

Online learning, LMS algorithm

1. Let network run with training signal              teacher-forced.

2. At every time step, adjust output connection weights 
according to 

)( td

)())()(()()1( ttdtytt xww −λ−=+

where λ is learning rate, y(t) current network output, 

x(t) current network state. 



Training, comparison

ï no cyclic dependencies between trained weights

ï all customary methods for mean square error 
minimization of linear system applicable

..
. +

+

customary, e.g. BPTT Echo state network training

Echo state network training, summary

ï use large recurrent network as "excitable 
dynamical reservoir (DR)"

ï DR is not modified through learning

ï adapt only DR → output weights

ï thereby combine desired system function h from 
I/O history echo functions

ï use any offline or online linear regression algorithm 
to minimize error

]))()([( 2tytdE −

2.2  "Liquid state machines"

Liquid state machines

Wolfgang Maass et al: "liquid state machines":

ï shares idea of readout from dynamical reservoir 
("liquid state")

ï continuous-time, spiking dynamics

ï arbitrary readout functions / networks

ï focus of analysis: computational universality of 
class of liquid state machines

ï main result: every filter with "fading memory" can 
be approximated in the class of LSMs



(courtesy W.M.)

Learn to process in parallel and in real-
time within the same microcircuit different 
aspects of information (that may be 
encoded with different neural codes) from 
a spike train input

2.3 Online learning for adaptive modeling

Delay line: online training with LMS

ï LMS algorithm:

ï simple, robust

ï local, biologically not immediately implausible

ï bad asymptotic convergence if state crosscorrelation matrix 
has high eigenvalue spread 

ï example: log learning curve of 10-delay for 100-unit network                     
and log plot of eigenvalues of crosscorrelation matrix 

)()()1( ttt xww εµ+=+

fast initial convergence, no chance of asymptotic convergence (to MSEmin = 2.6 
x 10 -17) in historic time (2000 steps shown)
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Delay line: RLS online training

ï RLS algorithm: "least square error curve fitting with 
forgetting"

ï complexity O(N2) [vs. O(N) of LMS]

ï no convergence slowdown through eigenvalue spread

ï example: same as before, 2000 steps shown

ï MSE after 2.000 steps (λ=0.97): 1.4 x 10 -16 (MSEmin = 2.6 x 10 -17)
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Lorenz attractor learnt from noisy 
data with RLS

A. original 
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B. training data (500 of 5K 
steps shown)

C. learnt (N = 5000) D. traces of DR units 
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3 Examples
3.1 Short-term memories

3.2 Learning nonlinear dynamics

3.3 Dynamic pattern recognition

3.4 Static pattern recognition

3.5 "Bidirectional" dynamics

3.6 Stochastic dynamics 

3.7 Nonlinear control

3.1 Short-term 
memories



Delay line: scheme

..
.

t

input: ( )s t

outputs: 
( ),..., ( )s t-d1 s t-dn

s t( )s t-d( 1)s t-dn( ) ...

Delay line: example

ï Network size 400

ï Delays: 1, 30, 60, 70, 80, 90, 100, 103, 106, 120 steps

ï Training sequence length N = 2000
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correct delayed signals (             ) and network outputs (               )
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Delay line: test with different input

correct delayed signals (             ) and network outputs (               )
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Memory capacity of delay line

Definition. Let u(n) be a single-channel input 

process. Define the memory capacity mc of network 
for this input process by

where r is correlation coefficient,             is trained 
network output for             . 

�
∞

=

−=
0

2 ))(),((
k

k nyknurmc

)(nyk

)( knu −

Memory capacity of delay line

Theorem. In a network with N nodes, i.i.d. input, 

Theorem. In a linear network with N nodes, i.i.d. 
input, generically

Theorem. In a linear network, long delays can never 
be learnt better than short delays ("monotonic 
forgetting")

Notes.

1. In networks with nonlinear readout functions,
may occur.

2. Input not i.i.d: is possible (network can

exploit regularities in signal for longer memory span)

. mc N≤

.mc N=

∞=  mc

N mc >

Forgetting curves

A. 400 linear unit 
network

B. Like A, sigmoid units

C. Like A, noisy state 
update

D. 400 linear unit 
network, unitary 
weight matrix

E. Like D, noisy state 
update

F. Like D, spectral 
radius 0.999

Cyclic rehearsal
ï Example of phenomenon: phone number memorizing

ï Possible use in humans: keeping signal alife in STM for 
transfer to LTM

ï no claims about approriateness of mechanism!

initial trigger: 
external presentation

"rehearsal": feedback from 
output unit



Results
100 unit linear network, trained on 50 step delay

A timer
Network setup

...
..
.

input 1: start signals 

input 2: duration setting

ouput: rectangular signals of 
desired duration

Results

ï network size 100

ï training length 2K

ï durations 1 - 10

ï MSEtest 0.0029
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input: 20 channels for 
rare spikes

output: 20 last 
spike indicators



20-multiflop: performance
final inputs

100200300400500

0.1
0.2
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0.4
0.5
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0.5
1

100200300400500

0.1
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0.4
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100200300400500

0.1
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0.5

teacher final outputs
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-0.4
-0.2

0.2
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0.4

100200300400500
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-0.4
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learner final outputs
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every 30 th state
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0.05
0.1
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20-multiflop: remarks

ï a very nonlinear task

ï output feedback crucial

ï network size 100

ï training size 4000 (200 steps per memory state) 

ï noise insertion into network during training 
required

ï a kind of infinite-time memory with 20 memory 
states (20 input-switchable point attractors)

Melody learning

ï obtain generator of artificial periodic sequence (a "melody") of 
period length p 

ï dual to p-multiflop task

ï network becomes a length-p cyclic attractor

ï output feedback essential

"House of the 
rising sun"

Melody: example

ï network size 400 units

ï training sequence length 2500

ï test error MSE 7-14

Teacher vs. 
network output

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5



Inside the rising sun
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-0.1
0.1
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A melody per unit

ï The "knowledge" about melody lies in the synaptic 
input weights of the (single) output unit

ï Learning more melodies means adding & training 
more output units to existing network

House of the rising sun

Aria of Violetta

The entertainer

Memories: Summary

ï Various forms of memory: 
ñ transient STM (delay line)

ñ transient STM, variation (timer)

ñ repetitive transient (cyclic recital)

ñ repetitive attractor (melody recall)

ñ switchable point attractor (multiflop)

ï How many more? systematic classification?

ï high-capacity contents concentrated in a single 
unit's ingoing connections

ï more contents: add single unit

3.2 Indentification of 
nonlinear systems



Identifying higher-order nonlinear systems
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A tenth-order system
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Training setup
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Results: offline learning

augmented ESN (800 
Parameters) :

NMSEtest = 0.006

previous published 
state of the art1):

NMSEtrain = 0.24

D. Prokhorov, pers. 
communication2):

NMSEtest = 0.004

50 100 1 50 200

0.3

0.4

0.5

0.6

0.7

1) Atiya & Parlos (2000), IEEE Trans. Neural Networks 11(3), 697-708
2) EKF-RNN, 30 units, 1000 Parameters.

Results: adaptive online learning with RLS-ESN1)

Experiment: system 
parameters changed 
every 2000 steps

Log10 of NMSE

Closeup on last 200 
steps, 

NMSEtest = 0.006

1) Mathematica code, documentation and experiments obtainable from my homepage

2000 4000 6000 8000 10000

-2.5

-2

-1.5

-1

-0.5

30 th order system
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50 100 150 200

0.1

0.2

0.3

ï online training, 800-unit augmented ESN, trained for 12K steps

ï NMSEtest = 0.008



Excitable medium

teacher: wandering soliton

learnt medium, emergence of a 
"block wave"

10x10
hidden 
layer

(b)

10x10
output 
layer

10x10
hidden 
layer

(a)

r1 r2 r3

10x10
output 
layer

network architecture

learnt medium, emergence of a 
"transversal wave"

The Mackey-Glass equation

ï delay 
differential 
equation

ï delay τ > 16.8: 
chaotic

ï benchmark for 
time series 
prediction

)(1.0))(1(/)(2.0)( 10 txtxtxtx −τ−+τ−=�

50 100 150 200 250 300

0.4

0.6

0.8

1.2

50 100 150 200 250 300

0.6

0.8

1.2

0.4 0.6 0.8 1.2

0.4

0.6

0.8

1.2

0.4 0.6 0.8 1.2

0.4

0.6

0.8

1.2

τ = 17

τ = 30

Learning setup

ï continuous-time network

ï network size 400, sparse random network

ï training sequence N = 3000

))(( Wxfxx +−= DC�

50 100 150 200 250 300

0.6

0.8

1.2

Results for τ = 30

error for 120-step sequence

prediction (training length 1.5 

+ 4 K):  RMSE120 = 0.0099

best previous result1):

RMSE120 = 0.04

_______________
1)Feldkamp et al, Enhanced Multi-Stream
Kalman filter training for recurrent networks, 
1998 original             learnt model

0.2 0.4 0.6 0.8 1.2 1.4

0.2

0.4

0.6
0.8
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0.2 0.4 0.6 0.8 1.2 1.4
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0.6
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1.4

200 400 600 800 1000
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Results for τ = 17

Error for 84-step prediction:

training data 3K:

NRMSE = 0.00007 

training data 6K 

NRMSE = 0.00001 

previous best

NRMSE = 0.02

original

0.4 0.6 0.8 1.2

0.4

0.6

0.8

1.2

0.4 0.6 0.8 1.2

0.4

0.6

0.8

1.2 learnt model

Prediction with model

visible discrepancy after about 1500 steps

. . .

. . .

Comparison: NRMSE for 84-step prediction

-1,2

-1,2

-1,3

-1,3

-1,7

-1,7

-4,2

-5

-1,7

ESN (1.5 +4.5 K) -5

ESN (1+2 K) -4,2

PCR Local Model (McNames 99, 2 K) -1,7

SOM (Vesanto 97, 3K) -1,7

DCS-LLM (Chudy & Farkas 98, 3K) -1,7

AMB (Bersini et al 98, ? K) * -1,3

Neural Gaz (Martinez et al 93, ~4K) -1,3

EPNet (Yao & Liu 97, 0.5 K) -1,2

BPNN (Lapedes & Farber 87, ? K) * -1,2

*) data from survey in Gers / Eck /Schmidhuber 2000

log(NRMSE)

Noisy training data, τ = 17
ï 400 unit ESN trained with 2000 steps of MG + noise

ï Test criterium: NMSE on 200 step prediction

white Gaussian noise NMSE surrogate process noiseSNR

100

20
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5

-0.4 -0.2 0.2
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0.2

-0.4 -0.2 0.2
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-0.4-0.3-0.2-0.1 0.10.2
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-0.1

0.1
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-0.4-0.3-0.2-0.1 0.10.2

-0.4
-0.3
-0.2
-0.1

0.1
0.2

-0.4 -0.2 0.2

-0.4

-0.2

0.2

-0.4 -0.2 0.2

-0.4

-0.2

0.2

0.025 0.034

0.18 0.91

0.21 1.33

0.24 1.31



3.3 Dynamic pattern 
recognition

Dynamic pattern detection1)

Training signal: 

output jumps to 1 after occurence of  pattern instance in input

)(ny)(nu

1) see GMD Report Nr 152 for detailed coverage

Single-instance patterns, training setup

1. A single-instance, 10-
step pattern is randomly 
fixed

4 6 8 10

-0.4

-0.2

0.2

0.4

2. It is inserted into 500-
step random signal at 
positions 
200 (for training)
350, 400, 450, 500 (for 
testing)

3. 100-unit ESN trained 
on first 300 steps (single 
positive instance! "single 
shot learning), tested on 
remaining 200 steps 

5 0 1 0 0 1 5 0 2 0 0

- 0 . 4

- 0 . 2

0 . 2

0 . 4

test data: 200 steps with 4 occurances of pattern on 
random background, desired output: red impulses

the pattern

50 100 150 200

-0.75
-0.5

-0.25

0.25
0.5

0.75
1

50 100 150 200
-0.02

0.02

0.04
0.06

0.08

0.1

50 100 150 200-0.05

0.05
0.1

0.15
0.2

0.25
0.3

Single-instance patterns, results

1. trained network 
response on test data

50 100 150 200
-0.1

0.1

0.2

0.3

2. network response after 
training 800 more pattern-
free steps ("negative 
examples")

3. like 2., but 5 positive 
examples in training data

DR: 12.4DR: 12.1DR: 6.4

4. comparison: optimal 
linear filter

DR: 3.5

discrimination ratio DR:

)]([/)]([ 22 −+ ndEndE



Single-instance patterns, positive vs. 
negative examples

ï Larger networks: no significant improvement of DR

ï Improvements through larger training sample

ï No improvement through larger density of positive examples 
(explainable through discrimination learning of negative examples)

1

2

3

4

5

patterns
per 200 points

200

400

600

800

1000

train
length

6

7

8

9

DR

1

2

3

4

5

patterns
per 200 pointspositive examples per 

200 steps

DR

total training 
sample size

(surface = average 
over 50 independent 
training experiments)

pattern = prototype + noise

1. prototype: random 10-step 
sequence

2. pattern instances: prototype 
+ 20% uniform noise

3. training data: 1000 steps 
with 20 pattern instances; test 
data: 4 pattern instances 2 4 6 8 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

2 4 6 8 10

-0.4

-0.2

0.2

0.4

5 0 100 150 200

0.1

0.2

0.3

0.4

0.5

Result:

DR 11.9

pattern = shifted prototype

1. prototype: random 10-step 
sequence

2. pattern instances: prototype 
+ random shift, max. ± 50 %

3. training data: 1000 steps 
with 20 pattern instances; test 
data: 4 pattern instances 
(spanning maximal shift range)

Result:

DR 8.3

2 4 6 8 1 0

- 0 .4

- 0 .2

0. 2

0. 4

2 4 6 8 10

-0.75

-0.5

-0.25

0.25

0.5

0.75

50 100 150 200
-0.1

0.1

0.2

0.3

0.4

0.5

pattern = satisfaction of nonlinear 
decision function

pattern: an instance of 
pattern P is present at time n
when decision function D is 
above threshold C

We choose some arbitrary D

Training sample size 1000

Result: DR 5.3, error rate 
2.5% after thresholding 
network output for decision
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network 
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20 40 60 80 100
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pattern = thresholding dynamical
system driven by input 

ï pattern is present at time n
when decision function D is 
above threshold C

ï D is output of dynamical 
system with state variables 
x,y, driven by input            
...,  u(-1), u(0).

ï Training sample size 1000

Result: DR 4.3

decision error
rate 4.5% (100 
unit network) 

resp. 3.0% (400 
unit network)
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Discrimination learning: problem
ï Problem: network trained on positive examples generalizes incorrectly. 

ï Solution: learn to discriminate by training on negative examples.

ï Example: "wedged" ramp discrimination.

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

50 100 150 200
-0.1

0.1

0.2

0.3

50 100 150 200
-0.05

0.05

0.1

0.15

0.2

0.25

0.3

desired 
pattern

undesired 
competitor 
pattern

test input 
sequence

single-trial 
response of  100-
unit network trained 
on single positive 
instance in 200 
training points

response 
averaged over 10 
test sequences: 
almost no 
discrimination

50 100 150 200

-0.4

-0.2

0.2

0.4

Discrimination learning: results

averaged 
response, 
training on 1 
positive and 1 
negative expl.

50 100 150 200

0.05

0.1

0.15

0.2

50 100 150 200

0.025

0.05

0.075

0.1

0.125

0.15dito, training on 14 
positive and 14 
negative expls.

network capacity 
insufficient for 
discrimination

50 100 150 200

0.05

0.1

0.15

0.2

50 100 150 200
-0.05

0.05

0.1

0.15

0.2
same as 
above, 400 
unit network

same as 
above, 400 
unit network

Event detection for robots
(joint work with J.Hertzberg & F. Schˆ nherr)

Robot runs through office environment, experiences 
data streams (27 channels) like...

50 100 150 200

0.2
0.4
0.6
0.8

1

50 100 150 200-0.5
-0.25
0.25
0.5

0.75

50 100 150 200

0.2
0.4
0.6
0.8

1

50 100 150 200

0.2
0.4
0.6
0.8

1

10 sec

infrared distance sensor

left motor speed

activation of "goThruDoor"

external teacher signal, 
marking event category



Learning setup

..
...
.

50 100 150 200

0.2
0.4
0.6
0.8
1

50 100 150 200

0.2
0.4
0.6
0.8
1

50 100 150 200

0.2
0.4
0.6
0.8
1

50 100 150 200

0.2
0.4
0.6
0.8
1

27 (raw) data channels unlimited number of event 
detector channels100 unit RNN

ï simulated robot (rich 
simulation)

ï training run spans 15 
simulated minutes

ï event categories like

ï pass through door

ï pass by 90∞ corner

ï pass by smooth corner

Results
corners w�o corridor end

200 400 600 800 1000-0.2

0.2
0.4
0.6
0.8

corner � corridor end

200 400 600 800 1000-0.2

0.2
0.4
0.6
0.8

corridor end

200 400 600 800 1000

0.2
0.4
0.6
0.8

enter Room from corridor

200 400 600 800 1000

0.2
0.4
0.6
0.8

go through any door

200 400 600 800 1000-0.2

0.2
0.4
0.6
0.8

ï easy to train event hypothesis signals

ï "boolean" categories possible

ï single-shot learning possible

Japanese vowels: task
ï benchmark data set from UCI KDD repository1)

ï 9 male Japanese speakers, samples of two-vowel utterance /ae/, represented 
by 12 LPC cepstrum coefficients

ï task: discriminate speakers (learn on 9 x 30 samples, test on 370 samples in 
total, unevenly distributed)

ï Figure: exemplary samples from the 9 speakers
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1) http://kdd.ics.uci.edu/

Japanese vowels: training setup

......

Training

Testing

input: 12 speech 
signal coefficients

basic idea: output: 9 
speaker indicators

...

..
...
. ...

No. 9 
wins

No. 2 
speaks

100 unit 
augmented ESN



Japanese vowels: results

ï discrimination learning

ï 99.5 % correct classifications (2 errors / 370)

ï original result1) [5-unit continuous HMM]: 96.2 % 
correct (14 errors) 

ï latest result2): [dynamic Bayesian network with 
deterministic latent variables]: 97.3 % correct (10 
errors) 

1) M. Kudo, J. Toyama and M. Shimbo. (1999). "Multidimensional Curve 
Classification Using Passing-Through Regions". Pattern Recognition Letters, Vol. 
20, No. 11--13, pages 1103--1111.

2) David Barber: Dynamic Bayesian Networks with                                  
Deterministic Latent Tables, NIPS 2002

3.4 Static pattern 
recognition

Digit recognition: task

ï benchmark data set from UCL ML repository: digits 0--9, 200 samples
per digits1)

ï preprocessing: 64 Karhunen-Love coefficients per sample

ï train from 100 samples / digit, test on remaining 100 samples / digit

1) data donated by Robert P.W. Duin, Delft University http : //www.ph.tn.tudelft.nl/~duin

Digit recognition: training setup

......

Training

Testing

input: 64 KL-
coefficients

output: 10 digit 
indicators

..
...
.

digit "2"  
wins

digit "2" 
presented 
for 5 time 
steps

100 unit square-
augmented ESN

...
...



Digit recognition: results

ï discrimination learning

ï error rate  2.8 %

ï best result from comparative study of standard classification 
techniques1): 3.2 % error rate

ï achieved with majority voting combination of 12 standard classifiers: 
2 Bayes classifiers, nearest mean, nearest neighbor, k-nearest 
neighbor, Parzen classifier, Fisher's linear discriminant, decision 
tree, MLP with 20 hidden units, MLP with 50 hidden units, linear and 
quadratic kernel SVM.   

ï best single classifier: Parzen with 3.7 error rate

1) van Breukelen / Duin / Tax, Handwritten digit recognition by combined 
classifiers, Kybernetika 34(4), 1998, 381-386

3.5 "Bidirectional" 
dynamics

20 40 60 80 100

0.15

0.2

0.25

0.3

20 40 60 80 100

-0.2

-0.1

0.1

0.2

20 40 60 80 100

0.15

0.2

0.25

0.3

20 40 60 80 100

-0.2

-0.1

0.1

0.2

Bidirectional dynamics:  frequency 
generating/measuring device

Teaching signal: sine wave and its frequency (N = 
1000, here section with N = 100)

signal 1: frequency signal 2: sines

frequency generating/measuring
used as frequency generator
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1 0 0 2 0 0 3 0 0 4 0 0

- 0 . 2
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input freqency spectrum

network  

correct

network output  correct sine signal



network output 

correct frequency

frequency generating/measuring
used for measuring frequency

input
100 200 300 400

-0.2

-0.1

0.1

0.2

100 200 300 400

0.15

0.2

0.25

0.3

frequency generating/measuring
internal dynamics similar in both "working directions"

run as generator: some traces of internal units

run as measurement device: traces of same units
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frequency generating/measuring: 
summary

ï train network with sine waves and their frequency 
simultaneously

ï network learns dynamical relation between two signals

ï application 1: frequency generator  (input: frequency
reference, output: sinewave)

ï application 2: frequency measuring device (input: 
sines, output: frequency)

Bidirektionale Dynamik 2: 
Pr‰diktor/Steuerung

ï Setup

ï Training: Vorgabe von x(t), y(t), u(t), ω(t)

ï Verwendung Pr‰diktor: 

Input x(t), y(t), u(t) Output ω(t) 

ï Verwendung Steuerung: 

Input x(t), y(t), ω(t), Output u(t)

observation feedback: 
Pendelstellung)

x t y t( ), ( ) 
(

u t( )
Stellgrˆ sse  
(Winkelgeschwindigkeit)  

ω( )t

Pendel
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Bidirektionale Dynamik 2: 
Steuerung/Pr‰diktor

Trainingsdaten ω(t),  x(t),  y(t), u(t)     (N = 1000)
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Verwendung als Pr‰-

diktor, output ω(t) 
Verwendung als controller 

A. output u(t)  B. geregeltes ω(t)

Bidirektionale Dynamik 2: 
Steuerung/Pr‰diktor

obere Reihe: -plots bei Verwendung als Pr‰diktor

untere Reihe: -plots bei Verwendung als Steuereinheit
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ï how to represent/understand? 

ï explanation model for dynamical associative memory, for 
"volition = prediction", for "control space = observation space"

maybe1)

iff there exists system with state x, and 

Research topic: bidirectional systems
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1) inspiration from Klaus Kretzschmar

3.6 Stochastic dynamics



The "probability clock" process

ï a 0-1-valued stochastic process

ï main property:

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

)0,...,0,1|0( 110 ==== −nn XXXXP

is oscillation

ï cannot be modeled by finite-dimensional HMM

ï can be modeled by 3-dim OOM

Network setup in training

2 input channels
code symbols 0 and 1

2 output channels for next
symbol hypotheses

0

1

100 units

Trained network in sequence generation

selection according to

"hypothesis" vector

!!

selected symbol is next input

Results

Echo state network
ï train sequence length 20K

ï average absolute prob error: 
0.031

20 40 60 80 100
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0.7

0.8

)|0( pastP

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

Comparison: trained OOM
ï train sequence length 20K

ï average abs. prob. error 
0.0063



Little Red Riding Hood
training data: 3412-symbol sequence, shown here: first and last 500

once_upon_a_time_there_was_a_little_village_girl,_the_prettiest_ever_seen_her_mot
her_doted_upon_her,_and_so_did_her_grandmother._she,_good_woman,_made_for_
her_a_little_red_hood_which_suited_her_so_well,_that_everyone_called_her_little_re
d_riding_hood._one_day_her_mother,_who_had_just_made_some_cakes,_said_to_he
r_my_dear,_you_shall_go_and_see_how_your_grandmother_is,_for_i_have_heard_sh
e_is_ailing,_take_her_this_cake_and_this_little_pot_of_butter._little_red_riding_hood
_started_off_at_once_for_he

oh,_grandmamma,_grandmamma,_what_great_arms_you_have_got_all_the_better_to
_hug_you_with,_my_dear_oh,_grandmamma,_grandmamma,_what_great_legs_you_h
ave_got_all_the_better_to_run_with,_my_dear_oh,_grandmamma,_grandmamma,_wh
at_great_eyes_you_have_got_all_the_better_to_see_with,_my_dear_oh,_grandmamm
a,_grandmamma,_what_great_teeth_you_have_got_all_the_better_to_gobble_you_up
_so_saying,_the_wicked_wolf_leaped_on_little_red_riding_hood_and_gobbled_her_u
p._here_endeth_the_tale_of_little_red_riding_hood.

Network setup in training

..
....

_

a

z

29 input channels
code symbols

. . .

29 output channels for 
next symbol hypotheses

400 units

Trained network in "text" generation

..
....

decision 
mechanism, e.g. 
winner-take-all

!!

winning symbol is next input

Results

Selection by random draw according to output

yth_upsghteyshhfakeofw_io,l_yodoinglle_d_upeiuttytyr_hsymua_doey_sa
mmusos_trll,t.krpuflvek_hwiblhooslolyoe,_wtheble_ft_a_gimllveteud_ ...

Winner-take-all selection

sdear_oh,_grandmamma,_who_will_go_and_the_wolf_said_the_wolf_said
_the_wolf_said_the_wolf_said_the_wolf_said_the_wolf_said_the_wolf ...



Results, continued

d_wolf_said_the_better_to_her_the_wood_the_wolf_she___urter_that_of_butt
er_to_her_grandmother,_the_door_grandmamma,_who_was_bed,_she_the_be
tter_the_wolf_sa_and_she_little_red_her_grandmatm_aa_grandmother_mothe
r_grandmother_mother_good_wolf,_and_the_wolf_so_said_the_she_wolf,_an
d_i_have_gs_at_the_wolf,_wolf_butter_to_her_come_neard_the_bobbled_her
_grandmamma,_grandmamma,_who_her_the_do_wolf_cake_her_grandmothe
r_mother_to_her_to_she_me_the_better_to_her_the_bettle_red_riding_hood_s
ee_her_the_pot_of_butter_ ...

Selection by nonlinearly weighted random draw (namely, out^3.5)

training variant

ï 6 "context" groups of 29 
output channels each

ï each group is trained on 
successive text segment

..
.

...

..
.

..
.

...

Text generation in variant

... ..
.

..
.

..
.

2. select winning 
symbol

1. select winning 
"context"  population 3.7 Channel equalization



What is channel equalization?

ï (digital) telecommunication channels: 

ñ satellite radio links

ñ mobile phone transmissions

ñ computer networks

ñ DVD reading devices

ï input: coded bit sequence S = 1434234... 

ï S is DA-converted, transmitted ("channel"), equalized, AD-converted  
into S' = [?] 1434234... 

ï transmission is main source of signal corruption: echoes ("intersymbol
interference"), distortion, noise

ï high-gain transmissions tend to have nonlinear characteristics, 
especially important in low-energy devices 

ï equalization: undo effects of channel (de-echo, un-distort, filter noise)

Learning setup1)

noise011.0036.0)(

))7(01.0)2(08.0()(
32 +−+=

−++=

xxxxf

ndndfny �

analog 4-
level signal

teacher for 
network 
output

noisy, 
nonlinear, 
echoing 
channel

distorted 
signal

4-symbol 
sequence 413144...

equalized 
signal

restored 
symbol 
sequence

413144...
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1) task from Mathews, V.J.  & Lee, J., Adaptive Algorithms for Bilinear Filtering, SPIE Vol. 2296, 317-327

20 24 28 32

0.00001

0.0001

0.001

0.01

0.1

Results

ï 48-unit standard ESN

ï training sample size 5000

ï black: standard nonlinear 
techniques1)

ï blue: randomly generated 
ESN

ï green: best ESN selected 
from 20 randomly generated

ï 1.5 - 2 orders of magnitude 
improvement in signal error
rate

linear DFE 48 weights

random ESN 48 weights

signal to noise ratio (db)

signal error rate

bilinear DFE 48 weights

Volterra DFE 48 weights

selected ESN 48 weights

1) Mathews, V.J.  & Lee, J., Adaptive Algorithms for Bilinear Filtering, SPIE Vol. 2296, 317-327

3.8 Nonlinear control



Direct / feedback tracking control

training

network "observes" torque u(t-
d), plant state y(t-d), y(t)

network learns how  u(t) 
depends on y(t), y(t+d)

exploitation

network input: reference yref (t+d)
and state feedback y(t)

network computes control input
u(t)

y t( )

u t( )
y t+dref ( )

pendulum

y t-d( )

u t( )

u t-d( )

y t( )

pendulum
z-d

z-d

Simulated pendulum example

torque u

pendulum coord. y

control signal u
issued by 
network    [      ]

disturb.     [      ]

actual      [      ]

reference [      ] 
y

training data exploitation

actual      [      ]

required  [      ] 
ω

200 400 600 800 1000
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200 400 600 800 1000
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-0.5
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1

50 100 150 200 250 300

-0.4

-0.2
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0.4

plus  coord. x, plus (in 
state feedback) ω

Robot motor control
(data courtesy Paul Plˆ ger et al.)

Task

create motor controllers for AISës 
soccer robots

Challenge

Robot system is nonlinear and 
has hysteresis effects due to soft 
carpet, sliding, high motor load

Goal

Control curve driving at 2 m/sec

Project status

2 PhD projects have started at 
AIS (A. Arghir, M. Oubbati)

An ESN robot model

..
...
.

100 unit ESN with output 
feedback

200 400 600 800 1000
0.35

0.45

0.5

200 400 600 800 1000

0.35
0.4
0.45
0.5

200 400 600 800 1000
0.1
0.2
0.3
0.4
0.5
0.6

200 400 600 800 1000
0.1
0.2
0.3
0.4
0.5
0.6

Training teacher: left and right 
measured wheel velocities

Training input: left and right 
PWMs of robot trace

Training setup

Results

50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

Model right
Robot right
Model left
Robot left

ï accurate dynamical 
robot model

ï NMSE 0.027



Training and using the controller

previously 
trained ESN 
model of robot

200 400 600 800 1000
0.35

0.45

0.5

200 400 600 800 1000

0.35
0.4
0.45
0.5

original PWM 
robot data 

(left & right)

simulated robot wheel speeds

ï 6500 training data points 
(about 5 min robot run)

ï 100 unit network

ï Controller network with 
output feedback

ï NMSE about 0.012

20040060080010000.15

0.25
0.3
0.35
0.4

20040060080010000.15

0.25
0.3
0.35

20040060080010000.15

0.25
0.3
0.35
0.4

20040060080010000.15

0.25
0.3
0.35

y t-2( )

u t( )

u t( )

u t-2( )
y t( )

y t( )

y t+2ref( )

z-2

z-2

Desired robot wheel speeds

Results
Original controller

hand-designed PID 
(feedback) controller

controlled trajectory lags 
behind target

Trained controller run 
on original targets

no lagging: controller 
incorporates prediction 
model

overshooting

Trained controller run 
on target generated by 
reference model

50 100 150 200 250 300

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Control input
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1

Control input

Controlled

Target

control: comments

mixture of direct and feedback control (model-
corrected dynamical state/observation feedback 
tracking control)

"experiential" training data (playing, testing, just 
doing things)

generally learn how plant in state y(t) will develop to 

state y(t + d) due to u(t)

yields individual control style: jerky players will 
become high-gain controllers etc. 

Neurocontrolling: the frontier

Jurgis Kairys, Vilnius, Lithuania, neurocontrolling his Sukhoi 26, 1999



4 Open Issues

4.1 Stability

4.2 Multiple timescales

4.3 Additive mixtures of dynamics

4.4 "Switching" memory

4.5 High-dimensional dynamics

Stability

many a thing may happen when learning sines...

... which of these qualifies as "learning the sine"?
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-1

-0.5

0.5

1

perfect

quite OK

well, yes, 
in 
principle...

rather 
shaky

what's 
that?

instable

Multiple time scales

This is hard to learn (Laser benchmark time series):

100 200 300 400 500

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Reason: 2 widely separated time scales

Approach for future research: ESNs with different 
time constants in their units



Additive dynamics

This proved impossible to learn:

Reason: requires 2 independent oscillators; but in 
ESN all dynamics are mutually coupled.

Approach for future research: modular ESNs and 
unsupervised multiple expert learning

50 100 150 200 250 300
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)311.0Sin()2.0Sin()( nnny +=

"Switching" memory

This FSA has long memory "switches":

Generating such sequences not possible with monotonic, area-
bounded forgetting curves! 

a a

b

c

baaa....aaacaaa...aaabaaa...aaacaaa...aaa...

bounded
area

unbounded 
width

Approach for future research: incorporate switching units into ESN

High-dimensional dynamics

Hight-dimensional dynamics would require very large ESN. 
Example: 6-DOF nonstationary time series one-step prediction

200-unit ESN: RMS = 0.2; 400-unit network: RMS = 0.1; best other 
training technique1): RMS = 0.02

Approach for future research: task-specific optimization of ESN
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1)Prokhorov et al, extended Kalman filtering BPPT. Network size 40, 1400 
trained links, training time 3 weeks

5 Conclusion



Precision and versatility
Observation: a single echo state network can learn many 
dynamics with high precision.

Reason: echo states shape the tool for the solution from the 
task. 
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Patent

International patent application 

ï priority claimed October 13, 2000 

ï application filed October 2001 (PCT/EP01/11490).

Summary

ï Basic idea: dynamical reservoir of echo states + 
supervised teaching of output connections.

ï Seemed difficult: in nonlinear coupled systems, 
every variable interacts with every other. BUT 
seen the other way round, every variable rules and 
echoes every other. Exploit this for local learning
and local system analysis.

ï Echo states shape the tool for the solution from 
the task. 

Long version of this talk and tutorial 
Mathematica notebooks can be 
downloaded from my homepage

http://www.gmd.de/People/Herbert.Jaeger/



Thank you.




