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Abstract. A robot running a hybrid control system (its architecture
comprising a deliberative and a reactive part) must permanently up-
date its symbolic situation model to allow its ongoing deliberation to
operate. Previous work has shown that this update can be improved
by using, possibly among other sources, the robot’s sensor informa-
tion as filtered through recent activation value histories of robot be-
haviors. In that work, characteristic patterns in groups of behavior
activation values are used to definechronicles,which allow true facts
about the current situation to be hypothesized. Chronicle definitions
are hand-crafted as part of the domain modeling.

In this paper, we demonstrate that analogs of chronicle definitions
can belearned.We use an echo state network, which is a particular
type of recurrent neural network. To train it, the same activation value
data are used as before in chronicle definitions. The training process
is fast. The detection process is cheap to run on-line on board the
robot. The new method is demonstrated on data from a robot simu-
lator. It provides the robot programmer an alternative tool for getting
recent symbolic situation fact hypotheses.

1 BACKGROUND

Typically, a state-of-the-art autonomous mobile robot has ahybrid
control architecture, i.e., its control system includes a reactive (aka.
functional) and a deliberative layer, and possibly more layers to con-
nect the two [2]. Hybridity is needed to integrate the overall robot ac-
tion information of greatly different granularities and time scales. To
achieve timely response to rapid, asynchronous change in the robot
environment, fast reaction is needed, typically based on raw sensor
data—collision avoidance is the standard example. To achieve long-
term goal-directed action in incompletely known environments, de-
liberation is needed, typically based on symbolic concepts describing
the current situation. Task rescheduling due to a new high-priority
user request is an example.

Hybrid robot control architectures—be they organized in the
”classical” three layers like [5, 1] and many more, or in two layers
like [11, 17]—must organize two directions of information flow to
make the overall robot action coherent: ”Downward” from abstract
tasks to concrete physical behavior, and an ”upward” flow of fine-
grained data about the physical world to abstract symbols for delib-
eration. This is an instance of thesymbol groundingproblem [10];
more recently,object anchoring[7] has stirred some interest.

This paper deals with the ”upward” information flow: what the
reactive control layer tells the deliberative one about the world. In
most robot control architectures, such as [5, 1, 17], this data is used
as status information about the state of executing the recent abstract
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task on a more concrete layer, providing exception messages, ter-
mination conditions, and the like. While this is crucial information,
more can be done. [15] presents an approach to derive hypotheses
about facts about the recent situationexternal to the robotby ana-
lyzing the histories of behavior activation values. Certain patterns in
these time series are matched against givenchronicledefinitions in
the spirit of [9]; a summary will be given below in Sec. 3. Behavior
activation values provide a very particular way of aggregating sensor
values, namely, as is necessary for permanently calculating the de-
gree of activity for each and every behavior on the reactive layer. For
fact derivation, they are available for free in the sense that they have
to be calculated anyway in the robot control.

In [15] chronicles are hand-crafted, based on the domain mod-
eler’s understanding of how different robot behaviors interact with
each other and with the physical environment. In this paper, we at-
tempt to arrive at the same type of hypothesis about symbolic facts
true in the recent situation, based on the same behavior activation
data plus other sensor and control data traces, but under a black-box
view towards the robot control system: A naive user should be able to
train the fact hypothesis process by giving few positive and negative
examples for the respective facts to the robot acting in its environ-
ment, and the robot should then classify well situations according to
the validity of the trained fact, as far as it is mirrored in its data.

Obviously, this is not easy due to the potentially huge amount of
data in the streams of sensor and control values flooding a robot at
any time. As will become clear in the paper, a particular type of clas-
sification learning method, echo state networks [12], in combination
with the sensor data filtering as through the behavior activation value
histories, makes the task feasible.

The rest of this paper is organized as follows. Sec. 2 describes the
hybrid robot control architecture that we are using: theDD& P archi-
tecture. Note, however, that the learning method proposed here does
in no way requireDD& P; other behavior-based robot control schemes
would work analogously. Sec. 3 recapitulates from [15] the principle
and the technique to hypothesize situation facts from behavior activa-
tion value histories by using hand-coded chronicle definitions. Sec. 4
sketches echo state networks [12, 13], which represent the powerful
learning framework of our approach. Sec. 5 puts it all together, de-
scribing how echo state networks can be used to arrive at analogs of
chronicles. Sec. 6 presents experiments with the learning approach,
based on training and test traces gained from a robot simulator. Sec. 7
concludes.

2 BEHAVIOR-BASED ROBOT CONTROL IN
THE DD&P ARCHITECTURE

DD& P [11] is the robot control architecture used here. The learning
method described later may be embedded into other architectures,



provided that their reactive layer produces time series of behavior
activation values. AsDD& P is the background rather than a feature
for the contents of this paper, we sketch here abstractly its most es-
sential points, emphasizing its use of activation values in the reactive
layer, as they play a key role for the learning method.

DD& P is a two-layer hybrid architecture using Dual Dynamics
(DD, [14]) to formulate the reactive layer in a behavior-based way.
DD is also used stand-alone, e.g., in the RoboCup team of [6].DD& P

adds to DD a deliberative robot control layer. For this paper, the DD
layer is of concern. The following sketch borrows from [15].

A DD controller consists of two kinds of behaviors: low-level be-
haviors (LLBs), which are directly connected to the robot actuators,
and higher-level behaviors (HLBs), which are connected to LLBs
and/or HLBs. Each LLB implements two distinct functions: a target
function and an activation function. The target function for the be-
havior b provides the referencetb for the robot actuators (”what to
do” ) as

tb = fb(s
T ; �TLLB); (1)

wherefb is a nonlinear vector function with one component for each
actuator variable,sT is the vector of all inputs from sensors or sensor-
filters (aggregated sensor values) and�TLLB is the vector of activation
values of the LLBs.

The LLB activation functionmodulatesthe output of the target
function. It provides a value in [0,1], describing the degree how the
behavior attempts to influence the robot actuators (not, fully, and all
degrees in between). Thevariationof theactivation value�b;LLB of
the LLB b it is computed as the following nonlinear function:

_�b;LLB = gb(�b;LLB ; OnFb; OffFb; OCTb) (2)

OCTb is a term allowing the deliberative layer inDD& P to influ-
ence the activation values, which is beyond the scope of this paper
(see [11]).OnFb (OffFb, resp.), the ”on-forces” (”off-forces”), is a
scalar variable summing up all conditions that recommend (discom-
mend) activating the respective behavior. They are defined as nonlin-
ear functions ofsT , �TLLB , and�THLB .

The HLBs implement only the activation function. They are al-
lowed to modulate only the LLBs or other HLBs on the same or
lower level. In our case, the change of activation values for the HLBs
_�b;HLB are computed in the same manner as in Eq. 2.

One reason for updating behavior activation in the form of Eq. 2
is this. Referring to the previous activation value_�b incorporates a
memory of the previous evolution, which can be overwritten in case
of sudden and relevant changes in the environment, but normally
prevents activation values from spiking or oscillating with high fre-
quency. At the same time, this form of the activation function pro-
vides somelow-pass filteringcapabilities, deleting sensor noise or
oscillating sensor readings.

In this variant of DD, behaviors are arbitrated using the activation
values. Each behavior can influence (excite or inhibit) every other be-
havior on the same or lower level. The interaction between behaviors
is defined by the variablesOnF andOffF .

The output orreference vectorr of the BBS for the robot actuators
is generated by summing all LLB outputs by amixer:

r = �
X

b

�b;LLBtb

where� = (1=
P

b
�b;LLB) is a normalizing factor.

Figure 1. Test arena for the examples and experiments in the text. The
second robot adds dynamical effects to the environment.

3 GROUNDING FACT HYPOTHESES IN
BEHAVIOR ACTIVATION VALUES

The arena for all examples in the rest of this paper is shown in Fig. 1.
It consists of a narrow corridor (upper part) and two rooms connected
by a door. The robot to be controlled travels around in the arena,
possibly facing another robot or other obstacles. The sensors of the
simulated robot are simple office-navigation robot standard (various
distance sensors). A simulated laser scanner is available, but not used
among the raw sensor values for learning.

We have here the following LLBs:AvoidColl, FollowLeftWall,
FollowRightWall, GoThruDoor, TurnToDoor, and Wander. As
HLBs, we haveCloseToDoor, InCorridor, andTimeOut. They have
all the function suggested by their names, such asAvoidColl avoid-
ing a collision. But note that the mentioning ofDoor in behavior
names is just mnemonic for the domain modeler. The robot does not
know about doors, and it will react to any narrow passage looking
like a door (such as a narrow pathway between obstacles) with rising
activation of the respective behaviors.

[15] presents an approach to derive hypotheses about situation
facts from time-series orhistoriesof DD& P activation values. We
sketch this approach to compare it later with the new learning ap-
proach developed below (Sec. 5).

The histories form curves like the ones shown in Fig.2. In these
curves, certain patterns re-occur for single behaviors within intervals
of time, such as a value being more or less constantly high or low,
and values going up from low to high or vice versa. [15] uses these
isolated patterns as building blocks for fact extraction, the so-called
qualitative activations. In this section, we consider four of them: ris-
ing/falling edge, high and low, symbolized by predicates*e, +e, Hi,
andLo, resp. In general, more qualitative activations may be of inter-
est, such as a value staying in a medium range over some time. All
exact formal definition can be found in [15][Sec. 5].

The key idea for extracting facts from activation histories is
to consider patterns of qualitative activations of several behav-
iors that occur within the same interval of time. These pat-
terns are calledactivation gestaltsor briefly AG. For exam-
ple,AG(f*e(GoThruD.);+e(TurnToD.);Hi(CloseToD.)g)[t1; t2]
means loosely speaking that the behaviorGoThruDoor must get ac-
tivated,TurnToDoor get deactivated andCloseToDoor stay active
within [t1; t2]. The activation values for all other behaviors not men-
tioned in this AG are unconstrained in this time interval. Grouping
together AGs for sequences of time intervals results in the final def-



inition: a chronicle. Informally, such a chronicle is a sequence of
AGs that define events for a sequence of time intervals of previously
unknown duration. A ground fact is extracted from the activation
history of a BBS as ahypothesisat time t if its defining chronicle
matches the respective activation histories ending att.

We give as a graphical example a chronicle allowing to extract the
fact InRoom that the robot is in a room (rather than in the corridor),
such as the one left of the wall in Fig. 1. The grey shaded parts in
Fig. 2 highlight the components from the respective defining chron-
icle, with theti separating the consecutive activation gestalts. The
stream of activation values is permanently checked against all defin-
ing chronicles at robot run time to extract fact hypotheses. [15] ar-
gues that this kind of online chronicle recognition is computationally
cheap. [15] assumes that chronicles get hand-crafted as part of the
domain modeling together with programming the robot behaviors.

Some general remarks about the use of activation values for fact
extraction. First, the activation values of our DD control system
(Sec. 2) are well-suited for the task in that their formal background in
dynamical system theory provides both the motivation and the math-
ematical inventory to make them change smoothly over time. This
typical smoothness is handy for definingqualitative activationsand
serve as a stable basis for chronicle recognition. Second, activation
values are calculated anyway in the BBS and hence can be used for
free for fact extraction. Third, activation values are by their definition
event-based and noise-filtered. This reduces drastically the necessary
effort for reliable fact extraction.

To describe our new learning approach for fact hypothesis, which
is alternative or complementary to the approach of [15] just sketched,
we first present its learning method.

Figure 2. Activation value history plot overlayed with chronicle definition
(grey shading), giving strong evidence that the robot is inside a room rather

than in the corridor.

4 ECHO STATE NETWORKS

Extracting non-trivial symbolic facts from sensor/motor/activation
time series requires a filtering mechanism with some short-term
memory “capabilities”, because the time series – e.g. events – need
to be integrated over some time. A potentially very powerful class of
filters with substantial memory capacity is recurrent neural networks
(RNNs). However, RNNs are rarely considered as a practical tool
because known training algorithms [3] are difficult to use, converge

slowly, and have principal limitations in achieving substantial mem-
ory spans.Echo state networksare a novel approach to RNN training
which overcomes these and other known difficulties, making RNNs
a practical alternative. Here we can only sketch the basic principle of
this approach; for details see [12].

Under certain conditions, the activation statex(n) =
(xi(n))i=1;:::;N of anN -unit RNN is a function of the input his-
tory u(n);u(n � 1); : : : presented to the network. I.e., there ex-
ists anecho functionE = (ei(n))i=1;:::;N such thatxi(n) =
ei(u(n);u(n � 1); : : :). Metaphorically, the statex(n) can be un-
derstood as an “echo” of the input history.

The task of “filtering” an input sequenceu(n);u(n� 1); : : : such
that an interesting output is generated by the filter, formally amounts
to implementing a filter functionF (u(n);u(n�1); : : :). Let us con-
sider the case of a single output variable. We have then a network
architecture where a “reservoir” RNN is combined with a single out-
put unit. The desired output variableF is the activation of this out-
put unit. The basic idea of the echo state approach is to combine
F from the excited dynamics available at the RNN units, i.e. to put
F (u(n);u(n � 1); : : :) �

P
i
wixi(n) =

P
i
wiei(u(n);u(n �

1); : : :):
The training task amounts to finding weightswi for the connec-

tions leading from the “reservoir” network to the output unit, such
that the mean square error of the network output (compared to the
correct teacher output) is minimal. This is a supervised training
scheme. Since no cyclic interdependencies exist between thewi, this
task can be computed by a simple linear regression.

To sum up, conventional approaches to RNN training attempt to
adjust all weights within the RNN. Because of cyclic dependen-
cies, this is only feasible withsmall networks (order of 20 units).
By contrast, in the echo state approach, alarge RNN is used (order
of hundreds of units). This network is not modified during learning.
It serves as a “reservoir” of a rich collection of excitable dynamics,
which is “tapped” via the output weightswi, which are determined
in a constructive training algorithm by minimizing the mean square
error of network output vs. teacher signal over the training data.Only
the RNN-to-output connections are adjusted.

The echo state approach has been applied to a large variety of
tasks, many of which were inaccessible to RNN modeling before.
A highlight is echo state prediction models for chaotic systems,
which (for the Mackey-Glass benchmark system) outperform exist-
ing black-box modeling techniques by two orders of magnitude [12].

5 TRAINING ECHO STATE NETWORKS TO
HYPOTHESIZE SITUATION FACTS

We want to derive assertions of a fact' from sensor/motor/activation
input historiesu(n);u(n � 1); : : :, where the latter are (possibly
high-dimensional) traces of various sensor etc. variables available to
the robot. Coding the truth/falsity of' by values 1 and 0, we wish
to realizeF (u(n);u(n� 1); : : :) as a 0-1-valued indicator function
that returns 1 when' is perceived to hold, else 0.

To realizeF by an echo state network, one first has to generate
training data. We used the simulated environment of Sec. 3 (Fig. 1).
Various variables available to the robot were sampled: raw sensor
data (e.g., infrared sensor readings, together 10 channels), processed
sensor data (e.g., robot heading, 3 channels), motor measurement
data (robot speed and angular velocity readings, 3 channels), and ac-
tivations of the nine LLBs and HLBs of the behavior-based control
system of Sec. 3 (altogether 9 channels). The sampling rate was 4 Hz
in simulated time.
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Figure 3. Four channels of the training data. Simulated time shown
approx. 50 secs (200 time cycles). First: raw readings of an infrared distance

sensor. Second: Right motor velocity. Third: Activation of LLB
TurnToDoor. Fourth: Hand-coded fact flag'C .

In this article, we consider only facts'X that correspond to events
X of short duration, which is why we may use the facts and the events
signaling the facts interchangeably in the following.2 Three kinds
of facts'D; 'R; 'C were asserted by hand in three extra channels.
They were put from 0 to 1 for one simulated second when eventsD
= “robot passes through any door”,R = “robot passes through door
that leads from corridor into a room”, andC = “robot passes by a 90
degree corner” occurred. Note thatR events are a proper subset ofD
events in the arena in Fig. 1 (and therefore'R � 'D).

Fig. 3 shows a portion of the training data. The data was used to
train an echo state network with three output units (for'D; 'R; 'C
– note that these output units are trained and operate independently
and simultaneously, tapping from the same “reservoir” RNN). The
network was a 100 unit RNN, with sparse, random connectivity (5 %)
and random weights. The weights were scaled such that the network
weight matrix had a spectral radius ofj�max j= 0:95, which brings
about a long short-term memory span of the RNN of about 20 update
cycles, i.e., about 5 seconds simulated time (an explanation of these
matters is beyond the scope of this article, see [12, 13] for details).
Weights from input units to the network were put at random values
with a random connectivity of 30%. The same network was used in
all experiments reported below.

6 EXPERIMENTS

From the data collected in the simulation run, roughly the first simu-
lated 15 minutes (4000 update cycles) were used for training and the
remaining 5 minutes (1000 cycles) for testing. During the training
period, a subset of the sensor/motor/activation variables was fed into
the “reservoir” network. In different experiments, different subsets
were chosen. The resulting network states were written into mem-
ory. At the end of this period, the output weights were computed such
that the mean square error4000�1

Pn=4000

n=1
('X(n) �WXx(n))

2

was minimized. Here,X = D;R;C; WX is the vector of weights
leading from the RNN to the corresponding output units; andx(n)
is the network state at cyclen. From a computational point of view,
this amounts to computing the pseudo-inverse of the rectangular ma-
trix consisting of the 4000 networks state vectors – a single operation

2 “State” facts that hold over a period of time would have to be modeled
by recognizing to-be-defined start and end events; for example, the fact
InRoom of being in some room would start to hold after'R (but not'D).
Details are out of scope here.
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Figure 4. Network output (solid thick line) and teacher (dashed) for the
fact'D = “robot passes through any door”. First graph: behavior activation

and motor variables available to network. Second: sensor and motor
variables. Third: all variables.
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Figure 5. Same as in Fig. 4 for'R = “robot passes through door that leads
from corridor into a room”.

for which many efficient implementations are available (we used the
Mathematica routine). The network was then ready for exploitation.
For testing, the sensor/motor/activation variables from the remaining
1000 cycles were fed into the network, and the network output was
visually compared to the correct (hand-coded) teacher response.

Here we report three times three experiments. In the first of each
group, only motor variables and behavior activations were fed into
the network. In the second, only sensor variables (including motor
variables) were used. Finally, in a third experiment all available robot
variables were exploited. Figure 4 shows the results of the three ex-
periments for the fact'D; Figs. 5, 6 for the facts'R and'C .

A detailed analysis of the findings cannot be attempted here due
to space limitations. We can only point out some main observations:

� The learning task was essentially mastered in all 9 conditions in
the Fig.s 4–6 with no false negatives and very few false positives.

� With the exception of the'D fact, best results were obtained when
all available variables were used.'D was best filtered by the net-
work that obtained behavior activations and motor variables.

� The tricky distinction between events D and R was mastered (re-
member R events are a subset of D events).

Let us also mention some observations from similar experiments not
presented here:

� A network size of 100 units is roughly appropriate for this task:
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Figure 6. Same as in Fig. 4 for'C = “robot passes by a 90 degree corner”.

a 400 unit network did not lead to significantly better results,
whereas a 25 unit network performed poorly.

� Relevant global scaling network parameters (like thej�max jmen-
tioned above, see [12] for others) can be scaled in a wide range
without significant changes in performance. From the perspective
of echo state network theory, the present filtering task appears to
be quite simple; “any reasonably-sized network does the job”.

� Longer training sequences result in a better signal/noise ratio of
the trained network output, but useful networks can be obtained
already from very short training sequences (for conspicuous facts,
training from a single positive example is sufficient).

The experiment reported here was run off-line on data traces
recorded from the simulator. Computation time for the complete ex-
periment (RNN training of 6 simultaneous events including the 3'X
above plus test data) was 110 sec. for our non-optimized echo state
network implementation in Mathematica on a Pentium 500 MHz pro-
cessor. Much of that computation time was used for producing in
Mathematica graphical output like that shown in the Fig.s 4 – 6.

7 DISCUSSION AND CONCLUSIONS

Our main lesson learned from the experiments reported here is that
the approach is definitely worth pursuing. As the network computa-
tion at execution time runs orders of magnitude faster than the actual
robot action and at low computation cost, the fact hypothesis gener-
ation can run on-line on board a robot. Learning time (even in our
experimental Mathematica implementation) is also very tolerable.

The detection results as visualized in Figs. 4 – 6 are still imperfect
in several respects. First, we have no general picture by now, which
set of variables yields the best learning result. Using activation values
does help; using more variables does not normally help. Second, we
have not yet presented the function for filtering from the network
outputs the binary fact hypothesis signals. For this paper, we have left
it at the qualitative impression that you get from the overlays of raw
output and teacher signals as in Figs. 4 – 6. Third, this is simulator
data, and although we are confident (owing to the richness of the
simulator) that they will scale up well to real robot data, we do not
have those yet.

However, the potential of the approach is already obvious. Before,
the chronicle-based approach of [15] was available, which is white-
box in the sense that the chronicle definitions require the program-
mer’s understanding of the domain model and of the behaviors. The
new approach is black-box in the sense that fact hypotheses can be
trained without knowinganydetail of the robot’s control system. On

the other hand, the chronicle approach is transparent in that chroni-
cle definitions and matches can be inspected and interpreted, whereas
the our echo state RNNs are as black-box as any neural network.

There are other approaches dealing with learning in the au-
tonomous robot control context. Some kind of “extended” short-term
memory is needed as a prerequisite to handle non-trivial time re-
lated dependencies between sensor readings and the world. In [4, 8]
this is similar to our RNN based approach, but direct sensory-motor-
connection are learned which are strongly related to the concrete en-
vironment, the particular behavior system and the current robot task.
Making knowledge “explicit”, like in the symbol grounding case,
overcomes most of such deficiencies. We use symbol grounding in
a very general way, [16] uses it to find a consensus for a communica-
tion between a group of robots perceiving the same physical object.

It is a main part of our future research to examine in practice
the complementarity between chronicle-based and echo state RNN-
based fact hypotheses. Our goal is to use them both, complement-
ing their results with the respective other ones whenever possible. If
grounding symbolic facts in robot sensor data is a challenge, then
this seems like a good strategy.
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