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Abstract

Human motion animation generation (HMAG) refers to the problem of training a system
to independently generate motion patterns similar to already recorded ones. It has been
seen in a variety of applications like movies, education, computer simulations and video
games. Many approaches to this problem are available including key-framing, physics
based methods and space time control. However, many problems persist in the current
methods because the required reality or complexity of the human motion may be rather
different according to its application.

Echo State Networks (ESNs) are one of the key reservoir computing methods. They are
a highly practical approach to Recurrent Neural Networks (RNNs) because of their com-
putational efficiency. On the other hand, conceptors enable RNNs to learn/load multiple
patterns in the same reservoir. They act as filters that force the reservoir to produce spe-
cific patterns. The patterns can be organized and further combined to produce new ones,
for instance through morphing.

This guided research does not provide an alternative to state of the art HMAG methods.
It aims to implement an ESN-based and a conceptor-based motion generation algorithm
and to compare them on the basis of several carefully picked criteria.
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1 Introduction

Motion is one of the most important ingredients of computer graphics (CG) movies and
computer games. Obtaining realistic motion usually involves key-framing, physically based
modeling or motion capture. Creating natural looking motions with key-framing requires
lots of effort and expertise. Although physically based modeling can be applied to simple
systems successfully, generating realistic motion on a computer is difficult, particularly for
human motion [1]. Conceptors and ESNs have already been used in motion generation
applications and have produced reliable and stable results [2, 3]. This guided research
implements and compares the two approaches to generating human motion animation,
conceptors as presented by Herbert Jaeger in [4, 2] and ESNs.

An Echo State Network is a recurrent neural network. RNNs represent a large and varied
class of computational models that are designed by analogy with biological brain mod-
ules. In an RNN numerous abstract neurons are interconnected by likewise abstracted
synaptic connections, which enable activations to propagate through the network [5].
RNNs are characterized by feedback (recurrent) loops in their synaptic connection path-
ways. They can maintain an ongoing activation even in the absence of input and thus
exhibit dynamic memory. RNNs have been shown to be Turing equivalent for common
activation functions. This means that they can approximate arbitrary finite state automata
and are universal approximators [6].

Several learning algorithms are known that incrementally adapt the synaptic weights of
an RNN in order to tune it toward the target system. With ”Deep Learning” techniques,
RNN training by gradient descent has become highly practical, though not trivial. An
overview of state of the art deep learning algorithms is given in [7]. The ESN approach
differs from these methods in that a large RNN is used (order of 50 to 1000 neurons) and
only the synaptic connections from the RNN to the output readout neurons are modified
by learning. Because there are no cyclic dependencies between the trained readout
connections, training an ESN becomes a simple linear regression task [8].

In addition to ESNs, I will use the mechanism of conceptors, by which the dynamics of an
RNN can be governed in a variety of ways. Mathematically, conceptors are linear opera-
tors which characterize classes of signals/patterns that are being processed in the RNN.
Starting from an operating RNN, they can be learned and stored, or quickly generated
on-the-fly, using a simple adaptation rule: learning a regularized identity map. Concep-
tors can be represented as matrices or as neural subnetworks and allow the reservoir to
learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number
of dynamical patterns within the reservoir [4].

The rest of this document is structured as follows. Section 2 describes the researched
problem in more detail by providing an in-depth look into ESNs, conceptors and HMAG
as described in other articles. Furthermore it states the research objectives and the
motivations behind them. Section 3 documents the methods used to solve the HMAG
problem using ESNs and conceptors. It also provides theoretical insights and practical
hints to further optimize the used methods. Section 4 provides a comparison of the 2
methods used in this project on the basis of various criteria. Section 5 is the final section
where a summary of all the results obtained in this project is given and useful starting
points for further investigation are indicated. Appendix A provides details on the dataset
used throughout this project.
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2 Statement and Motivation of Research

2.1 Human Motion Animation Generation

In this section I provide an overview of the human motion animation generation (HMAG)
problem, explain the approaches that have been used in solving this problem and elab-
orate on the approach that serves our purpose, that is generating human motion anima-
tions using motion capture (MoCap) data.

HMAG, also known as motion synthesis, is an important part of media like video games
and movies. More lifelike characters make for more immersive environments and more
believable special effects. At the same time, realistic animation of human motion is a
challenging task, as people have proven to be adept at discerning the subtleties of hu-
man movement and identifying inaccuracies. There are three natural stages of motion
synthesis [9]:

1. Obtaining motion demands involves specifying constraints on the motion, such
as the length of the motion, where the body or individual joints should be or what
the body needs to be doing at particular times.

2. Generating motion involves obtaining a rough motion that satisfies the demands.
This is the main objective of this project.

3. Post processing involves fixing small scale offensive artifacts. An example would
involve fixing the feet so that they do not penetrate or slide on the ground, length-
ening or shortening strides and fixing constraint violations [10] .

In this project MoCap data is used to obtain motion demands, ESNs and conceptors are
used to generate motion and post processing is not done. A comparison of a few publicly
available character engines is given in [1].

Generating motion largely follows two threads: using examples and using controllers.
Example based motion generation draws on an analogy with texture synthesis where a
new texture (or motion) that looks like an example texture (or motion example) needs
to be synthesized [11]. A road-map of all the motion examples can be constructed and
searched to obtain a desired motion graph [12, 13]. Motion graphs transform the motion
synthesis problem into one of selecting sequences of nodes, or graph walks. The clips
in this road-map can also be parameterized for randomly sampling different motion se-
quences. The resulting Markov chain can be searched using dynamic programming to
find a motion that connects two key-frames [14]. The results of a motion graph algorithm
can be observed in Figure 2.1.

Controller based approaches use physical models of systems and controllers that pro-
duce outputs usually in the form of forces and torques as a function of the state of the
body. These controllers can be designed specifically to accomplish particular tasks [15]
or they can be learned automatically using statistical tools [16]. Types of probabilistic
search algorithms have also been used in physically based animation synthesis [17].

Some of the standard solutions to HMAG involve motion capture: motion data for an
approximate skeletal hierarchy of the subject is recorded and then used to drive a re-
construction on the computer. Most motion capture systems are very expensive, for this
reason I use the CMU Graphics Lab Motion Capture Database [18]. Raw motion capture
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Figure 2.1: Top images show original motion capture data; two are walking motions and
one is a sneaking motion. The bottom images show new motion generated by a motion
graph built out of these examples as described in [13].

data contain spatiotemporal traces of markers attached to the performing person. By pre-
processing this data a bundle of motion signals can be obtained. Each signal represents
a sequence of sampled values for each degree of freedom. These signals are sampled
at a sequence of discrete time instances with a uniform interval to form a motion clip that
consists of a sequence of frames. In each frame, the sampled values from the signals de-
termine the configuration of an articulated figure at that frame, and thus they are related
to each other by kinematic constraints [12].

While motion capture is a reliable way of acquiring realistic human motion, by itself it is not
a technique for reproducing motion. The recorded data has to first be cleaned and then
normalized. Cleaning the data is in itself an intrinsic signal processing task, but the CMU
Graphics Lab takes care of providing already clean and de-noised data. Normalization
is application dependent and in most of the cases it has to be done manually for every
motion pattern. Only after completing these 2 non trivial steps can the data be used to
train any motion generating system. The last step is rendering the generated data for
which I use the MoCap Toolbox [19]. This toolbox also contains various methods that
help in preprocessing raw MoCap data.

2.2 ESN

The following section presents the general structure of an Echo State Network (ESN)
as introduced in [20, 21, 22], describing the reservoir update equations and the readout
training process. The explanations are focused on gradually deriving a pattern generator
ESN.

ESNs provide an architecture and supervised learning principle for Recurrent Neural Net-
works (RNNs). The main idea is to drive a random, large, fixed RNN with the input signal,
thereby inducing in each neuron within the reservoir a nonlinear response signal, and
combine a desired output signal by a trainable linear combination of all of these response
signals [23].

The central part of an ESN is the reservoir, a randomly generated, recurrent neural net-
work. It can be seen as a nonlinear high-dimensional expansion of the input signal and
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at the same time it serves as a memory, providing temporal context. The reservoir, be-
ing an input-driven dynamical system, should provide a rich and relevant enough signal
space, such that the desired target can be obtained by a linear combination from it [24].
I consider discrete-time neural networks where the reservoir consists of K input units, N
internal network units and L output units. The general architecture of a ESN can be seen
in Figure 2.2.

Figure 2.2: Graphical representation of ESNs taken from [20]. Dashed arrows indicate
connections that are possible to train.

Each of the units at time step n has an activation (numerical value). Activations of
input units at time step n are u(n) = (u1(n), ..., uK(n)), of internal units are x(n) =
(x1(n), ..., xN (n)) and of output units y(n) = (y1(n), ..., yL(n)). Real-valued connection
weights are collected in matrix Win ∈ RN×K for the input weights, in matrix W ∈ RN×N

for the internal connections, in matrix Wout ∈ RL×(K+N+L) for the connections to the
output units, and in matrix Wback ∈ RN×L for the connections that project back from the
output to the internal units [20]. Also connections from input to output and output to output
are allowed but are not of particular use in our application. In theory no further constrains
exist on the reservoir weights W, Win and Wout. Since these weights are not changed
during the training phase, but are precomputed according to the guidelines in [21], the
size of the reservoir can easily be increased with little additional computational costs.

In this project I do not use plain ESNs as described in [20]. Instead, ESNs with leaky
integrator neurons, introduced in [20, 21] and further examined in [22], are used. The
activation of internal units for this particular type of ESN follows the equation:

x(n+ 1) = (1− α) x(n) + α f(Winu(n+ 1) +Wx(n) +Wbacky(n) + b) (2.1)

where x(n), u(n), y(n) and W, Win, Wback have the above described meaning, f de-
notes the component-wise application of the individual unit’s transfer function, b ∈ RN×1

is a bias vector. α is the leaking rate, a time constant which can be used to slow down
the network [21]. For the purpose of pattern generation the term Winu(n+ 1) will not be
needed. The sigmoid function f = tanh is used as the transfer function.

During the training phase, the to be generated pattern is served to the network as a
teacher forced output y(n) = d(n), where d(n) is the training signal value at time n.
When the ESN is in pattern generating mode, not driven anymore by the teacher forced
output, the output is computed according to:

y(n+ 1) = fout(Wout(u(n+ 1),x(n+ 1),y(n))) (2.2)

where (u(n + 1),x(n + 1),y(n)) denotes the concatenated vector made from input, in-
ternal, and output activation vectors. u(n) is not needed since the input is feed to the
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network as a teacher forced output, while usage or non usage of y(n) is optional and in
our task we can do without. The output transfer function used is fout = id [21].

The learning task is to compute the output weights Wout, by minimizing the mean squared
error:

MSEtrain =
1

T − n0

T∑
n=n0+1

||d(n)−Woutx(n)||2 (2.3)

where T is the length of the training data and n0 is the washout time. Minimizing MSE
is a simple linear regression task. Ridge regression (aka Tikhonov regularization [25]) is
used instead of textbook linear regression because of its higher numerical stability, ability
to reduce sensitivity to noise and potential to reduce overfitting [5]. Computing Wout

using ridge regression leads to:

(Wout)′ = (XX′ + γI)−1XD′ (2.4)

where I is the identity matrix, γ is the regularization coefficient and ′ is the matrix trans-
pose operator. D ∈ RL×(T−n0) and X ∈ RN×(T−n0) are both recorded during the training
phase. For each time step n after the washout time n0 the state of the internal units x(n)
is stored in the (n − n0)-th column of X and the teacher forced output d(n) is stored in
the (n− n0)-th column of D.

2.3 Conceptors

This section provides a full mathematical introduction of conceptors and describes how
they are computed. Conceptors were proposed not long ago by Herbert Jaeger in [4, 2]
on which this section relies heavily.

Conceptors are neural filters that characterize dynamical neural activation patterns within
a RNN. When a RNN is actively generating, or is passively being driven by different
dynamical patterns (say a, b, c, . . .), its neural states populate different regions Ra, Rb,
Rc, . . . of neural state space. For these regions, neural filters Ca, Cb, Cc, . . . (the
conceptors) can be incrementally learned. A conceptor Cx, representing a pattern x, can
then be invoked after learning to constrain the neural dynamics to the state region Rx,
and the network will select and re-generate pattern x.

The dynamics of the neural model system (RNN in this case) are mathematically de-
scribed by the state update equations:

x(n+ 1) = f(W∗x(n) +Winp(n) + b) (2.5)
y(n) = fout(Woutx(n)) (2.6)

Time here progresses in unit steps n = 1, 2, . . .. The network consists of N neurons,
whose activations x1(n), . . . , xN (n) at time n are collected in an N -dimensional state
vector x(n). The neurons are linked by random synaptic connections, whose strengths
are collected in a weight matrix W∗ ∈ RN×N . W∗ must be scaled small enough to ensure
that the RNN has the echo state property with respect to the input signals that are fed to it.
An input signal p(n) is fed to the network through synaptic input connections assembled
in the input weight matrix Win ∈ RN×L where L is the dimension of the pattern. b ∈ RN×1
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is a bias vector. As in the case of ESNs, I use f = tanh and fout = id. Equation 2.6
specifies that an output signal y(n) can be read from the network activation state x(n) by
means of output weights Wout ∈ RL×N . These weights are pre-computed such that the
output signal y(n) just repeats the input signal p(n). The output signal plays no functional
role, but it serves as a convenient observer of the high-dimensional network dynamics.

Storing patterns p1, ...,pP into the reservoir amounts to re-computing the initial random
reservoir weights W∗, giving a new set of network weights W, such that the new reservoir
can mimic the impact of drivers pj in the absence of them. W is computed as follows. In
a separate run, each pattern is fed into the initial reservoir according to:

xj(n+ 1) = f(W∗xj(n) +Winpj(n) + b), j = 1, ..., P, n = 0, ..., T (2.7)

Then W is computed to minimize the quadratic loss:

P∑
j=1

T∑
n=n0+1

||W∗xj(n) +Winpj(n)−Wxj(n)||2 (2.8)

where only network states for times after n0 are used, in order to allow for washing out
the arbitrary initial state xj(0) according to the echo state property . This again is a linear
regression task and can be efficiently solved using ridge regression. Network updates
from states xj(n) with either the original input-driven update rule, or with an input-free
update rule that employs W instead of W∗ are similar [2].

f(W∗xj(n) +Winpj(n) + b) ≈ f(Wxj(n) + b) (2.9)

The output weights Wout are the same for all patterns and can be computed by minimiz-
ing the following loss function using ridge regression over all patterns:

1

P

P∑
j=1

1

T − n0

T∑
n=n0+1

||pj(n)−Woutxj(n)||2 (2.10)

Considering 2.9, the loaded reservoir should be able to generate approximate versions
of the original patterns. However, if the network were run just by iterating x(n + 1) =
f(Wx(n) + b), the resulting input-free reservoir dynamics is entirely unpredictable. Here
conceptors enter the stage. Each loaded pattern pj is associated with conceptor matrix
Cj ∈ RN×N which is inserted into the state update loop via:

x(n+ 1) = Cj f(Wx(n) + b) (2.11)

The matrix Cj acts as a filter that leaves states xj(n) from the state pattern associated
with pattern pj essentially unchanged, but suppresses state components of states xi(n)
associated with patterns pi 6= pj . The conceptor matrices are computed by minimizing
the following quadratic loss function:

L(Cj) = E[||Cjxj(n)− xj(n)||2]− (αj)−2||Cj ||2fro (2.12)

where the expectation E is taken over all states xj(n) that arise in pj-driven runs accord-
ing to Equation 2.7. The first component E[||Cjxj(n)−xj(n)||2] is minimal when Cj is the
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identity matrix. This reflects the objective that the j-th conceptor should leave the states
xj unchanged. The second component ||Cj ||2fro becomes minimal for Cj = 0. This takes
care of the objective that the j-th conceptor should suppress state components which
are untypical of states xj(n). The parameter αj is called aperture and it strikes a balance
between the two objectives.

Minimizing the loss L(Cj) leads to the solution:

Cj = Rj(Rj + (αj)−2I)−1 (2.13)

where Rj = E[xj(n)xj(n)′] is the N × N correlation matrix of states xj(n) obtained in
the state dynamics driven by pattern pj . Cj is positive semi-definite with N eigenvectors
being the same as the eigenvectors of Rj . These eigenvectors are the same as the
principal component vectors obtained from a principal component analysis of state sets
xj(n).

2.4 Research Objectives

Firstly, I state that this project does not aim to provide a state of the art solution to the
HMAG problem, nor does it try to compare the results to the current state of the art
algorithms. The main objective of the current research is to train and develop an ESN
motion generator, a conceptor motion generator and to compare the two approaches.

One of the goals of this research is to test the potential of ESNs in a complex motion
generation task. The other goal is to use conceptors to solve the same problem, already
done by Herbert Jaeger in [2] with a different focus, and to compare the two approaches.
Taking into account these two goals here are the main objectives of this project:

• Develop a leaky-integrator neuron ESN for each of the patterns downloaded from
the CMU Graphics Lab Database and find the optimal parameters for generating
smooth and stable patterns.

• Morph the developed ESNs two by two to obtain natural looking transitions between
different patterns.

• Compute conceptors for each pattern and use them to generate and transition be-
tween motion patterns.

• Compare the two approaches based on features like stability, robustness, compu-
tational and storage efficiency and motion similarity to real humans.

3 Documentation of Methods

The following section presents each component of the developed models essential to
address the research objectives listed in Section 2.4. It provides theoretical insights and
details on the practical implementation for a concrete understanding of the system.
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3.1 Data Description and Pre-processing

The first step in tackling the HMAG task was to get familiar and to normalize the MoCap
data from CMU Graphics Lab Database. The raw MoCap data comes in heterogeneous
formatting, specifically the joint numbering differs across individual MoCap trace files.
One has to manually unify the formats and create versions that are inputs for the neural
network. This in itself would be a demanding task, but the patterns used in this project
have been already preprocessed by Herbert Jaeger in [2]. The resulting patterns are
61-dimensional signals (body pose and joint angles). With 61 dimensions the curse of
dimensionality would usually be a problem, but this is not the case with our data. The
signals are highly interdependent, so the effective manifold dimension is much lower.

After preprocessing, the signals cannot be directly fed to the reservoir because they are
not normalized. Different signals of the same pattern differ in scalings and shifts from the
origin. If fed to the network in this form, the signals which have the largest absolute value
overexcite the reservoir and drive the neurons towards the edge -1/+1 values. Therefore
each signal is normalized according to:

S′ = 2
S .− min(S)

max(S)−min(S)
− 1 (3.1)

where S is the signal vector, min(S) is the minimum of S and max(S) is the maximum of
S. The .− sign is the MATLAB notation for the element wise subtraction of a scalar from
a vector. Equation 3.1 can be rewritten in the following from:

S′ = (S + shift) ∗ scaling (3.2)

where shift = −min(S) − max(S)−min(S)
2 and scaling = 2

max(S)−min(S) . The shift and
scaling is recorded and used for the reconstruction of the original pattern form the reser-
voir generated result. Different signals of a pattern alongside their normalized versions
can be seen in Figure 3.1.
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Figure 3.1: Red signals are the first four raw signals of the Jog pattern. Blue signals
represent the first four normalized signals of the Jog pattern. The horizontal axis indicates
the time n while the vertical axis the signal value.

Another important property of the data is the stationary/non-stationary nature. The sta-
tionary patterns are relatively easy to learn by the network. The non-stationary patterns
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are a bit trickier to deal with. One has to make sure that the reservoir is already in a suit-
able state when it starts to generate a non-stationary pattern and to keep the reservoir
in a stable state after the pattern generation has finished. How this can be achieved with
ESNs and conceptors will be explained in Section 3.3.3 and 3.4.3 respectively. In our
dataset there are 4 non-stationary patterns, namely:

• Standup From Chair : Getting up from a sitting position into a standing position.

• Get Seated : Sitting down from a standing position.

• Get Down : Getting down into a crawling position from a standing position.

• Standup : Getting up from a crawling position in a standing position.

As a last note about the dataset, signal number 5 and 17 were found to function primarily
as noise. Their inclusion in the training phase induced instability in the resulting network,
therefore these 2 signals were suppressed (set to 0).

3.2 Normalized Root Mean Square Error

In order to evaluate how well a signal has been learned by the network, the output pattern
y(n) will be matched against the original pattern p(n), using normalized root mean square
error:

NRMSE =

√∑N
i=1(y(i)− p(i))2

Nσ̂(y − p)
(3.3)

where N denotes the number of data points, σ̂(y− p) denotes the estimated variance of
the difference of y(n) and p(n) for all n ∈ 1, ..., N .

The lack of test data does not allow the computation of a testing NRMSE but we can
get some insight into the quality of our pattern generator by looking at the training value
of this entity. A value of NRMSEtrain close to 1 means that the compared signals are
completely unrelated to each other, which means that the training phase has almost
certainly failed. A value close to 0 indicates that the trained network will perform very well
on the training data but will most likely overfit on the testing data. A low NRMSEtrain is
desired but this cannot be used as an indicator of the final performance of the network.

3.3 ESN Pattern Generation

The following section focuses on the ESN component of the system, including the param-
eters used for tuning the network, details on the implementation of the readout training
and the method chosen to morph the generated patterns.

3.3.1 State Update Equation

The network update equation, with the appropriate modifications discussed in Section
2.2, is repeated below for convenience.

x(n+ 1) = (1− α) x(n) + α tanh(Wx(n) +Wbackd(n) + b) (3.4)
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Assume we have a reservoir with N internal neurons. W ∈ RN×N and Wback ∈ RN×61,
the internal connection matrix and the feedback matrix, are initialized at the beginning
with random values from a [−1, 1] uniform distribution. W is further scaled by setting its
spectral radius |λmax| = wscale. Wback is just scaled by a constant factor wback

scale. The bias
vector b ∈ RN×1 contains values from a [−1, 1] uniform distribution and is scaled by a
constant factor bscale.

During experimentation, the parameters that influenced the performance of the network
the most were wscale, the size N of the reservoir and the leaking rate α. It was observed
that an increase in the reservoir size contributes to an overall increase in performance
and a decrease in the sensitivity of each reservoir parameter. This is due to the fact that
a larger reservoir has better memory capabilities and it can achieve a higher nonlinear
dimensional expansion of the training signal than a smaller reservoir [24]. The smallest
reservoir size that delivered very good results was N = 1000, but satisfactory results
could already be obtained with a reservoir size as low as N = 600.

For wscale the values that worked better were between 1 and 1.6. For the ESN approach
this particular parameter was found to be very sensitive. Very small changes (of the order
of 0.05) cause some patterns to stop functioning while fixing the generation of others. The
most influenced patterns are:

• Waltz.

• Box 1.

• Box 2.

The Waltz patterns is a slow pattern and as a result bigger values of wscale lead to better
results. This is because the short-term memory that the network exhibits, which is nec-
essary to produce slow patterns, is enhanced by a high information exchange between
inner neurons. On the other hand, a high scaling of W easily lead the other two patterns
in an undesired state. The two boxing patterns are highly stochastic and keeping old in-
formation flowing through the network does not help them, on the contrary it hinders their
generation. For values of wscale above 1.6 the reservoir stabilizes in a periodic and highly
oscillating state, while for values smaller than 1 it generally dies out (stops oscillating
completely).

Another important factor that determined the overall performance of the network was the
leaking rate α. The optimal value of this parameter was found to be α ∈ [0.5, 0.6]. Higher
values usually cause difficulties in learning the slow patterns, while lower values cause
difficulties in learning fast patterns. In our dataset we have both slow and fast patterns.
Because of this, very small changes of α would improve the generation of some patterns
and worsen the generation of others. This behavior was observed for any other value
outside [0.5, 0.6], which seems to strike a balance between patterns of different speeds.

The 2 parameters not mentioned up to now, wback
scale and bscale, lead only to small differences

in performance when their values are kept within a reasonable interval. For wback
scale this

interval was [0.8, 1.2], while [0.1, 0.8] seems to work better for bscale.
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3.3.2 Training the Network

As stated in Section 2.2, the goal of the training algorithm is to compute the output weights
Wout, by minimizing the mean squared error in Equation 2.3. The general procedure
used to achieve this is detailed in Equation 2.4.

Before starting to feed data to the network, the washout time n0 has to be determined.
Our dataset contains patterns of different lengths, ranging from 151 to 900 data points. A
large washout size is desired because it increases the chance to remove any undesired
effect left over from the initial network configuration. For patterns of very small size, as
is the case of the Jog pattern, a large washout size might wash out data points that are
essential in learning the pattern. During experimentation the optimal washout time was
n0 = 50, which allows the network to be trained on at least 100 data points for each
pattern. Washout times in the interval [30, 70] in general work well for all patterns.

Having decided the washout size, the output weights matrix Wout ∈ R61×N for each
pattern is computed as follows:

• The reservoir is initialized with the state x(0) = 0 and an initial teacher forced output
d(0) = 0.

• The network is run for n0 steps to washout the initial state. The last state s = x(n0)
and the last teacher forced output o = d(n0) are recorded. These states are crucial
in the generation of testing sequences for non-stationary patterns.

• The network is run on the remaining data points and for each time point n the
reservoir state x(n) and the teacher forced output d(n) are recorded and used to
compute Wout in accordance with Equation 2.4. The mean absolute value (MABS)
of Wout is computed. The definition of MABS is the following:

MABS(M) =
1

K × L

K∑
i=1

L∑
j=1

|(M)ij | (3.5)

where M ∈ RK×L. During the computation of Wout a very important parameter
is the ridge regression regularizer γ. The confidence interval for this parameter is
[0.1, 1]. Higher values lead to underfitting while lower ones to overfitting.

• The training normalized root mean squared error NRMSEtrain is computed ac-
cording to Equation 3.3. This value is a good indicator of under-fitting if it is close to
1, but it does not lead us towards the right parameter selection, for it can be made
arbitrarily small by increasing the network size.

One important indicator of the network performance that comes out of the training pro-
cedure is the maximum MABS(Wout) across all patterns. Experiments show that the
smaller this value the better the performance of the network, the bigger this value the
closer to overfitting we get. The ESN delivered the best results when MABS(Wout)
across all patterns was within the interval [0.001, 0.008].

3.3.3 Generating Test Data and Morphing Patterns

There are two ways of generating motion patterns after computing Wout:
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1. Generate patterns one by one without transitions between them

2. Morph (transition from one to another) patterns together.

To generate specific patterns Equation 2.2 is used. This equation, alongside the appro-
priate modifications discussed in Section 2.2, is repeated here for convenience.

y(n) = Woutx(n) (3.6)

When generating test data for a single pattern, at each time step n the network is first run
through Equation 3.4 to compute x(n) and then the generated pattern value at this time
y(n) is computed. Special attention must be put in non-stationary pattern generation. The
initial testing network state and the initial output value matter. They cannot be random
but must be chosen from network states and values obtained during training. In this
project, I use as initial activations the values recorded after the washout phase during
training, respectively x(0) = s and y(0) = o. This initialization is further investigated in
Section 4.1. In Figure 3.2 an example where the initial reservoir state and network output
initializations lead to completely different results is given.
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Figure 3.2: 10 random internal state activations generated for the Get Seated pattern.
The horizontal axis indicates the time n while the vertical axis the signal value. Top image
are the internal activations during training. The bottom left image shows the internal
activations during testing when started with x(0) = s and y(0) = o. The bottom right
image shows the internal activations during testing when started with x(0) = 0 and y(0) =
0. The reservoir parameters are N = 1000, wscale = 1, wout

scale = 1, α = 0.6 , bscale = 0.1
and γ = 0.1.

When morphing two patterns the state update Equation 3.4 is the same as in the previous
case but the output computation during the morphing phase is the following:

y(n) = (µWout
i + (1− µ)Wout

j ) x(n) (3.7)

where Wout
i and Wout

j are the computed output weights of the i-th and j-th pattern re-
spectively. µ ∈ [0, 1] is the morphing constant, which determines how similar the mor-
phed pattern is to any of the initial ones. For µ ∈ [0, 1], the process is called interpolation
between the two patterns, while outside of this range we are dealing with pattern ex-
trapolation. When not in a morphing phase, the output is computed by using Equation
3.6.
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In a morphing process we do not have the freedom of choosing the initial state or initial
output of the network. This causes a problem when dealing with non-stationary patterns.
The way this problem is handled in this project is to morph patterns where the end state of
the previous pattern is sufficiently similar to an appropriate starting state of the next pat-
tern. By using this strategy, one has to pay particular attention to the pattern generation
sequence.

3.4 Conceptor Pattern Generation

The following section focuses on the conceptor component of the system including the
parameters used for tuning the network, details on the computation of the conceptors and
the method chosen to morph the generated patterns.

3.4.1 State Update Equation

The network update equation, with the appropriate modifications discussed in Section
2.3, is repeated below for convenience.

x(n+ 1) = tanh(W∗x(n) +Winp(n) + b) (3.8)

W∗ ∈ RN×N and Win ∈ RN×61 are initialized with values form a [−1, 1] uniform distribu-
tion. W∗ is then scaled by setting its spectral radius |λmax| = w∗scale. This scaling is not
as important as for ESNs, because the internal weights matrix W, that will be used for
pattern generation, is recomputed. Win is scaled by a constant factor win

scale. The bias
vector b ∈ RN×1 contains values from a [−1, 1] uniform distribution and is scaled by a
constant factor bscale. The conceptor approach can also be coupled with leaky-integrator
neurons. In this project this is not done because the difference in results with and without
leaky-integrator neurons was very small. In general the different speeds of the patterns
can be handled by adapting the pattern specific apertures α.

The most important parameter in determining the performance of the network is the reser-
voir size N . In contrast with the ESN approach, where very good results can be obtained
starting from N = 1000, a conceptor network of size N = 600 already generates accu-
rate patterns and smooth pattern transitions. Higher reservoir sizes generate even better
results but the computational cost of increasing the size of a conceptor driven network
increases very quickly. The other parameters that affect Equation 3.8, w∗scale, w

in
scale and

bscale, do not affect the network performance considerably if kept within reasonable inter-
vals. These intervals are [1, 1.8] for w∗scale, [0.7, 1.3] for win

scale and [0.1, 1] for bscale. Smaller
networks have more restricted intervals, but almost always the parameter sensitivity was
smaller than for ESNs.

3.4.2 Training the Network

The entities that must be computed during the training phase of a conceptor based net-
work are:

1. The conceptor Cj ∈ RN×N for each pattern pj .
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2. A new set of reservoir weights W ∈ RN×N , which is the same across all pattern.

3. A set of output weights Wout ∈ R61×N , which is the same across all patterns.

As for the ESNs, before proceeding with the training algorithm the washout size n0 has to
be determined. It was observed that for a conceptor network the same n0 values as for
the ESN approach (see Section 3.3.2) deliver optimal results.

Having decided the washout size, we can compute the conceptor for the j-th pattern as
follows:

• The reservoir state is initialized with xj(0) = 0.

• The network is run for n0 time steps to washout the initial state. The last state
sj = xj(n0) is recorded. As for ESNs, sj is essential in generating test sequences
for non-stationary patterns.

• The network is run on the remaining data points and for each time step n the reser-
voir state xj(n) is stored in a matrix Xj column wise and the current pattern data
point pj(n) is stored in a matrix Pj column wise. Xj is then used to compute the
pattern specific conceptor Cj according to:

Rj =
1

N
XjXj′ (3.9)

Cj = Rj(Rj + (αj)−2I)−1 (3.10)

where N is the size of the reservoir and αj is the aperture of pattern pj . The aper-
ture was not sensitive for most of the patterns. A value around 10 for 12 of the 15
patterns works very well. However, 3 patterns were found to be particularly sensi-
tive to the aperture value. The Walk pattern works well with aperture values of 3 or
4, the Box 1 and Box 2 patterns need aperture values of 30 and 20 respectively in
order to deliver optimal results. These values worked well across all tested network
sizes, but they were not tested on networks with N > 2000.

• Xj and Pj contain data needed to compute W and Wout. Therefore Xj is ap-
pended horizontally to a global matrix X and Pj is appended horizontally to a global
matrix P. Both X and P are empty matrices at the beginning of the training proce-
dure.

After running the above procedure for every pattern, we can compute W and Wout. W
is computed using ridge regression according to:

D = W∗X+WinP (3.11)

W′ = (XX′ + γWI)−1XD′ (3.12)

where γW is the ridge regression regularizer for computing W. Similarly for Wout we
have:

(Wout)′ = (XX′ + γWoutI)−1XP′ (3.13)

where the γWout is the ridge regression regularizer for computing Wout. Both regularizers
are very important parameters when training a conceptor based network. Usually assign-
ing the same value from the interval [0, 1] to both of them will lead to very good results.
The sensitivity of the regularizers on a conceptor based approach is usually lower than
for the ESN, as is the sensitivity of all other parameters.
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The MABS as defined in Section 3.3.2 is computed for both W and Wout. As for ESNs
smaller values of this parameter deliver better results. The value intervals that delivered
the best results were [0.03, 0.12] for W and [0.004, 0.01] for Wout.

3.4.3 Generating Test Data and Morphing Patterns

There are 2 ways of generating patterns using conceptors:

1. Generate patterns one by one without transitions between them.

2. Morph (transition from one to another) patterns together.

The generate specific patterns pj the following equations are used:

xj(n+ 1) = Cj tanh(Wxj(n) + b) (3.14)

yj(n+ 1) = Woutxj(n) (3.15)

where Wout and W are the same across all patterns. The term that leads the reservoir
towards generating the j-th pattern is the conceptor Cj . The same attention as for ESNs
has to be paid to non-stationary patterns. When generating such patterns the initial reser-
voir state has to be one of the states obtained during training. For this reason I choose
xj(0) = sj , which has been recorded during training. In general conceptors proved to
be more robust than ESNs when they are started in an undesired state. Adapting the
aperture of the pattern also helped in solving this issue. The improved robustness of the
network is demonstrated in Figure 3.3.

0 50 100 150 200 250 300 350 400
-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400
-1

-0.5

0

0.5

1

0 50 100 150 200 250 300 350 400
-1

-0.5

0

0.5

1

Figure 3.3: 10 random internal state activations generated for the Get Seated pattern.
The horizontal axis indicates the time n while the vertical axis the signal value. Top image
are the internal activations during training. The bottom left image shows the internal
activations during testing when started with x(0) = s. The bottom right image shows the
internal activations during testing when started with x(0) = 0. The reservoir parameters
are N = 1000, wscale = 1, win

scale = 1, bscale = 0.3, γW = 0.5, γWout = 0.5 and αj = 10.

During morphing the network state and the network output are computed according to:

x(n+ 1) = (µCj + (1− µ)Ci) tanh(Wx(n) + b) (3.16)
y(n+ 1) = Woutx(n) (3.17)
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where Cj and Ci are the conceptors of the i-th and j-th pattern respectively. µ ∈ [0, 1]
is the morphing constant, which determines how similar the morphed pattern is to any of
the initial ones. If not in a morphing phase, when generating pattern pj the network is
again driven by Equation 3.14 and 3.15.

Morphing two completely unrelated patterns, for example the Cartwheel pattern with the
Standup pattern, does not work in most cases even with robust conceptors. The pattern
generation sequence is again a very important factor. Patterns whose end state is not
sufficiently similar to the next pattern’s starting state cannot be morphed together.

4 Comparison

This section provides a comparison of ESNs and conceptor networks on the basis of
robustness, stability, time and space complexity and generated motion quality.

4.1 Robustness

Robustness refers to the ability of the network to produce the correct pattern indepen-
dently of the starting state x(0). To test this an ESN and a conceptor network that deliver
similar optimal results were considered. The specific parameters are given in Table 4.1.

Parameter Value
N 1000
wscale 1
wback
scale 1

bscale 0.3
α 0.6
γ 0.5

Parameter Value
N 1000
wscale 1
win
scale 1

bscale 0.8
γW 0.5
γWout 0.5

Table 4.1: The left table refers to the ESN parameters which resulted in MABS(Wout) =
0.0016 and NRMSEtrain = 0.0275. The right table refers to the conceptor parameters
which resulted in MABS(Wout) = 0.0066, NRMSE(Wout) = 0.0435, MABS(W) =
0.0312 and NRMSE(W) = 0.0057.

After training all networks on all patterns, their task was to generate 5 selected patterns
starting from different initial states x(0). The x(0) were constructed as follows:

x(0) = s+ η (4.1)

where s has been introduced in Section 3.3.2 and 3.4.2, for ESNs and conceptors respec-
tively. η ∈ RN×1 is a random noise vector sampled from a [−50, 50] uniform distribution.
For ESNs, the starting teacher forced input was set to y(0) = o as done in Section 3.3.3.
Each of the 5 patterns was generated 100 times from each network, each time with a dif-
ferent η and the number of times the network would fail to converge to the desired pattern
was recorded. The result of this runs are given in Table 4.2.

The chosen patterns varied in learning difficulty, speed and stationary nature. The results
show that the conceptors are more robust than ESNs across all patterns. For more
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Pattern Failure Rate
Jog 0%
Cartwheel 16%
Waltz 35%
Box 3 84%
Get Seated 87%
Average 44.4%

Pattern Failure Rate
Jog 0%
Cartwheel 1%
Waltz 30%
Box 3 31%
Get Seated 57%
Average 23.8%

Table 4.2: The left table shows the results of the ESN from Table 4.1, while the right table
shows the results of the conceptor from Table 4.1.

regular and periodic patterns (Waltz and Jog) the results do not differ very much, but for
stochastic (Box 3) patterns, patterns with only a few training points (Cartwheel) and non-
stationary patterns (Chair Sitting) the conceptor approach clearly outperforms the ESNs
in terms of robustness.

More experiments were run to test the hypothesis that conceptors are more robust than
ESNs. The networks used for the first of these experiments are specified in Table 4.3.
Both of them delivered optimal graphical results on all 15 patterns.

Parameter Value
N 1000
wscale 1.6
wback
scale 0.8

bscale 0.4
α 0.5
γ 1

Parameter Value
N 1000
wscale 1.6
win
scale 0.8

bscale 0.4
γW 1
γWout 1

Table 4.3: The left table refers to the ESN parameters which resulted in MABS(Wout) =
0.0015 and NRMSEtrain = 0.0328. The right table refers to the conceptor parameters
which resulted in MABS(Wout) = 0.0065, NRMSE(Wout) = 0.0454, MABS(W) =
0.0328 and NRMSE(W) = 0.0072.

Pattern Failure Rate
Jog 9%
Cartwheel 32%
Waltz 23%
Box 3 23%
Get Seated 74%
Average 30.4%

Pattern Failure Rate
Jog 0%
Cartwheel 3%
Waltz 27%
Box 3 12%
Get Seated 60%
Average 20.4%

Table 4.4: The left table shows the results of the ESN from Table 4.3, while the right table
shows the results of the conceptor from Table 4.3.

As we can see from the results in Table 4.4 the conceptor network performs almost the
same overall while the ESN has a noticeable improvement. For a network of size N ,
the output weight matrix Wout holds a total of 61 × N weights, while the conceptor C
holds N2 weights. The ratio of the number of conceptor weights with the number of
output weight matrix weights for a network of the given size is N/61. Thus the bigger
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the network the more advantage the conceptor approach is expected to have in terms of
robustness. Comparing conceptors with ESN of the same size will almost always lead to
better conceptor results. The last performed experiment aims to compare a much bigger
(N = 2000) ESN with the results of the conceptor from Table 4.3.

Parameter Value
N 2000
wscale 1
wback
scale 1

bscale 0.3
α 0.6
γ 0.1

Table 4.5: ESN parameters which resulted in MABS(Wout) = 0.0013 and
NRMSEtrain = 0.0156.

Pattern Failure Rate
Jog 0%
Cartwheel 0%
Waltz 27%
Box 3 12%
Get Seated 74%
Average 22.6%

Table 4.6: Results of the ESN from Table 4.5.

As we can see in Table 4.6 the ESN results improve considerably, but it takes a network
of size N = 2000 to achieve these results. An increased network size adds to the compu-
tational complexity of generating new pattern data and does not make the network more
robust than with a N = 1000 conceptor network. All in all, ESNs are not more robust than
conceptor driven networks. Their robustness can be increased by increasing the model
size but this way they lose their computational edge to the conceptors.

4.2 Stability

To test the stability of a method, the network was trained on all patterns and then it was
run for 1000 time steps on each of the analyzed patterns. During the first 250 time steps
noise η(n) sampled from a [−1, 1] normal distribution was added to the network. The
resulting equations for driving the network during these 250 time steps are shown in
Equation 4.2 and 4.3 for ESNs.

x(n+ 1) = (1− α) x(n) + α tanh(Wx(n) +Wbacky(n) + b) + η(n+ 1) (4.2)
y(n+ 1) = Woutx(n+ 1) (4.3)

The conceptor network driving and output equations are given in 4.4 and 4.5.

x(n+ 1) = C (tanh(Wx(n) + b) + η(n)) (4.4)
y(n+ 1) = Woutx(n+ 1) (4.5)
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During stability experiments, the same networks as in Section 4.1 are used. The pattern
group has only 1 change, the Get Seated motion has been removed since it is a non-
stationary pattern and after 250 time steps the network generated result is unpredictable.
The above described experiment was run 100 times for each motion network combination
and the number of times the network failed to continue generating the correct pattern was
recorded.

Pattern Failure Rate
Jog 0%
Cartwheel 19%
Waltz 65%
Box 3 0%
Average 21%

Pattern Failure Rate
Jog 0%
Cartwheel 0%
Waltz 22%
Box 3 0%
Average 5.5%

Table 4.7: The left table shows the results of the ESN from Table 4.1, while the right table
shows the results of the conceptor from Table 4.1.

Pattern Failure Rate
Jog 0%
Cartwheel 45%
Waltz 3%
Box 3 3%
Average 12.75%

Pattern Failure Rate
Jog 0%
Cartwheel 0%
Waltz 13%
Box 3 0%
Average 3.25%

Table 4.8: The left table shows the results of the ESN from Table 4.3, while the right table
shows the results of the conceptor from Table 4.3.

Pattern Failure Rate
Jog 0%
Cartwheel 0%
Waltz 8%
Box 3 0%
Average 2%

Table 4.9: Results of the ESN from Table 4.5.

The results in Table 4.7, 4.8 and 4.9 show that conceptors are more stable than ESNs.
The conceptor networks failed less than 10% of the time while the first 2 ESNs failed in
more than 10% of the trials. The last ESN, of significantly bigger size, showed results
slightly better than the conceptor approach but at a much higher computational cost.
It was noticed that with high reservoir sizes both methods tend to become numerically
unstable. Already with a reservoir of size 2000 some of the eigenvalues of the unscaled
W (W∗ for conceptors) fail to converge if the built in MATLAB functions are used. The
instabilities are pointed out by the MATLAB runtime system for the ridge regression step,
where the numerical methods used to invert a matrix fail to converge quickly. This is one
more reason to favor conceptor, which deliver very good results for small reservoir sizes,
over ESNs.
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4.3 Space and Time Complexity

For the purpose of this section assume matrix multiplication of 2 n×n matrices has O(n3)
time complexity. For simplicity assume there are P patterns, with T1 data points each and
the size of the reservoir is N . The trained network will be used to generate T2 data points
for each pattern. The time complexity of each training and testing step for the ESNs and
conceptors is given respectively in Table 4.10 and 4.11.

Stage Time Complexity
Initialization (W, Wback, b) O(N3)
Recording training data (X, D) O(PT1N

3)
Computing Wout O(P (T1 +N)3)
Generating test patterns O(PT2N

3)

Overall O(P (T1 + T2)N
3) +O(P (T1 +N)3)

Table 4.10: ESN training and testing asymptotic time complexity.

Stage Time Complexity
Initialization (W∗, Win, b) O(N3)
Recording training data (X, P) O(PT1N

3)
Computing Wout, W O((PT1 +N)3)
Computing conceptors C O(PN3)
Generating test patterns O(PT2N

3)

Overall O(P (T1 + T2)N
3) +O((PT1 +N)3)

Table 4.11: Conceptor training and testing asymptotic time complexity.

The conceptor method is more computationally expensive than the ESN approach. The
initialization of the reservoir is the same, with the spectral radius of the internal weight
matrix having cubic complexity. Recording data is again computationally the same, but
there is a difference in the way the data is used. In an ESN approach, to compute Wout

only the data for one pattern is needed. With conceptors, the data from one particu-
lar pattern is used only to compute the respective conceptor, but for W and Wout the
cumulative data from all patterns is needed, which makes the computation slower. In
computing W and Wout what takes the most time is the multiplication of the state ma-
trix X with its transpose and inverting the result. The last step, generating test patterns,
is the same asymptotically but the additional multiplication of the network state with the
conceptor adds another constant complexity factor to the conceptor network.

When talking about space efficiency ESNs still outperform the conceptor based networks.
Asymptotic space complexity summaries can be found in Table 4.12 and 4.13.

Stage Space Complexity
Storing W, Wback, b O(N2)
Storing training data (X, D) O(T1N)
Storing Wout O(PN)

Overall O((P + T1 +N)N)

Table 4.12: ESN asymptotic space complexity.
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Stage Space Complexity
Storing W, W∗, Win, Wout, b O(N2)
Storing training data (X, P) O(PT1N)
Storing conceptors C O(PN2)

Overall O((T1 +N)PN)

Table 4.13: Conceptor asymptotic space complexity.

As we can see the conceptors are outperformed by ESNs even in terms of space com-
plexity. The network setup phase uses the same amount of memory. The biggest differ-
ence is noticed when training the network and storing the results. As explained above,
for the conceptor approach the training data from all patterns is needed to compute W
and Wout, which is not the case for ESNs. Furthermore, the conceptor C contains more
parameters than Wout, O(N) more to be precise. Therefore, the conceptors are quite
space inefficient in comparison to ESNs.

4.4 Motion Quality

When looking at the quality of the generated motion there are several observations that
have to be made:

1. Does the pattern look human?

2. Do the pattern morphings look human?

3. How fast do the patterns converge after morphing?

Human means that the generated motion sequence does not have any irregularities
(abrupt movements, freeze moments, lift from the ground, body distortions etc.). For
both approaches used in this project, all patterns generated by a network with optimal
parameters do look human. This is very impressive since no post-processing was done
on any of the generated patterns to instruct the character to touch the ground at all times
or not to rotate in place while moving. These movement constraints are learned by the
network alongside the respective pattern.

As for the pattern morphings, for both approaches, they do not look human. Each method
tends to break the human like flow in different ways. Conceptors tend to have very little
movement during the morphing phase. Sometimes it appears as the character is staying
still until the conceptor of the next pattern is activated completely. Besides the slowness
of the morphing process, conceptors do not show any other deviation from real human
motion. The ESNs on the other hand tend to have very lively pattern morphings. During
the morphing phase the character might make abrupt movements, freeze or even elevate
from the ground completely. None of the approaches has the edge over the other when
it comes to pattern morphing.

Convergence speed is another issue without post-processing the generated patterns.
After the respective pattern Wout for ESNs or C for conceptors has been fully activated
the network does not start to generate the desired pattern immediately. ESN are faster
in converging towards the new pattern (if convergence is possible from the current state)
but the first few frames of the motion might not look human like. Figure 4.1 shows a
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situation where a body distortion occurred most of the time. Conceptors did not show any
unhuman like behavior but they were slightly slower at converging to the next pattern.

Figure 4.1: 8 frames of the Walk pattern generated after the Waltz pattern. Sequence
starts from the top left frame and proceeds row by row. The right foot of the character is
bent in an unnatural way.

5 Conclusion and Future Work

This section will present the conclusions of this project and discus further improvements
on the current work.

This project tried to solve the problem of human motion animation generation using two
methods, Echo State Networks and conceptor based Recurrent Neural Networks. The
final goal was not to compete with state of the art solutions but rather to compare the two
selected methods.

ESNs showed great potential since the very beginning because of their computational
and space efficiency. It was possible to develop ESN networks for all of the patterns in
appendix A with satisfactory graphical results, even without post-processing the gener-
ated motions. However they showed a lack of robustness and stability when stress tested
in addition to unpredictable movements during pattern morphing.

Conceptors had already been tried as a solution for HMAG [2]. This project used a
slightly different version without leaky integrator neurons. Conceptors introduce quite an
overhead in terms of space and time complexity but are very robust and stable. Further-
more pattern transitions look more human like compared to ESN generated ones, but are
still far from the desired quality.
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One last approach that was tried during the end of the project, but not documented in
this report, are Random Feature Conceptor (RFC) networks [4]. They offer a solution
to the computational and space overhead that conceptors introduce without any loss in
robustness or stability. The patterns used in this project were found to be very short to
work with this approach. The task that lies ahead is to find longer patterns that allow the
RFCs to be learned online during training.
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A Dataset Summary

In this section I provide the name, dimension, length (number of data points) and stationary/non-
stationary nature for each pattern.

Pattern Dimension Length Stationary (True / False)
Exaggerated Stride 61 291 True
Slow Walk 61 241 True
Walk 61 320 True
Jog 61 151 True
Cartwheel 61 451 True
Waltz 61 900 True
Crawl 61 201 True
Standup 61 201 False
Get Down 61 241 False
Stay Seated 61 201 True
Get Seated 61 451 False
Standup From Chair 61 301 False
Box 1 61 451 True
Box 2 61 701 True
Box 3 61 301 True

Table A.1: Short summary of the used dataset.

Table A.1 provides the summary for the normalized version of the data. They can be
found in appropriate .mat files in the project code repository [26]. The raw versions of the
data, the ones provided by the CMU database, are not in this repository.
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