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5.2 Artifacts in the EEG 
 

One of the most important issues in computer-based biomedical signal processing is noise/artifact 

cancellation/reduction when the signal is corrupted with additive and multiplicative noise or in 

cases where the desired information constitutes only a part of the signal such that irrelevant 

portions are considered as artifact. Based on their origin, EEG artifacts are divided into two 

physiological and technical classes which are known as artifact and noise, respectively. While the 

influence of technical noise can be highly reduced by improving the electrode design and 

attachment techniques, the corruptive effect of artifacts of physiological origin is inevitable. 

Accordingly, a vast majority of EEG artifact cancellation/reduction algorithms are developed to 

reduce the physiological artifacts caused by electrical activity of other electrophysiological sources 

such as cardiac activity, muscle movement, eye movement and blinks. Depend on the task and 

recording situation, multiple types of artifacts may be presented at the same time.   

5.2.1 Common EEG Artifacts 
 

The most common types of EEG artifacts are:  

 Eye movement and blinks: 

The electrical potential difference between the cornea and the retina changes during the 

eye movement and produces Electrooculogram (EOG) signal. Depend on the proximity of 

the EEG electrode to the eye, the direction in which the eye is moving (i.e., horizontal or 

vertical eye movement) and the repetition pattern of eye movement, the strength of the 

interfering EOG signal is different. This artifact is present in EEG signals recorded both 

in awaking state and the REM phase of the sleep. Figure 5-5(a) depicts example of 

waveforms produced by repeated eye movement where the artifact can be distinguished 

from EEG pattern due to its repetitive character. However, in some cases, the EOG artifact 

can be confused with slow EEG activity such as theta and delta rhythms. Apart from eye 

movement, eyelid movement (‘blink’) also affects the corneal-retinal potential difference, 

hence, causes EEG artifact. Different from eye movement artifact, eyelid movement 

produces a more abruptly changing waveform, hence, high-frequency components are 

dominant in this artifact. Figure 5-5(b) shows a waveform produced by repetitive blinking 

which resembles a square wave. From Figure 5-5, it can be seen that the amplitude of 
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blinking artifacts in the frontal electrodes is substantially larger than that of the 

background EEG. 

As later we see, in EEG signal processing, it is practically useful if a pure EOG signal can 

be recorded by means of two reference electrodes positioned near the eye which do not 

contain any EEG activity.  

 

Figure 5-5: Artifacts in the EEG caused by a) eye movement and b) repetitive eyelid movement (voluntary blinking) 
[2]. 

 

 Muscle activity: 

The electrical activity of contracting muscles appears as another type of EEG artifact and 

can be measured on the body surface by the EMG. This artifact may occur due to 

swallowing, chewing, grimacing, frowning, talking, and hiccupping both in awake state 

and during sleep. However, the muscle artifact is considerably reduced during relaxation 

and sleep. The pattern of the EMG recordings is determined by the degree of muscle 

contraction; while a train of low amplitude rarely happening spikes is produced by a weak 

contraction, more frequent spikes with less inter-spike intervals are recorded in stronger 

contraction such that the overall shape of EMG exhibits a continuously varying signal (see 

Figure 5-6). 
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From the artifact processing point of view, there exist two crucial bottlenecks in EMG 

artifact cancellation: i) the spectral properties of EMG considerably overlap with beta 

activity observed in EEG (in the 15 − 30 �� range), ii) it is impossible to acquire a 

reference signal containing only EMG activity.  

Figure 5-6: A 5-seconds multi-channel EEG recording contaminated by intermittent episodes of EMG artifact [2]. 

 

 Cardiac activity 

Depend on the electrode positions and the body shapes, the electrical activity of the heart 

(reflected in ECG) may interfere with the EEG. Since the normal heartbeats are 

characterized by repetitive, regularly occurring waveform pattern in ECG, it is easy to 

reveal if this artifact is present in EEG signal. However, in EEG signals with epileptic-

form activity, presence of spike-shaped ECG waveforms might be misleading. This 

situation is exacerbated during the presence of certain cardiac arrhythmias in which ECG 

exhibits considerable variability in the interbeat interval. 

Similar to the EOG artifacts, the ECG can be acquired independently by one or several 

electrodes for use in canceling the ECG activity that may be superimposed on the EEG. 

 

 Electrodes and equipment:  

Similar to any other biomedical measurement on the body surface, movement of EEG 

recording electrodes produces an artifact commonly referred to as the “electrode-pop” 

artifact. Indeed, this movement changes the DC contact potential at the electrode-skin 

interface and causes to observe an abrupt change in the baseline level of EEG signal, 
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followed by a slow, gradual return to the original baseline level. Therefore, this artifact can 

be deceptive in spike or sharp epileptic wave detection.   

Another possible source of artifact is the electrode wire which connects the electrode to the 

acquisition equipment. If the electrode is not properly shielded, the electromagnetic field 

produced by currents flowing in nearby powerlines or electrical devices may cause a strong 

50/60 �� powerline interference. Finally, equipment-related artifacts include those 

produced by internal amplifier noise and amplitude clipping caused by an analog-to-digital 

converter with too narrow dynamic range. 

5.2.2 Artifact Processing 
 

The scope of artifact processing ranges from a simple artifact rejection to complete cancellation 

of the artifact from the EEG signal. In artifact rejection, the objective is to create a simple marker 

to identify a specific artifact and exclude the segments of poor quality (i.e., those contaminated by 

the artifact) from further processing. It is of particular importance in handling those segments of 

EEG which contain excessive EMG interference, specially, when the dataset consists of short time 

recordings. On the other side, artifact cancellation is a preprocessing stage which conditions the 

EEG signal for better visual reading and interpretation or subsequent analysis. In either case, it is 

essential that the development of algorithms for artifact cancellation is accompanied by visual 

assessment to assure that the performance is acceptable. 

Artifact processing algorithms commonly include two successive steps: i) noise/artifact estimation 

from a signal measured on the scalp or from available reference signals (e.g., EOG to remove eye 

movement artifact) and ii) (estimated) noise/artifact subtraction from the observed signal, �[�]. In 

this approach, it is assumed that �[�] is sum of cerebral activity, �[�], and noise, �[�], i.e.: 

�[�] =  �[�] + �[�].  (5-34) 

There exist another type of model in which the signal and noise interact in a multiplicative way 

such that: 

�[�] =  �[�]�[�].  (5-35) 
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Additive model, explained by Eq. (5-34), received a great popularity due to its simplicity and 

existing methods for optimal estimation of �[�]. Techniques for separating multiplicative noise 

from �[�] , however, have only received marginal attention in the area of EEG signal processing.  

5.2.3 Artifact Reduction Using Linear Filtering 
 

In many EEG processing algorithms, linear, time-invariant filtering is considered for the reduction 

of 50/60 �� power-line interference and EMG artifacts. In this technique, a LTI filter is designed 

to shape the frequency spectrum of the observed signal by suppressing particular frequency 

components. Low-pass filtering is an example which is used to remove power line noise and to 

reduce the influence of EMG activity when the analysis of slower EEG rhythms is of interest. 

Unfortunately, applicability of such filters is limited because the spectra of the EEG and the 

artifacts overlap each other considerably. Besides, poorly designed LTI filters may either suppress 

relevant information (e.g., abrupt spike-shape wave forms if we use low-pass filters) or introduce 

spurious activity, resembling the beta rhythm.  

In addition to LTI filters, various nonlinear filter structures have been suggested to overcome these 

performance limitations, but such filters have not come into widespread use. In particular, the 

effects of poorly designed filters are highlighted for filters with nonlinear phase characteristics, 

since different frequency components will be delayed differently. 

Linear filters are more practical for cancellation of powerline interference in ECG signals which 

will be briefly discussed in chapter 7.  

5.2.4 Artifact Cancellation Using Linearly Combined Reference Signals 
 

Since the artifacts caused by eye movement and blinks are very common, most artifact cancellation 

algorithms are developed to reduce the effect of these artifacts. In this section, the most popular 

approach is described in which an estimate of the EOG artifact is first computed and then 

subtracted from the EEG signal measured on the scalp. In order to estimate the EOG artifact, EOG 

signal is separately recorded by placing the electrodes around the eye so that horizontal and vertical 

movements are well-captured (see Figure 5-7).  
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Figure 5-7: Electrode positions for recording EOG signals which reflects horizontal (�� − ��) and vertical eye movement (��� −
�� or ��� − �� ) [2]. 

As it was mentioned above, in this approach, the EEG signal is supposed to be sum of cerebral 

activity, �[�] and the EOG artifact, ��[�]: 

�[�] =  �[�] + ��[�].  (5-36) 

It is also assumed that the EOG reference signals, ( i.e., ��[�], … , ��[�]) are linearly transferred 

into the EEG signal such that an artifact-cancelled signal, �̂[�] is estimated by subtracting a linear 

combination of the weighted reference signals from the EEG, using the weights, ��, … , ��: 

�̂[�] =  �[�] − ∑ ����[�]�
��� = �[�] + (��[�] − ���[�]),  (5-37) 

where �[�] = (��[�], … , ��[�])� and �[�] = (��[�], … , ��[�])�. Therefore, the estimate of the 

EOG artifact is obtained by ���[�] = ���[�]. The third assumption is that all signals are random 

with zero-mean, and that �[�] is uncorrelated with the EOG signals �[�] at each time �, such that: 

ℰ{�[�]��[�]} = 0, � = 1, … , �.  (5-38) 

The block diagram in Figure 5-8 summarizes the method.  

In order to estimate the EOG artifact (i.e., ���[�] = ���[�]), the values of different weights need 

to be determined. One way is to minimize the mean-square error (MSE), �� between �[�] and the 

linearly combined reference signals with respect to �,  

�� = ℰ{(�[�] − ���[�])�}.  (5-39) 
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Figure 5-8: Cancellation of eye movement artifact based on linear combination of EOG signals using the fixed weights [2]. 

Since �[�] is assumed to be uncorrelated with the EOG artifacts,��[�], the MSE, ��, can 

alternatively be expressed as 

�� = ℰ{��[�]} + ℰ{(��[�] − ���[�])�},  (5-40) 

which implies that the dropping the offset, ℰ{��[�]}, weights � should be chosen such that the 

error between ��[�] and ���[�] is minimized. Differentiation of �� in Eq. (5-39) with respect to 

the coefficient vector � yields: 

���

��
=

�(ℰ���[�]������[�]��������[�])

��
= 2��[�]� − ����[�].  (5-41) 

The correlation matrix ��[�] of the reference signals describes the spatial correlation between the 

different channels at each time � and is defined by: 

��[�] = ℰ{�[�]��[�]} =
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. (5-42) 

where 

�����
 [�] = ℰ{��[�]��[�]} .  (5-43) 

The cross-correlation vector ��� [�] between �[�] and �[�] is defined by: 

��� [�] = ℰ{�[�]�[�]} = (����
 [�], ����

 [�], … , ����
 [�])� , (5-44) 

where 

����
 [�] = ℰ{�[�]��[�]} . (5-45) 
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In reality, the correlation quantities ��[�] and ��� [�] are time varying, but for simplicity, for now 

we assume that these quantities are time-invariant over the observation interval (i.e., ��[�] ≡

�� and ��� [�] ≡ ���  for � = 1, … , � − 1).  

Setting the gradient in Eq. (5-41) equal to zero, the following system of linear equations are 

obtained: 

��� = ���  (5-46) 

whose solution yields the optimal weight vector �∗. Then, the corresponding minimum MSE is 

easily found by insertion of Eq. (5-45) in Eq. (5-39), 

���� = ℰ{��[�]} − (�∗)����∗.  (5-47) 

In practice, the spatial correlations �����
 need to be estimated from the measured EOG signals 

prior to computation of �. Since �� is considered to be fixed in time, it is estimated by simply 

replacing ℰ{��[�]��[�]} by the corresponding time average, 

������
=

1

�
� ��[�]��[�]

���

���

. 
(5-48) 

The cross-correlation vector ��� can be estimated in the same way. The procedure to find the 

values of the optimal weight vector �∗ is then repeated for each of the available EEG channels in 

order to produce channel-specific weights. Figure 5-9 shows the performance of the EOG 

cancellation method, where artifact cancellation is based on two reference signals, i.e., � =  2. 

 

Figure 5-9: An example of EOG artifact cancellation in EEG signals. a,b) EOG signals measured for right and left eyes. c,d) EEG 
signals from two different electrodes before and e,f) after artifact cancellation [2]. 
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Table 5-1 summarizes the algorithm. 

Table 5-1: An algorithm for artifact cancellation using linearly combined reference signals 

Inputs: 

- ��[�], � = �, … , �: �- Channel EEG recordings for � time sample (i.e., � = �, … , � − �) 

- ��[�], � = �, … , �: �-Channel EOG for � time sample (i.e., � = �, … , � − �) 

Output: 

- ��[�]: artifact-cancelled signal for � time sample (i.e., � = �, … , � − �) 

Procedure: 

for � = �: � do 

for � = �: � and � = �: � do 

- estimate ������
 using Eq. (5-48) 

- estimate ����� using Eq. (5-48) by replacing �� with ��. 

- create �� using Eq. (5-42) 

- solve Eq. (5-46), a linear regression problem to find �∗ 

- calculate �̂�[�] =  ��[�] − ∑ ��
∗��[�]�

���  

end for 

end for 

 

It is worth mentioning that cancellation of ECG artifacts in the EEG can be performed in a similar 

way. 

5.2.5 Adaptive Artifact Cancellation Using Linearly Combined Reference Signals 
 

In the previous algorithm for EOG cancellation, the set of linear weights were fixed. Therefore, 

the algorithm is unable to track slow changes in EOG and its influence on EEG signal. In this 

section, a modified version of previous algorithm (known as Least Mean Square (LMS)) will be 

presented which has been developed to address this issue. Although this algorithm is the most 

commonly used in EEG processing, it is only one of many adaptive filtering algorithms developed 

for noise cancellation. Interested readers are referred to this paper for a review on various adaptive 

algorithms.  

https://link.springer.com/content/pdf/10.1007/BF02344717.pdf
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In this algorithm, ���[�], in EOG artifact estimation, is replaced by ��[�]�[�] where the weight 

vector, �[�] is a function of time. As a result, the mean-square error criterion becomes: 

��[�] = ℰ{(�[�] − ��[�]�[�])�}  (5-49) 

which should be minimized with respect to �[�]. Since this objective function is quadratic, it has 

a unique minimum. Figure 5-10 depicts the ��[�] when �[�] = (��[�], ��[�])�is a two-

dimensional vector. Because of time-varying nature of �[�], the optimal solution of ��[�] changes 

with time, �. The method of steepest descent is, therefore, commonly used to find the minimum 

of this time varying nonlinear function. In this method, the current weight estimate, �[�] is 

updated by an adaptive correction term which pushes the next estimate �[� + 1] towards the 

desired solution. The correction of �[�] is achieved by taking a step in the direction of the steepest 

descent of the quadratic error surface. This direction is given by the negative error gradient vector, 

i.e., the vector of partial derivatives of ��[�] with respect to the weights ��[�] such that the �[�] 

is updated by the following equation: 

�[� + 1] = �[�] −
�

�
�

���[�]

��
  (5-50) 

where the step size � is a positive-valued scalar which determines the speed of adaptation. While 

small values of � guarantee a less noisy estimate of �[�], it takes more time till the algorithm 

approaches the optimum solution. With large values of step size, the algorithm converges fast, but 

at the expense of a noisier estimate of �[�]. Calculating the gradient vector of the error ��[�] 

with respect to �, we get: 

���[�]

��
= −2ℰ{�[�]�[�]}, (5-51) 

where the error �[�] is 

�[�] = �[�] − ��[�]�[�]. (5-52) 

Accordingly, the weight update equation becomes: 

�[� + 1] = �[�] + � ℰ{�[�]�[�]}. (5-53) 

In practice, the expected value ℰ{�[�]�[�]} is not known and needs to be estimated. It can be 

simply replaced by taking its instantaneous estimate at time �, i.e., ℰ{�[�]�[�]} = �[�]�[�]. Thus, 

�[� + 1] = �[�] + � �[�]�[�]. (5-54) 
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Typically, the LMS algorithm is initialized by setting all weights equal to zero, i.e., �[0] = �. The 

block diagram in Figure 5-11 illustrates the LMS-based artifact cancellation technique.  

 

Figure 5-10: The quadratic error surface, �� [�] plotted as a function of weight vector ��, �� [2]. 

 

Figure 5-11: EOG artifact cancellation using a linear combination of EOG signals with adaptively updated weights [2]. 

A generalized version of these algorithms is obtained by replacing the linear weights (i.e., ��) by 

LTI systems with impulse responses, ℎ� (see Figure 5-12). Error minimization in this method is 

beyond the scope of this course, therefore, it won’t be touched in this lecture notes. Independent 
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Component Analysis (ICA) is another method which is widely used for EOG artifact cancellation 

in EEG. Interested readers are referred to this paper for more details.  

 

 

Figure 5-12: Cancellation of eye movement artifacts using an estimate based on linear FIR filtering of M different EOG channels 
[2]. 
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