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3.10 z- Transform  
 

The z- transform of a sequence �[�] is define as: 

�(�) =  �{�[�]} = ∑ �[�]����
����    (3-60) 

where � is a continuous complex variable and the equation is, in general, an infinite sum or an 

infinite power series. The transformation, �{. } which maps the discrete sequence, �[�], into a 

continuous function �(�) is called z-transform. The correspondence between the sequence and its 

z-transform is shown by the notation: 

�[�] 
�

⟷ �(�)
   

(3-61) 

In contrast to two-sided or bilateral z-transform described by Eq. (3-60), one-sided or unilateral 

z-transform is defined as: 

�(�) =  �{�[�]} = ∑ �[�]����
���    (3-62) 

If �[�]  =  0 for all � < 0, it is obvious that two-sided and one-sided z-transforms are equivalent. 

In this course, we only take the two-sided transformation into account.  

In general, � is a complex variable such as � = ����; hence, �(�) is also a complex variable and 

it is more convenient to represent and interpret it in complex polar plane (see Figure 3-11-a).  

 

Figure 3-11: a) Complex z-plane, b) Region of convergence as a ring in complex z-plane [1].  
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If we compare the Eq. (3-60) and Eq. (3-47), it is evident that the z-transform reduces to Fourier 

transform if � = ���. The contour corresponding to |�|= 1 in z-plane is a circle of unit radius 

which is known as unit circle. Therefore, the z-transform evaluated on this circle corresponds to 

the Fourier transform. On the complex z-plane, � is the angle between the vector point to � on the 

unit circle and the real axis. Starting from � = 0 (� = 1) and moving through � =
�

�
 (� = �) and 

then to � = � (� =  − 1), we obtain the Fourier transform for 0 ≤ � ≤ �. If we continue moving 

around the unit circle, it would correspond to examining the Fourier transform from � = � to � =

2� or equivalently, from � = 0 to � = − �. This interpretation reveals why the frequency of the 

Fourier transform is inherently periodic. Indeed, a change of angle of 2� radians in the z-plane 

means traversing the unit circle once and returning to exactly the same point. 

3.10.1 Region of Convergence (ROC)  
 

As it was mentioned in section 3.7, the infinite sum representing the Fourier transform may not be 

finite for some sequences. It means, the Fourier transform does not converge for those sequences. 

Similarly, the z-transform may not converge for some sequences or for some values of �. For any 

arbitrary sequence, the set of values of � for which the z-transform converges is called the Region 

of Convergence (ROC). To ensure the convergence of the z-transform, the following condition 

must be satisfied: 

∑ |�[�]||�|���
����  < ∞ ;  (3-63) 

therefore, the ROC is defined as the set of values of z such that the Eq. (3-63) holds. With this 

definition, if some value of �, say � = ��, is in the ROC, it means all values of � on the circle of 

radius |�|= |��| will be in the ROC. Consequently, the region of convergence consists of a ring 

in the complex z-plane centered about the origin (see Figure 3-11-b). The outer boundary of ROC 

will be a circle or it may extend outward to infinity. The inner boundary of ROC, similarly, will 

be a circle or it may extend inward to include the origin. It is worth mentioning that it is possible 

for the z-transform to converge even if the Fourier transform does not. However, if the ROC of 

the z-transform for a sequence includes the unit circle, the Fourier transform of the sequence 

converges.  
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The z-transform is practically useful when the infinite sum can be expressed in closed form as a 

simple mathematical formula. Among the most important and useful z-transforms are those for 

which �(�) is a rational function inside the region of convergence, i.e., 

�(�) =
�(�)

� (�)
         (3-64) 

where �(�) and � (�) are polynomials in �. The values of z for which �(�)  =  0 are called the 

zeros of �(�), and the values of z for which �(�) is infinite are referred to as the poles of �(�). 

The poles of �(�) for finite values of z are the roots of the denominator polynomial. In addition, 

poles may occur at � =  0 or � =  ∞ . For rational z-transforms, a number of important 

relationships exist between the locations of poles of �(�) and the region of convergence of the z-

transform. 

Example 3-11: Right side and left-side exponential sequences 

a) The signal �[�] =  ���[�] is non-zero for � ≥ 0, hence, this is a right side sequence. From the 

Eq. (3-60), its z-transform is: 

�(�) = ∑ ���[�]����
���� =  ∑ (����)��

���  . (3-65) 

In order to make sure that �(�) converges, we require that 

∑ |����|��
���  < ∞ .  (3-66) 

Therefore, the ROC consists of the ranges of values of z for which |����|< 1, or equivalently, 

|�|> |�|. Inside the ROC, the infinite series converge to 

�(�) =  ∑ (����)��
��� =

�

������ =
�

���
           ��� |�|> |�|.      (3-67) 

In this example, if |�|< 1, the ROC includes the unit circle and the Fourier transform exists for 

�[�] =  ���[�].  

Figure 3-12-a illustrates the pole-zero plot and the ROC for �[�] =  ���[�].  

b) The signal �[�] =  − ���[− � − 1] is non-zero only for � ≤ − 1, hence, this is a left side 

sequence. From the Eq. (3-60), its z-transform is: 

�(�) = − ∑ ���[− � − 1]����
���� = −  ∑ (����)���

���� =  −  ∑ (����)���
��� =

1 − ∑ (����)��
���  . 

(3-68) 

Now, if the |(����)|< 1 or, equivalently, |�|< |�|, the sum in Eq. (3-68) converges 
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�(�) =  1 − ∑ (����)��
��� = 1 −

�

������
=

�

������
=

�

���
           ��� |�|< |�|.      (3-69) 

The pole-zero plot and the ROC for �[�] =  − ���[− � − 1] are depicted in Figure 3-12-b.  

 

 

Figure 3-12: Pole-zero plot and ROC for sequences in example 3-11 a) and b) [1]. 

Example 3-12: Sum of two exponential sequences, �[�] = �
�

�
�

�

�[�] + �−
�

�
�

�

�[�] 

Using the general result of Example 3-11-a with � = �
�

�
� , � = �−

�

�
�, the z-transform for two 

individual terms are: 

�

�
�

�
�

�

�[�] ⟷
�

��
�

�
���

           ��� |�|>
�

�
.      

(3-70) 

�

�−
�

�
�

�

�[�] ⟷
�

��
�

�
���

           ��� |�|>
�

�
 . 

(3-71) 

Therefore,  

�

�
�

�
�

�

�[�] + �−
�

�
�

�

�[�] ⟷
�

��
�

�
���

+
�

��
�

�
���

           ��� |�|>
�

�
 . 

(3-72) 

In Figure 3-13: zero-pole plots and the ROC for two individual terms and for the sum of two 

exponential sequences are shown.  
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Figure 3-13: zero-pole plots and the ROC for two individual terms and for the sum of two exponential sequences in 
example 3-12 [1]. 

Figure 3-14 provides a list of commonly used z-transform pairs. 
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Figure 3-14: a list of commonly used z-transform pairs [1]. 

ROC for the z-transform have some properties which mainly depend on the nature of the signal. If 

�[�] has finite amplitude (except possibly in � = ∓ ∞ ) and �(�) can be written as a rational 

function, properties listed in Table 3-4 hold for the ROC. 

Table 3-4 Properties of ROC for z-transform. 

Property 1 The ROC is a ring or disk in the z-plane centered at the origin 

Property 2 
The Fourier transform of �[�] converges if and only if the ROC of the z-transform 

of �[�] includes the unit circle. 

Property 3 The ROC doesn’t contain any poles. 

Property 4 

If x[n] is a finite-duration sequence, i.e., a sequence that is zero except 

in a finite interval (i.e., − ∞ < �� ≤ � ≤ �� < ∞ ), then the ROC is the entire z-

plane, except possibly � =  0 or � =  ∞ . 

Property 5 
If �[�] is a right-sided sequence, the ROC extends outward from the outermost 

(i.e., largest magnitude) finite pole in �(�) to (and possibly including) � =  ∞ . 

Property 6 
If �[�] is a left-sided sequence, the ROC extends inward from the innermost 

(smallest magnitude) nonzero pole in �(�) to (and possibly including) � =  0. 

Property 7 
If �[�] is a two-sided sequence, the ROC will consist of a ring in the z-plane, 

bounded on the interior and exterior by a pole and not containing any poles. 

Property 8 The ROC must be a connected region. 
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3.10.2 The inverse z-transform  
 

Following our main processing idea (i.e. mapping the discrete time signal into frequency domain, 

then manipulating the algebraic expressions and afterwards, transferring the results back to the 

time domain), it is of crucial importance to find the z-transform and its inverse for given discrete-

time signals and linear systems. In order to determine the inverse z-transform from a given 

algebraic expression and associated ROC, recognizing certain transform pairs, known as 

“inspection method” is the first way. However, sometimes �(�) may not be given explicitly in an 

available table. In this case, it may be possible to reformulate the expression for �(�) as a sum of 

simpler terms, each of which exists in the table. This is the case for any rational function, since we 

can obtain a partial fraction expansion and easily identify the sequences corresponding to the 

individual terms. To see how to obtain a partial fraction expansion, let us assume that �(�) is 

expressed as a ratio of polynomials in ���; i.e., 

�(�) =  
∑ ������

�� �

∑ �� ����
�� �

.      
(3-73) 

Such z-transforms arise frequently in the study of linear time-invariant systems. An equivalent 

expression is in the form  

�(�) =  
��

��

∏ (�������)�
�� �

∏ (���� ���)�
�� �

.      
(3-74) 

where ��’s and ��’s are respectively, non-zero zeroes and poles of X(z). In case that � < �  and 

the poles are first order, �(�) can be expressed as 

�(�) = ∑
��

(�������)

�
��� .      (3-75) 

where: 

�� = (1 − �����)�(�)|����
.      (3-76) 

Example 3-13: Second order z-transform 

Consider for a given sequence �[�], the z-transform is   

�(�) =
�

(��
�

�
���)(��

�

�
���)

        , |�|>
�

�
    (3-77) 

the poles and zeroes of �(�) is depicted in Figure 3-15. Since the poles are first order, �(�) can 

be expressed as 
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�(�) =
��

(��
�

�
���)

+  
��

(��
�

�
���)

.      (3-78) 

From Eq. (3-76), 

�� = �1 −
�

�
���� �(�)|

��
�

�

= − 1

�� = �1 −
�

�
���� �(�)|

��
�

�

= 2
     , 

therefore,  

�(�) =
��

(��
�

�
���)

+  
�

(��
�

�
���)

.  

From the ROC and the property 5 in Table 3-4, �[�] is right-hand side; hence, from Figure 3-14 

and linearity of z-transform, the inverse transform would be: 

�[�] =  − (
�

�
)��[�] + 2 (

�

�
)��[�]  

 

Figure 3-15: zeroes and poles of �(�) in Example 3-13 [1]. 

 

3.11 z- Transform Properties  
 

Similar to Fourier transform, z- transform has some properties useful for practical applications. 

Table 3-5 summarizes these properties.  

Table 3-5 Z-transform theorems. 
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 sequences �[�], �[�] 
z- transform �(�) ���� ��� =  ��, �(�) 

���� ��� =  �� 

1 Linearity ��[�] + ��[�]  ��(�) + ��(�), ��� = ��⋂��   

2 Time Shifting �[� − ��], �� ������� 
�����(�), ��� = �� (except for probably 

addition or deletion � = 0 or � = ∞   ) 
3 Frequency Shifting ��

��[�]  �(�/��) , ��� = |��|�� 

4 Complex Conjugate 

�∗[�] �∗(�∗), ��� = �� 

�� {�[�]} 
�

�
(�(�) + �∗(�∗)), ��� �������� �� 

�� {�[�]} 
�

��
(�(�) − �∗(�∗)), ��� �������� �� 

5 Time Reversal �∗[− �]  �∗(1/�∗), ��� = 1
��

�  

6 
Differentiation in 

Frequency  
��[�]  − �

��(�)

��
, ��� = �� 

7 Convolution Theorem �[�] ∗ �[�]  �(�)�(�) , ��� = ��⋂�� 

8 Initial Value Theorem �[�] = 0 for � < 0 lim
�→�

�(�) = �[0] 

 

 

Example 3-14: Convolution using z-transform 

Given �[�] =  ���[�] and ℎ[�] = �[�], we want to determine �[�] = �[�] ∗ ℎ[�] using z-

transform. The corresponding z-transforms are: 

�(�) = ∑ ������
��� =

�

������
,      |�|> |�|, 

and 

�(�) = ∑ ����
��� =

�

����� ,      |�|> 1. 

then, if |�|< 1, the z-transform of the convolution of �[�] and ℎ[�] is:  

�(�) =  �(�)�(�) = �
�

������
� �

�

�����
� =

��

(���)(���)
,               |�|> 1.  

Using Eq. (3-76) and in a partial fraction expression, we obtain: 

�(�) =  
�

(���)
�

�

����� −
�

�������           |�|> 1.  

then, the sequence �[�] can be obtained by the inverse z-transform of �(�): 

�[�] =  
�

(���)
 (�[�] − �����[�]). 
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3.12 Discrete- Time Random Signals  
 

In previous sections, we have seen the time-domain and the frequency-domain representations of 

discrete-time signals and systems. However, until now, we have assumed that the signals are 

deterministic and each value of a sequence is uniquely available by a mathematical expression or 

a table of data. 

In many situations, the processes that generate signals are so complex and it is extremely difficult 

(or even impossible) to describe the signal by a mathematical expression. In such cases, the signal 

is usually modeled as a stochastic process.  

As stated in Chapter 1, a stochastic signal is a member of an ensemble of discrete-time signals that 

is characterized by a set of probability density functions and statistical properties. More 

specifically, each individual sample �[�] of a particular random signal is assumed to be an 

outcome of some underlying random variable, ��. A collection of such random variables, one for 

each sample time,− ∞ <  � <  ∞  represents the entire signal. This collection of random variables 

is called a random process. A random process is described by individual and joint probability 

distributions of all the random variables. Their description in terms of averages then can be 

computed from assumed probability laws or may be estimated from specific signals. 

As a matter of fact, stochastic signals are not absolutely summable or square summable; therefore, 

it is not possible to directly calculate Fourier transforms for them. However, many of the properties 

of such signals can be summarized in terms of averages such as the autocorrelation or 

autocovariance sequence, for which the Fourier transform often exists. In particular, the effect of 

processing stochastic signals with a discrete-time linear system can be conveniently described in 

terms of the effect of the system on the autocovariance sequence. 

To continue reading this discussion, the reader needs to be familiar with basic concepts of 

stochastic processes, such as averages, correlation and covariance functions. This lecture notes for 

PSM course provides more details on these concepts.  

http://minds.jacobs-university.de/sites/default/files/uploads/teaching/lectureNotes/LN_PSM_Part1.pdf
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As introduced in Chapter 1, one class of stochastic processes are stationary random signals for 

which the statistical properties don’t change over the time. For simplicity, we limit our focus on 

this signals and their representation in the context of processing with linear time-invariant systems. 

Let’s assume �[�] is a real-valued sequence that is a sample sequence of a stationary discrete-time 

random process and h[n] is the real impulse response of a given stable linear time-invariant system. 

The output of the system would also be a sample function of a random process related to the input 

process by the linear transformation where �[�] = �[�] ∗ ℎ[�].  

Dealing with a stationary random signal, it is more convenient to characterize it by its mean, ��, 

its variance, ��
� and its autocorrelation function, ���[�]. We wish to find the similar information 

for the output random process, �[�]. Therefore, we need to derive input-output relationships for 

these quantities. The means of the input and output processes are, respectively, 

���
= ℰ{��}  ,  ���

= ℰ{��}   (3-79) 

where ℰ{. } stands for expected value. In this course, we don’t need to distinguish the random 

variables �� and ��, and their specific values, �[�] and �[�] such that: 

��[�] = ℰ{�[�]}  ,  ��[�] = ℰ{�[�]}. (3-80) 

If �[�] and y[n] are stationary, then ��[�] and ��[�] are independent of � and will be written as 

�� and ��.  

Since �[�] = �[�] ∗ ℎ[�] and regarding the fact that the expected value of a sum is the sum of the 

expected values, the mean of the output process is 

��[�] = ℰ{�[�]} = ∑ ℎ[�]ℰ{�[� − �]}�
���� ,  (3-81) 

As the input is stationary, ��[� −  �] = ��, and consequently, 

��[�] = �� ∑ ℎ[�]�
���� .  (3-82) 

From Eq. (3-82), it is obvious that the mean of the output is also constant. Following Eq. (3-34) 

an equivalent expression to Eq. (3-82) in terms of the frequency response is 

�� = ��������.  (3-83) 

Back to �[�] = �[�] ∗ ℎ[�], this time we want to find the autocorrelation function of the output 

process: 
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���[�, � + �] = ℰ{�[�]�[� + �]} 

=   ℰ{∑ ∑ ℎ[�]ℎ[�]�[� − �]�[� + � − �]�
����

�
���� }  

= ∑ ℎ[�] ∑ ℎ[�] ℰ{�[� − �]�[� + � − �]} �
����

�
����   

(3-84) 

Since �[�] is assumed to be stationary, ℰ{�[� − �]�[� + � − �]} depends only on the time 

difference, i.e.,  � +  � − �. Therefore, 

���[�, � + �] = ∑ ℎ[�] ∑ ℎ[�] ���[� + � − �] �
����

�
���� = ���[�]  (3-85) 

Therefore, the output autocorrelation sequence also depends only on the time difference 

�. Thus, for a linear time-invariant system having stationary input, the output is also stationary. 

By making the substitution � = � − � and defining the autocorrelation sequence of ℎ[�] as 

���[�] = ∑ ℎ[�]ℎ[� + �]�
���� , we can express Eq. (3-85) as 

���[�] = ∑ ���[� − �] ∑ ℎ[�]ℎ[� + �]  �
����

�
���� = ∑ ���[� − �]���[�]�

����   (3-86) 

It is worth mentioning that ���[�] is simply the discrete convolution of ℎ[�] with ℎ[— �]. 

Eq. (3-86) means that the autocorrelation of the output of a linear system is the convolution of the 

autocorrelation of the input with the aperiodic autocorrelation of the system impulse response. 

Keeping the convolution property of Fourier transform, Eq. (3-86) suggests that the response of a 

linear time-invariant system to a stochastic input can also be characterized in Frequency domain. 

Assume, for convenience, that ��  =  0 such that the autocorrelation and autocovariance 

sequences are identical. Then, with Φ��(���), Φ�������, and ���(���) denoting the Fourier 

transforms of ���[�], ���[�], and ���[�], respectively, from Eq. (3-86), 

Φ������� = Φ��(���)���(���)  (3-87) 

Also, from the definition of ���[�], 

�������� = H������∗����� = �H������
�
 , (3-88) 

So, 

Φ������� = �H������
�

Φ��(���)  (3-89) 

Eq. (3-89) defines the term power spectrum density of the output signal.  Specifically, regarding 

the Parseval’s theorem (see Table 3-3), the total average power of the output is defined as 
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ℰ{��[�]} =  φ��[0] =
�

��
∫ Φ������� ��

�

��
. (3-90) 

Now, substituting the Eq. (3-90) in Eq. (3-89), we have 

ℰ{��[�]} =  φ��[0] =
�

��
∫ �H������

�
Φ��(���) ��

�

��
. (3-91) 

 

Example 3-15: White Noise  

A white-noise signal is a signal for which ���[�] = ��
��[�]. If the signal has zero mean, then the 

power spectrum of a white noise signal is a constant, i.e., 

Φ������� = ��
�      for all �. 

The average power of a white-noise signal is therefore 

 φ��[0] =
�

��
∫ Φ��(���) ��

�

��
=  

�

��
∫ ��

� ��
�

��
= ��

�. 

The concept of white noise is also useful in the representation of random signals 

whose power spectra are not constant with frequency. For example, a random signal 

�[�] with power spectrum Φ������� can be assumed to be the output of a LTI system with a 

white-noise input. In other words, we use Eq. (3-89) to define a system with frequency response 

H����� to satisfy the equation Φ������� = �H������
�

��
�, where ��

� is the average power of the 

assumed white-noise input signal. We wish to set the average power of this input signal to give the 

correct average power for �[�]. For instance, let’s assume ℎ[�] =  ���[�] and therefore, 

H����� =
�

������. Then we can represent all random signals whose power spectrum is in the form 

of  

Φ������� = �
�

������
�

�

��
� =

��
�

������� ��� �
. 

In this context, the last property of the LTI system in which we are interested is the cross-

correlation between the input and output of a linear time-invariant system: 

���[�] = ℰ{�[�]�[� + �]} 

=   ℰ{�[�] ∑ ℎ[�] �[� + � − �] �
���� }  

(3-92) 
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= ∑ ℎ[�]���[� − �]�
����   

It means that the cross-correlation between input and output is the convolution of the impulse 

response with the input autocorrelation sequence. 

The Fourier transform of Eq. (3-92) is 

Φ������� = H�����Φ�������. (3-93) 

 




