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Abstract

Dual Dynamics (DD) is a mathematical model
of a behavior control system for mobile au-
tonomous robots. Behaviors are specified
through differential equations, forming a global
dynamical system made of behavior subsystems
which interact in a number of ways. DD models
can be directly compiled into executable code.
The article (i) explains the model, (ii) sketches
the Dual Dynamics Designer (DDD) environ-
ment that we use for the design, simulation,
implementation and documentation, and (iii)
illustrates our approach with the example of
kicking a moving ball into a goal.

1 Introduction

In the RoboCup mid-size league, robots have to kick a
ball into the right direction. For many reasons, this is
a hard task, which calls for robotic methods from many
fields:

1. The situation on the field changes rapidly and dras-
tically. This suggests a reactive, behavior-based ap-
proach to robot control [Brooks, 1991].

2. Kicking a moving ball is a continuous and dynamic
task. Methods from continuous-time robust control
(like in [Aicardi et al., 1995]) are required.

3. The meaning of “. . . into the right direction” also
varies dynamically. A self-organising, dynamical-
system realization of goals and motivations seems
appropriate here [van Gelder, 1998].

4. Playing football involves many different kinds of ac-
tions, with complex relations and interactions be-
tween them. A hierarchical representation of actions
and action selection control is a natural approach to
handle this complexity [Tyrrell, 1993].

5. Developing complex robots is done in many iter-
ated design-redesign cycles, often with substantial
modifications both on the hardware, low-level soft-
ware, and control program level. State-of-the-art
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co-design tools can become critically beneficial [de
Micheli and Gupta, 1997].

This list is certainly incomplete, but it demonstrates
that designing football-playing robots is a complex, in-
terdisciplinary challenge. From a traditional engineer-
ing perspective, this cries out for a modularized, hybrid
approach, where different specialized subsystems are de-
signed by different specialists, with well-defined inter-
faces between them.

However, there are indications that the classical
divide-and-conquer approach is not fully appropriate for
football-playing robots. A fast, autonomous robot in
a continuously dynamic environment must continuously
construct a stream of action from a stream of sensor
information. This is connected to, but transcends, the
well-known action selection problem [Maes, 1990]: con-
struction is harder than selection. The imperative of
continuously “doing the right thing” can only be met by
an agent that acts “holistically”, or to use a more modest
term, in an integrated fashion. It is difficult to conceive
how a classical modular system can rise to this task, at
least when it consists of subsystems that communicate
with each other over relatively narrow channels accord-
ing to strict protocols, hiding from each other most of
what is going on inside them. Unfortunately, the notion,
“to act in an integrated fashion”, is as vague as the term
“modular”. Practical examples of robotic systems that
more or less successfully construct a stream of action will
help us to advance our understanding.

Building such a robotic system can only be achieved
by a team of engineers that also behaves in an integrated
way. At the very least, this means that there is a close,
mutually informed collaboration – information hiding of
any sort stands in opposition to the goal of building a
system that can act in an integrated fashion.

Thus, a fundamental challenge for mobile robotics is
to reconcile, (i) the need for some sort of modular design,
which results from the necessity of bringing together di-
verse techniques and human specialists, with (ii) inte-
gratedness both in the robot and in the developing pro-
cess.

At the Behavior Engineering (BE) research group in
the GMD Institute of Autonomous Intelligent Systems
(AiS, http://ais.gmd.de) we explicitly address this chal-



lenge. Our approach rests on two pillars. On the one
hand, we develop a mathematical model of a behavior
control system, which to a certain degree integrates the
points 1 – 4 mentioned in the beginning: a behavior-
based approach, robust control, a dynamical systems
representation of actions and goals, and a hierarchical
architecture. This is the Dual Dynamics (DD) model
[Jaeger and Christaller, 1998]. On the other hand, we
develop and utilize a design tool that fosters a close
collaboration of engineers, by providing everyone with
a unified access to the entire robot control system un-
der construction. This is the Dual Dynamics Designer
(DDD) tool [Bredenfeld, 1999].

In this article, we give a quick introduction to the
DD model (Section 2), describe the DDD tool (Section
3), and demonstrate its application with the example of
kicking a moving ball (Section 4).

2 The Dual Dynamics model of
behavior control

The Dual Dynamics scheme is a mathematical model
of a behavior control system for autonomous mobile
robots. It has grown from three roots: the behavior-
based approach to robotics, the dynamical systems ap-
proach to cognition, and the mathematical theory of self-
organizing dynamical systems. Discussions of these foun-
dational topics can be found in [Jaeger and Christaller,
1998] [Jaeger, 1998] [Jaeger, 1997]. In the present ar-
ticle we concentrate on the mathematical and technical
aspects of DD.

Behaviors are formalized as dynamical systems, us-
ing ordinary differential equations (ODEs). These dy-
namical systems interact through shared variables and
certain control relations, yielding an complex control
system, which in its entirety again is a dynamical sys-
tem. The DD model specifies certain structural and dy-
namical constraints on admissible interactions and con-
trol relations between the various dynamical subsystems,
which will be informally explained in this section. The
formalism is mathematically specified in [Jaeger and
Christaller, 1998].

The basic assumption on which DD rests is that a
situated agent can work in different modes. Modes are
coherent, relatively stable “frames of mind”, which en-
able the agent to tune into different situations and tasks.
Specifically, agents respond to sensory signal differently
in different modes. In defend mode, a football robot
would react to a ball quite differently than when it is in
attack mode. The DD approach rests on the assumption
that transitions between modes can be formally captured
by bifurcations of dynamical systems. A direct implica-
tion of casting mode changes as bifurcations is that such
changes are qualitative, discontinuous changes, not grad-
ual ones. Our football robots do not gradually change
from defend to attack mode, they either defend or at-
tack. However, since these transitions are regulated by
dynamical systems (in contrast to finite state machines),
the decision point is dynamically and continuously tuned

by the full wealth of incoming sensor information.
In the remainder of this section, we explain how this

basic idea becomes the ordering principle for a dynamical
systems engineering approach to behavior control.

The main building blocks of a DD robot architecture
are behaviors. They are ordered in levels (fig. 1a). At
the bottom level, one finds elementary behaviors: sen-
somotoric coordinations with direct access to external
sensor data and actuators. Typical examples are kick
or fixateBall. At higher levels, there are increasingly
comprehensive behaviors. They also have access to sen-
soric information but cannot directly activate actuators.
Their task is to regulate modes. As a first approxima-
tion, higher-level behaviors can be seen as instantiations
of modes. An example of a first-level behavior in our
football robots is challenge1, which corresponds to the
first video qualification task of finding a ball and scoring
a goal without opponents. Second-level higher behav-
iors would be even more comprehensive. For instance,
attack would be a second-level behavior which coincides
with the attack mode.

Elementary behaviors are different from higher-level
behaviors in that they are made from two subsystems
(fig. 1a), which serve quite different purposes. This has
given the approach its name, “dual dynamics”.

The first of these subsystems is called the target dy-
namics. It calculates target trajectories for all actuators
which are relevant for the particular behavior. For this
calculation, the target dynamics has access to every rel-
evant sensor information, and typically includes specific
sensor preprocessing. The output of the target dynamics
consists of as many variables as there are motoric degrees
of freedom to be controlled.

A requirement for the target dynamics is that this
system should not undergo bifurcations. This is what
makes elementary behaviors elementary, and provides a
very helpful criterium for deciding which behaviors are,
in fact, elementary. For instance, the target trajecto-
ries of kick in our simple wheeled football robots are
likely to remain qualitatively unchanged in different in-
stances of the maneuver. Thus, kick would be a good
candidate for an elementary behavior. By contrast, in
an anthropomorphic football robot it is likely that there
will be qualitatively different kicking maneuvers different
circumstances. Each of them would thus yield a separate
elementary behavior.

From an engineering perspective, the target dynam-
ics is just a motor controller for a specific task. DD is
not committed to a particular type of controller – any
controller which promises success is welcome. The “no
bifurcation” requirement, in this perspective, means that
one has a uniform control law.

The other subsystem of an elementary behavior is its
activation dynamics. It regulates a single variable, the
behavior’s activation. The equation ruling this variable
should be written in a way that the variable displays
a dynamic range between 0 and 1. Intuitively, a value
of 1 means that the behavior is fully active, whereas 0
means that it is completely inhibited. High values of the
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Figure 1: (a) Global structure of a DD behavior con-
trol system. At any time, every behavior has an acti-
vation. Activations of higher-level behaviors (depicted
in shaded boxes) act as control parameters for the acti-
vation dynamics of lower levels. The dynamical system
which maintains a behavior’s activation can undergo bi-
furcations; this in indicated by depicting these systems
as stylized “phase diagrams” (boxes with irregular par-
titions). A mode of the entire system is thus determined
by the activations of all higher-level behaviors. (b) The
target and activation subsystems of an elementary be-
havior.

activation mean that the target trajectories computed in
the target dynamics are passed through to the actuators
(cf. 1b).

The activation dynamics is allowed to undergo bifur-
cations. The control parameters which induce these bi-
furcations are the activation variables of higher-level be-
haviors. This is the core idea behind DD.

To illustrate this central point, consider the level-1 be-
haviors charge (quick advance with ball) and freeBall
(liberate ball which has got stuck at wall or between
robots). Consider an elementary behavior bumpRetract,
a protective reflex which generally means: retract when
the robot bumps into things. Standardly, the activation
of bumpRetract jumps to 1 when the front bumper sen-
sors are hit. However, this dynamical response changes
qualitatively in different modes. Assume that the robot
is charging and pushes the ball in front of itself. The
bumper will be frequently hit by the ball. However, the
activation of bumpRetract should not be triggered in
this circumstance. Technically, the high activation of
the level-1 behavior charge works on the activation dy-
namics of bumpRetract as a control parameter, pushing
this dynamical system into a regime where it does not
respond to bumper signals if the ball is seen directly in
front. Now assume, by contrast, that the robot is try-
ing to get the ball unstuck. Its level-1 behavior freeBall
should have an activation of about 1. This value is again
passed to the activation dynamics of bumpRetract as a
control parameter, changing the response characteristics
of this dynamical system. It should now indeed retract
even when hitting the ball, since it makes little sense
to try getting a ball unstuck by pushing it further into
where it’s been got stuck. In technical terms, the activa-
tion dynamics of bumpRetract undergoes a bifurcation
when the activations of charge and freeBall change in
a certain way.

These bifurcations are mathematically designed in the
simplest possible way. For each relevant higher-level be-
havior, the activation equation is equipped with a par-
ticular additive term, which is multiplied with the con-
cerned higher-level activation. For instance, the equa-
tion for the activation αbumpRetract would be controlled
by the activations αcharge and αfreeBall in the following
way:

α̇bumpRetract = αchargeT1 +αfreeBallT2 + . . .+ decay, (1)

where T1, T2 are hand-designed dynamical laws which
yield an appropriate activation characteristics in the
charge and freeBall modes. The decay term and other
details are explained in [Jaeger and Christaller, 1998].

To reiterate, only the activation dynamics subsys-
tem undergoes bifurcations in a properly designed DD
scheme. The fact that bifurcations (which are inher-
ently difficult to master from a designer’s perspective)
are confined to these single-variable subsystems is criti-
cal for the transparency of DD behavior control systems.

Higher-level activation variables yield control param-
eters for lower-level activation dynamics. Now, in the



theory of dynamical systems it is assumed that control
parameters change on a (much) slower timescale than
the systems they control. This implies that behaviors on
different levels in a DD architecture must have different
timescales, with higher-level behaviors being long-term
and lower-level behaviors become active/inactive on a
short-term scale. This provides the designer with a for-
mal criterium for level organization: order higher-level
behaviors according to time scales.

We emphasize that an elementary behavior is not
“called to execute” from higher levels. The level of el-
ementary behaviors is fully operative on its own and
would continue to work even if the higher levels were
cut off. The effect of higher levels is not to “select ac-
tions”, but to change the overall, integrated dynamics of
the entire elementary level, by inducing bifurcations in
the activation dynamics on that level.

3 The dual dynamics design tool
Programming a football playing robot is a group activity,
where different researchers are occupied with designing
different branches and levels of the overall robot con-
trol system. In order to achieve an “integrated” behav-
ior, the design process must be maximally transparent
for all group members. Essentially, everybody must be
able to understand and use, what everybody else designs.
Therefore, we have developed a unified software develop-
ing environment, the “Dual Dynamics Designer” (DDD).
Specifically, DDD provides automated editing, documen-
tation, simulation and code generation facilities.

Figure 2: The primary DDD user interface. The ex-
ample shows a basic roam behavior with bumper-based
obstacle avoidance. Sensor filters and intermediate rep-
resentations are on the left, higher-level behaviors (only
roam in this case) are on the right upper part, and ele-
mentary behaviors on the right lower part of the screen.

The primary graphical user interface for designing a
DD model is shown in Fig. 2. It includes icons of sensors,

sensor filters and intermediate sensor representations, el-
ementary and higher-level behaviors. Important global
variables and constants (time constants, especially) ap-
pear highlighted besides the concerned icons. By click-
ing on the icons, context-sensitive editor windows pop
up in which equations and/or ODEs can be specified in
an intuitive syntax.

After designing the network of behaviors and prepro-
cessing filters, a syntax check, global and local variable
detection and checking for cyclic dependencies between
equations is performed in a compilation step. Cyclic de-
pendencies (which are unavoidable in coupled dynamical
systems) are highlighted in the graphical representation
on the screen. It is left to the designer to schedule a pro-
cessing order for cyclically connected variables, which
s/he can do by simply rearranging the icons from left to
right.

By hitting the C, Java, and Robot buttons, executable
standard C code, Java code, and robot C++ code is gen-
erated. The Java code can be fed into a simulation en-
gine, which currently simulates the interaction of a single
robot and a ball in an empty arena. The simulator pro-
vides a number of diagnostic traces of activations and
target variables, as well as a graphical rendering of the
robot’s doings in the arena. We find the simulation of
inestimable value in detecting “dynamo-logical” miscon-
ceptions in the designed activation and target dynamics.

The DDD tool is based on a proprietary object-
oriented behavior representation, which is taken as com-
mon source for all target code generators (C, C++, Java,
HTML). Therefore, the C++ code generated for our
robots’ onboard PCs, exactly mirrors the Java code used
in the simulation. The generated documentation is com-
mon for all targets and hides language dependent im-
plementation and syntactical details from the behavior
designer. The documentation of the sensor preprocessing
and DD control program allows a convenient inspection
of all parts of the robot control system, ordered by var-
ious aspects.

The DDD tool itself is constructed with the Rapid
Prototyping Environment APICES [Bredenfeld, 1998].
Readers interested in software engineering aspects can
find more details on the software architecture and devel-
opment process of the DDD tool in [Bredenfeld, 1999].

An exemplary control program (sketched in the next
section), the simulator, and the documentation are avail-
able on our web server at http://ais.gmd.de/BE/ddd/,
and can be run on Web browsers that support Java
(tested on Netscape).

4 Kick a moving ball: a case study

In this section we sketch a DD behavior control system
for achieving the first RoboCup-99 video qualification
task. This task for a single robot consists in finding a
stationary ball and scoring a goal without opponents.
We made this task a bit more difficult by using a ball
that rolls about while the robot tries to find and kick it.

We employ a team of custom-built 2 degree of free-



dom, 1-PC-3-microcontroller equipped robots that rely
on the well-known Newton Lab’s Cognachrome system
for ball and goal detection, infrared-based distant obsta-
cle avoidance and otherwise standard bumper ring sen-
sors and odometry. The robots do not have concavities
to guide the ball. Instead, they hit the ball with their
straight front portion and rely on billiard-like ball reflec-
tion. A more detailed description of our robots is given
in [Kuth et al., 1998].

The difficult part of this task is kicking the moving
ball into the right direction after it has been spotted.
This implies hitting the ball with some appropriate (un-
derconstrained) combination of angle, velocity and po-
sition, grounded on rather noisy estimates of ball state.
This problem lies well beyond the powers of classical ap-
proaches to motor control.

We approached the task by breaking it up into vari-
ous elementary behaviors, each of which comes with its
own sensor-motor control strategy. The overall goal is
solved by an appropriate chaining, superposition, and
inhibition of the participating activation dynamics.

Fig. 3 lists the relevant behaviors (a) and depicts a
typical search–intercept–kick episode (b). The latter di-
agram was obtained from an simulation implemented in
Mathematica in the early stages of the DDD develop-
ment. Initially the robot does not see the ball, hav-
ing a vision field of only ± 33 degrees. When igno-
rant of the ball position, the robot falls into search
mode. Besides some obstacle avoidance behaviors, this
mode basically comprehends only the elementary behav-
ior whirl. The motor commands issued by whirl con-
sist of a simple alternation of straight move-forwards
and circles. This pattern is active until the ball is
seen after a half left turn. Seeing the ball, the robot
falls into challenge1 mode. The elementary behaviors
behindBall, turnToBall, position, and kick can now
potentially become activated. It depends on the situ-
ation and history which behavior is triggered. In the
example in Fig. 3(b), behindBall is activated first. Its
control law says: “move toward own goal at max ve-
locity until robot is well behind ball”. The next be-
havior is turnToBall (“turn into direction where ball
is expected”), followed by position (“move to a posi-
tion from which ball can be kicked into goal”) and fi-
nally, kick (“bump into ball with velocity that makes
it billiard-bounce toward goal”). During this sequence,
there are also two activation periods of fixateBall.
This is a mode-independent (technically: root-mode)
elementary behavior, which tries to keep the ball inside
the vision cone for about 1 sec – the time needed for
sampling enough video frames for a useful estimate of
the ball vector. Finally, there is a brief activation of
noSelfGoal (“if in danger of kicking ball into own goal,
avoid the ball”), which however in this case has no motor
effects since the robot quickly calculates that it avoids
the ball anyway.

The sensor-motor control laws of these behaviors range
from trivial to tricky. For instance, the motor target tra-
jectories generated by whirl are actually entirely pre-
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Figure 3: (a) The behaviors involved in the first qual-
ification video task (several obstacle avoidance behav-
iors are omitted). (b) A successful (simulated) search
– intercept – kick episode. The diagram shows head
view of arena, opponent’s goal on the right side. Ball
(thick black line) starts at lower left corner with veloc-
ity 95 cm/sec. Robot (narrow black line) starts at lower
right corner. Dotted lines connect equitemporal points
on robot and ball trajectory every second. Shaded lines
indicate activation periods of elementary behaviors.



coded and independent of sensor input. The target dy-
namics of position, by contrast, includes mechanisms
of ball prediction and a position evaluation.

The powers (and difficulties) of the DD approach,
however, lie in the activation dynamics rather than in
the target dynamics. Several mechanisms, all of which
are locally coded into the activation dynamics laws of the
behaviors, control the interaction and trigger pattern of
these activations. The most important mechanisms are:

Sensor conditions. Activate or inhibit a behavior
when certain sensor input conditions are satis-
fied. Example: kick gets active “opportunistically”
when ball is seen roughly in line with goal.

Chaining. Activate a behavior when certain other be-
haviors become deactivated. Example: kick gets
active when the activation of position goes down.

Inhibition. Inhibit a behavior by the activation of oth-
ers. Example: most behaviors are inhibited by ob-
stacle avoidance behaviors.

Furthermore, these activations can be gradual (e.g.,
fixateBall’s activation grows with the uncertainty of
ball estimates) or almost binary (standard case); they
can have a fast dynamics (typical example: protective
reflexes) or a slow one (useful for behaviors whose mo-
tor trajectors blend into one another, for example the
transition from position to kick is relatively slow).

Interested readers can inspect all equations of
the behavior system presented here in the au-
tomatically generated DDD documentation at
http://ais.gmd.de/BE/ddd/chall1.html.

5 Conclusion

Identifying and coding appropriate dynamical activation
schemes is decisive for the performance of a DD con-
trol system. Specifically, a simple switch-on / switch-
off chaining of behaviors (like in classical action selec-
tion literature) is insufficient for a motor control task
as complex and dynamic as the one in RoboCup. The
phenomenology of dynamic onset, offset, and superposi-
tion of behaviors is rich and only dimly understood. We
also believe that the elusive “integratedness” of situated
motor control, which we mentioned in the introduction,
is somehow connected to the problem of shaping appro-
priate activation patterns. Currently the DD framework
does not spell out how the terms T in activation equa-
tions (cf. eqn. (1)) have to be written. However, cer-
tain standard terms in the activation equations begin to
evolve in the BE group’s everyday work. One of our
major current research topics is to develop a systematic
repertoire of such activation schemes, and integrate them
into the DDD tool. Other robotics goups with whom we
collaborate [Steinhage and Schöner, 1998] have started
to work along the same lines.
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