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Abstract

Recurrent neural networks can be used to approximate systems that evolve through time ar-
bitrarily well, by receiving input signals and generating output which can be assembled into
patterns. A network learns a pattern when it manages to produce it as an output. Although
any pattern can be learned provided the appropriate network, learning and later reproducing
multiple patterns with the same network is not straightforward, as the network itself changes
in the learning process. Conceptors enable top-down manipulation of patterns in a recurrent
neural network, enabling incremental learning. The patterns can be organized and further
combined to produce new ones, as for instance through morphing. We are aiming at using
conceptors to investigate their capability for pattern morph- ing, especially in the case of
speed morphing. The ultimate target of the project is to successfully morph human gaits.
Applications of pattern morphing can be found in animation and robotics, thus finding bet-
ter approaches implies better results in motion generation.
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1Introduction

Recurrent Neural Networks (RNNs) are based loosely on the biological structure of the hu-
man brain and consist of directed graphs with weighted connections, being an extension to
multi-layer perceptrons. Cycles within the network (known as feedback loops) preserve tem-
poral information, and the network is consequently capable of maintaining an ongoing acti-
vation without receiving input. I will refer to the signals fed to the network through training
as patterns. RNNs represent nonlinear dynamical systems [FN93] and can be used in tasks
such as pattern generation [WS09] or identification and control of dynamic feedback systems
[NP90]. Recurrent neural networks have been successfully used in applications in the range
of word recognition [Alb+92], signal processing [Kar+92], and pattern recognition [MT91].

Conceptors [Jae14b] [Jae14a] are a fresh addition to the RNN scheme. Each pattern p learned
by a network can be attributed to a conceptor Cp, which comes in the form of a linear map.
Visually, conceptors embody ellipsoids in the neural space and express how information is
stored in the network. After training the network with a desired pattern, its conceptor can
be later used to invoke it. This is achieved by inserting the conceptor matrix into the feed-
back loop, thus feeding Cpx as input to the network, where x is the current state of the net-
work. One can go even further and combine multiple conceptors to obtain a variety of new
patterns. The flexible nature of conceptors, coupled with the ability to train the conceptors
networks fast using echo state networks [Jae01] makes them promising candidates for pattern
morphing.

One of the challenges encountered in machine learning concerns generalization. Two exam-
ples of generalization in our context are interpolation and extrapolation; while interpolation
seeks to produce new data within the range of the training patterns, extrapolation is the
more-challenging attempt to extend this range beyond the trained dataset. Pattern morph-
ing is another instance of generalization, which we will touch on next.

Intuitively, pattern morphing is a combination of multiple signals in order to produce a new
signal with a certain degree of similarity to the generating ones. It is often used in robotics
as in [IT04]. Speed morphing represents a particular case of pattern morphing, where the
goal is to morph two or more signals which exhibit properties that we humans perceive as
speed. Let us illustrate speed morphing in human walking gaits; we all know that humans
can walk at various speeds, yet often the muscles involved in the different actions are not the
same. In this context, training a neural network to produce human walking gaits involves
feeding as input information regarding the movements of some representative subset of the
joints in the body, and encoding in the output the way a human moves. When patterns of
various walking speeds are fed to the network, we would ideally want to produce stable walk-
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ing motions of different speeds, either through interpolation or extrapolation. Due to the
nature of the task, training a network capable of speed morphing is highly non-trivial.

H. Jaeger has initiated the use of conceptors in pattern morphing [Jae14b]. Promising exper-
iments involving pattern morphing of periodic signal were part of the research. Speed mor-
phing was executed as a form of transition between various patterns in an illustrative video.
The current project aims at further investigating the potential of conceptors in pattern mor-
phing, targeted at speed morphing on human walking gaits with the purpose of generating
stable, morphed patterns which can be used for an extended period of time rather than brief
transitory moments.
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2Statement and Motivation of Research

Training recurrent neural networks poses certain challenges, due to difficulties such as learn-
ing long-term dependencies [Ben+94], [Pas+12], bifurcations [Doy93], local minima, slow
convergence. A number of strategies have been employed in order to train recurrent neu-
ral networks; some techniques are summarized in a tutorial by H. Jaeger in [Jae02]. Back-
propagation through time (BPTT)[Wer90], is a direct extension of the classic backpropa-
gation algorithm used for multi layer perceptrons. The cycle-free ordering requirement is
satisfied in this approach by unfolding the recurrent network in time. Real-time recurrent
learning (RTRL)[WZ89], is a computationally expensive, gradient-descent based method
which computes the error stepwise. Echo state networks (ESN) [Jae01], which belong to
the greater reservoir computer paradigm, exploit the fact that it suffices to adjust the out-
put weights and ensure that the system can accommodate the desired dynamic. Therefore,
training ESNs requires drastically less computation power as the only connections which are
learned are the output ones and the network is ensured to be versatile upon initial random
value assignment and size.

Switching to a more practical approach, artificial locomotion is needed in disciplines such as
robot control or computer animation. Industrial applications of locomotion lie in the area of
game industry, film industry, commercial robotics. [WJ12] presents a thorough comparison
of techniques and results achieved from more than 50 publications. This paper highlights
the fact that despite having made significant progress in generation and control of artificial
motion, there are still challenges with stable and efficient motion generation, the area we are
concerned about.

Previously conducted research in certain directions in locomotion are relevant for our quest,
and represent a starting point. One of the approaches used in locomotion involves central
pattern generators (CPGs), neural circuits which produce rhythmic motion that have been
observed in biological organisms. Producing human motion in the context of neural networks
ultimately means generating periodic patterns, and they have been implemented in a number
of ways for producing rhythmic patterns, including echo state networks, as shown in [WS09].
Referring back to pattern morphing, we can see why it is such a challenging task, since the
speed often times depends on a multitude of factors acting together, and as such, changing
the speed involves more than tuning a single linear parameter. In that regard, frequency
modulation is desirable, yet harder to control than other parameters [Wyf+14]. Dynami-
cal approaches have been found to model arbitrary limit-cycle attractors [Aja+13], as they
are needed in various locomotion tasks [Jae+12]. Morphing in the context of locomotion has
been attempted in various forms in research. [Bos+13] presents a RNN-based model for flex-
ible motor memory in which interpolation has been successful, as well as a limited degree of
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extrapolation (coefficients representing the linear combination which generate the morphing
go only down to -1).

The goal is to investigate the behaviour of conceptor-based approaches in generalization
tasks, as well as the extent to which these methods yield satisfactory results.
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3Theoretical Setup

Neural Networks are fundamental to our experiments. Inspired by the biological structure
of the nervous system, various assumptions and training methods have given rise to a multi-
tude of architectures. Recurrent Neural Networks (RNNs) are capable of modelling dynami-
cal systems [FN93], and are the ones used in the experiments.

Fig. 3.1: Recurrent neural network. Source [Jae02]

The RNNs which we will be looking at consist of a set of non-spiking neurons, intercon-
nected via unidirectional, weighted synaptic links. Each neuron has an activation, an asso-
ciated value which is updated discretely, depending on the ingoing connections of its respec-
tive neuron. During the update process, the weighted sum of all the ingoing connections is
fed to a sigmoid function to limit the range of the result of a predefined interval. A small
bias is added to this quantity, and the result is set as the new activation. Intuitively, at any
given time, each neuron sends a signal to all of its connected neurons. The signal is pro-
portional to the activation of the sender neuron, and can be dampened depending on the
strength of the connection (the weight). In turn, the neurons gather all the signals received
and update their activation (see Fig. 3.2).

Apart from the neurons that have been described thus far, which are to be called hidden
neurons or internal units, there are two additional types of neurons serving as a mere con-
nection between the network and the outer world: input neurons and output neurons. As
one might easily guess, the input neurons transfer the input to the network. The process is
similar to the transfer of the activation signal in the discrete time, occurring simultaneously.
In this way, a neuron receives at each time step information from both the input units and
neighbouring units (I use neighbouring units in the sense of either ingoing or outgoing units,
depending on the context). Likewise, the output neurons convert the information back into
a readable signal; in our case it will be the signal desired to be learned by the network. In
order to be able to pass a broad range of signals, a different transfer function or no function
at all may be used.

Due to the complexity of the network, granted by the cyclic pathways which occur, training
such a network proves to be an challenging and expensive endeavour. Echo State Networks
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Fig. 3.2: Close-up on information transfer from one state to the next at the neural level. The set
{N1,N2, ...Nn} contains all the units in the network (either internal or input neurons)
which have an outgoing connection to N0. x1(t),x2(t), ...xn(t) represent their state acti-
vations; wi, are the synaptic weights. The activations are multiplied by their respective
weights, then summed and fed to the transfer function tanh. An additional bias b is added,

so that the new activation is calculated as follows: x0(t+ 1) = tanh(
n∑

i=0
xi(t)wi) + b.

(ESNs) have been designed to deal with the problem by creating a sufficiently rich network,
and only training the output weights. A simplified model of ESN without output feedback
has been used for the current experiments, in which the information travels from the input
units to the hidden layer and ultimately to the output units, just as in Fig. 3.1.

Formally, the transition from a system state to the next, as well as the output generation of
the signal, are described by the following update equations:

x(n+ 1) = tanh(W ∗x(n) +W inp(n) + b)

y(n) =W outx(n),

for a network of N hidden neurons, K input neurons and M output neurons, where:

• p(n) represents the K-dimensional input pattern at discrete time n

• x(n) represents the network state at time n, which collects all neural activations of hid-
den states

• W in is a N ×K matrix which contains the input weights

• W ∗ is a N ×N weight matrix of hidden units

• y(n) represents a M -dimensional output vector

• W out is a M ×N output weights matrix

• b is the bias of the neuron

From a more abstract point of view, the internal units form a directed acyclic graph with
weighted vertices and edges. The internal units can be seen as a function from a vector to
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the graph’s weights f : RK → RN ; similarly, the output units are represented by a function
f : RN → RM .

3.1 Conceptors
Consider a network of N hidden units. During the learning process of a pattern p, the reser-
voir becomes excited and incorporates the input signal in its activations x(n). The result-
ing sequence of network states x(1),x(2), ... represents a point-cloud in the N -dimensional
network state space. Using Principal Component Analysis(PCA), the geometry of the point-
cloud can be characterized by an ellipsoid, shaped by uncorrelated axes of the point-cloud
corresponding to maximum variance. The lengths of these axes represent the singular values
of the correlation matrix R of the points x(1),x(2), ....

Fig. 3.3: Point cloud with its corresponding ellipsoid generated by principal component analysis. The
blue dots mark the data points.

In the next step the ellipsoid is normalized to fit in the N -dimensional unit sphere. A con-
ceptor matrix C is defined as:

C =R

(
R+ 1

α2 I

)−1
(3.1)

Thus, singular values si of C and the singular values σi of R satisfy the equation:

si = σi
σi+α−2 , (3.2)

3.1 Conceptors 8



, with the mention that now all si ≤ 1.

The parameter α is called an aperture, and it strikes a balance between the correlation ma-
trix R and the identity matrix I.

Alternatively, a conceptor can be seen as a matrix which minimizes the cost function:

L∑
n=1

1
L
||x(n)−Cx(n)||2 + 1

α2 ||C||
2 (3.3)

The aperture has to be adapted properly for accurate pattern regeneration, as part of the
reservoir set-up. A small aperture can cause insensitivity to patterns, while a large one makes
the network overexcited and sensitive to noise.

3.2 Learning and Loading a Pattern
The training process of the network consists in computing W out, as well as the conceptor
matrices corresponding to each pattern present in training.

At the end of the learning phase, the network should be able to reproduce the input pattern:

y(n) =W outx(n)' p(n),∀n (3.4)

We have already established that the conceptor matrix Cj corresponding to pattern pj is to
be computed by the formula (3.1), where the correlation matrix R depends on the network
activation states during the learning iterations: R = (Xj X

T
j )/L, with L being the length of

the pattern (or of the relevant bit thereof).

Additionally, in a process called pattern loading, a new matrix W is computed such that it
satisfies:

Wx(n)'W ∗x(n) +W inpi(n), (3.5)

for all training time steps n and patterns pj (see section 4.1 for details). Following this step,
we would expect the following to happen:

x(n+ 1) = tanh (Wx(n)), (3.6)

which is the case when a single pattern has been learned. However, if multiple patterns are
stored, the network cannot decide which pattern to load in the absence of any further infor-
mation. However, with the use of conceptors any of the learned patterns can be outputted:

x(n+ 1) = Ci tanh (Wx(n)), (3.7)

3.2 Learning and Loading a Pattern 9



3.3 Morphing Patterns
Morphing patterns with conceptors can be done using conceptor matrices. Suppose a reser-
voir has been trained with patterns pi and pj , having corresponding conceptors Ci and Cj . A
morphed pattern between pi and pj is defined by the following state update equation:

x(n+ 1) = ((1−µ)Ci+µCj) tanh (Wx(n)), (3.8)

where µ determines how similar the morphed pattern is to any of the initial ones.
For 0 < µ < 1, the process is called interpolation between the two patterns, while outside
of the range we are dealing with extrapolation. The equation can be easily generalized to
multiple patterns.

3.4 Dynamic pattern generation and challenges in pattern
morphing
In order to have a better understanding of the patterns we will be working with, as well as
the challenges that pattern morphing poses under these conditions, we will briefly introduce
some concepts in dynamics. I will follow the introduction found in [ST93].

A dynamical system is a system of equations stipulating the temporal evolution of a point x.
A phase space of a complex system is an n-dimensional Euclidian space in which all possible
states of the system are represented.

When the time is continuous, the dynamics of a system can be typically defined as a set of
first-order ordinary differential equations (ODEs):

ẋ= F (x), (3.9)

where ẋ is the derivative of x with respect to time. A flow arises naturally within this con-
text, as a group action of the real numbers onto the n-dimensional space. The flow adds
time to the n-dimensional value space, incorporating the evolutions of points in time in the
dynamical system. Examples of such dynamical systems are Lorenz and Rössler attractors,
which are discussed in more detail in section 4.1.

When the time is discrete and assumes integer values, its dynamics are described by a group
action of the integers over the n-dimensional space:

xt+1 = F (xt) (3.10)

Transitioning from a continuous-time dynamical system to a discrete-time system is real-
izable using time-1 maps. Since a discrete dynamical system is made of time-cuts in the
flow of the underlying continuous dynamical system, transitioning from time t to time t+ 1

3.3 Morphing Patterns 10



is equivalent to finding a map between the two cuts taken at a time difference of 1. This
method was used in our experiments to generate rich dynamic patterns starting from ODEs.

An attractor is a subset of the phase space to which initial conditions converge asymptot-
ically as time t→∞. If that region is a point, it is called a fixed point attractor. For ex-
ample, the system described by x→ x2 has a fixed point attractor at 0, and a repeller fixed
point at 1. Similarly, a repeller is a region of the phase space from which initial conditions
diverge as time t→∞.

Zooming out, we can define families of dynamical systems depending on certain parameters.
For instance, the dynamical system x→ x2 is the system resulting when c = 0 in the fam-
ily x→ x2 + c, described by the single parameter c. The typical behaviour is that when the
parameters vary just slightly, the resulting dynamical systems are closely related, presenting
nearby fixed points, attractors, and repellers. However, it can happen that the qualitative as-
pect of the system changes drastically, following a small change in parameters, in which case
we call it a bifurcation.

An example of bifurcation occurs between walking and running in human gaits. As the suc-
cession of steps becomes faster and faster, the running process is marked by a sudden jump.
In fact, walking requires at least a leg to touch the ground at all times, while running does
not pose the restriction, having periods when no leg touches the ground. Even the sets of
muscles used in the two motions differ. Under these circumstances, a continuous transition
from walking to running is impossible to achieve.

Bifurcations are true villains in morphing. Whenever they are present, no meaningful morph-
ing can be achieved, since the dynamical properties of the environment differ.

3.4 Dynamic pattern generation and challenges in pattern morphing 11



4Experimental Setup

In this chapter the concrete details regarding experiments set-ups are provided, as well as
tools used to measure the outcomes of the experiments.

The experiments are divided into two sections: learning two similar attractor patterns, gen-
erating sufficient intermediate morphed signals and analysing the results in 4.1, and speed
morphing between walking gaits from motion capture data in 4.3.

Normalized Root Mean Squared Error (NRMSE) is introduced in 4.1.1 as a measure for
the similarity between two vectors, and is used to determine how well a pattern has been
learned by the network, as well as assess other tools. In 4.2, a way to quantify morphing is
discussed.

4.1 Learning attractors
The first part of the experiments consists in learning two versions of the same attractor,
where the chances of occurring bifurcations are rather low, in order to measure how well-
behaved the morphing process is on dynamical systems of such complexity.

A network of 500 neurons has been used, with two additional input units and two output
units. Thus, two dimensions of an attractor could be learned and reproduced with sufficient
richness.

Recall the two state update equations:

x(n+ 1) = tanh(W ∗x(n) +W inp(n) + b) (4.1)

y(n) =W outx(n), (4.2)

W in values have been sampled from a normal distribution, and scaled by a factor of set fac-
tor called Win scaling.
The bias b has been sampled from a normal distribution, and rescaled by a bias scaling fac-
tor.
W has been sampled from a normal distribution and scaled to reach a desired spectral ra-
dius.
The neural activations x(n) have been initialized with 0.
Two attractor patterns of length 4000 have been generated and stored in p1 and p2. These
patterns have been produced under similar starting conditions, to reduce the risk of existing
bifurcations, as well as have a similar outline.

12



In the first phase, the network is sequentially entrained with the two patterns, using the up-
date equation (4.1). The first 500 steps of both runs have been discarded, to account for ini-
tial state washout.

In the next phase, the following matrices and vectors are defined:

• Xi, the non-discarded network activations for pattern pi: Xi(:,n) = xi(n+ 500)

• X = [X1|X2]

• X̃i, the non-discarded network activations, one step ahead of Xi:
Xi(:,n) = xi(n+ 499).

• X̃ = [X̃1|X̃2]

• P , which concatenates all patterns (in this case two): P = [p1|p2]

The weights W out are computed using ridge regression with parameter %out = 0.01:

W out = ((XXT +%outIN×N )−1XP T )T (4.3)

In order to compute the weights of W , the following ridge regression solution results:

W = ((X̃X̃T +%W IN×N )−1X̃(tanh−1(X)−B)), (4.4)

where %W is set to 0.01, and B is a 500× (2∗3500) matrix which duplicates vector b.

The next step consists in computing the conceptor matrices C1 and C2 (eq. 3.1), using aper-
ture α = 1000, as well as the output signals resulting from exciting the network with the
respective pattens :

x(n+ 1) = Ci tanh(Wx(n) + b) (4.5)

Varying µ from −0.5 to 1.5 in steps of 0.01, morphed signals of length 500 ∗ 512 are gener-
ated:

x(n+ 1) = (µC1 + (1−µ)C2) tanh(Wx(n) + b) (4.6)

Fast Fourier Transform (FFT) is performed on each 512 - sized chunk (see section 4.2 for
details on FFT), and then the average over all chunks is computed and compared to the av-
eraged signals for the parent patterns, achieved in the same manner.

4.1.1 Normalized Root Mean Square Error

In order to evaluate how well a signal of length L has been learned by the network, the out-
put signal y(n) will be matched against the original signal, p(n), using normalized root mean
square error:

4.1 Learning attractors 13



√√√√√√
L∑
n=1

(yi(n)−pi(n))2

L var(yi−pi)
(4.7)

Denote pm a morphed pattern between p1 and p2. In a similar manner, NRMSE is calcu-
lated between (pm , p1) and (pm , p2), and expected that the error would be smaller for the
closer pattern. The exact details of the procedure are described in 4.2.

4.1.2 Rössler Attractor

The defining ODEs for the Rössler attractor are as follows:


dx/dt=−y−z

dy/dt= x+ay

dz/dt= b+z(x− c)

(4.8)

The values a,b and c are the parameters used to define the family of dynamical systems.

4.1.3 Lorenz Attractor

The Lorenz attractor is defined as satisfying the ODEs:


dx/dt= σ(y−x)

dy/dt= rx−y−xz

dz/dt= xy− bz

(4.9)

Similarly to the other attractor, σ,r and b are the defining parameters of the system.

In order to generate points in the attractors, one starts with an initial point p(0), and ap-
plies an iterative solution to the system:

p(t+ ∆t) = p(t) +dx/dt∆t+dy/dt∆t+dz/dt∆t (4.10)

Since we are working with integer time steps, the equation is reduced to:

p(t+ 1) = p(t) +dx/dt+dy/dt+dz/dt (4.11)

For every step, the derivatives of each coordinate with respect to time are added to their
respective coordinate value. This has been followed in the code implementation of the attrac-
tor pattern generation, with the addition that much more points are being generated, and
only a fraction of them are retained in the final pattern. This step is necessary because the
attractor is chaotic, hence sensitive to small changes on the long run, and we desire patterns
that are not affected by the choice of time difference ∆t, since the conversion from the con-

4.1 Learning attractors 14



tinuous system to the discrete does not preserve the attractor perfectly. For this reason, this
value is kept constant, and only the retention percentage of the generated points is changed.

4.2 Quantifying morphing
In order to assess the results of pattern morphing, Fourier analysis technique is used. It is
important to note that the attractors used for the experiments are not periodic, but exhibit
low energy and high energy states, with arbitrary jumps from one state to the other. There-
fore, comparing two related signals proves to be challenging, simply because the samples
may not match. Figure (4.1) illustrates how different two samples of the same signal can be.

Fig. 4.1: One dimension of a section of a Rössler attractor with the length of 500 timesteps. The
red signal represents the first half of the signal, while the the black represents the second.
Seemingly arbitrary jumps from low-amplitude oscillations to high-amplitude oscillations
and back can be spotted.

The two signals in the figure have been generated using the same attractor parameters, with
different starting points. Ideally, they would be identified as coming from the same source,
hence returning a small comparison error. However, comparing the data points directly proves
to be a disaster. This is where Fourier analysis comes into play. I will summarize the some
elementary notions found in any textbook introducing Fourier transforms.

Fourier transform is an invertible, linear transformation which converts a signal f to its fre-
quency components, which are of sinusoidal nature.

f(v) =
∫ +∞

−∞
f(t)e−2πivtdt (4.12)

The discrete Fourier transform is the generalized transformation to discrete time, and con-
verts a list of equally spaced N samples fk of a signal into the list of coefficients of a finite
combination of complex sinusoids Fk:

4.2 Quantifying morphing 15



Fk =
N−1∑
i=0

fn ·e−2πikn/N (4.13)

We can define its inverse transform as well:

fk = 1
N

N−1∑
i=0

Fn ·e2πikn/N (4.14)

Having such a pair of transforms at our disposal allows us to compare the attractor signals
in the frequency domain. This way the periodicities of the input signals are highlighted,
which is exactly what we are trying to exploit when comparing two signals of similar na-
ture. Working in the frequency domain of a signal proves to be indeed a better approach in
our attempt to compare signals. However, there are still discrepancies and fluctuations when
comparing signals in the raw form. In order to combat this, 2 methods have been considered:
smoothing and averaging.

The main idea in smoothing is to apply a smoothing filter in the frequency domain (for in-
stance convolve with a Gaussian or binomial kernel) and then compare the resulting fre-
quency domain signal. However, this method proved disruptive on our data and has been
discarded.

Averaging takes a sufficient number of chunks of a given size coming from the same attractor,
converts them to the frequency domain, taking their absolute value, and then uses their aver-
aged sum for comparison. Multiple experiments were run in order to determine the optimal
number of chunks to be used. That number was settled for 500, bringing a balance between
reliability of the error value and time efficiency.

One can see in fig. 4.2 an example of two versions of the same signal in the frequency do-
main at two points in time (right), as well as an averaged over 500 steps version in the fre-
quency domain. Larger images can be found at: 6.1, 6.2, and 6.3.

The two discrete Fourier transforms can be efficiently computed using the algorithm Fast
Fourier Transform (FFT) in O(n log n).

4.2 Quantifying morphing 16



Fig. 4.2: Frequency domain visualizations for two 512-length 1D Röesler signals with similar condi-
tions. a) represents the frequency domain averages over 500 portions of the signals, with
resulting NRMSE of 0.38215. b) and c) represent two random non-averaged selections of
the signals, one with NRMSE above the average (0.81223) and the other one with NRMSE
below (0.001224).

4.3 Speed Morphing of Human Gaits
Speed morphing of human gaits using motion capture data poses its own challenges. Since
the technical difficulties involved in processing the data have already been overcome by H.
Jaeger [Jae14a], whose code I adapted to suit the purpose of this experiment, I will merely
summarize the important details of the process.

First of all, data which represents walking gaits needs to be obtained, understood and pro-
cessed. The data collected using motion capture data represents joint movements of selected
parts of the body, during the execution a particular motion: in our case, walking. The num-
ber of joints recorded was reduced to better suit our needs. Additional effort had to be put
into ensuring that data obtained from different participants was compatible.

Once the data has been processed, the network has to be trained, and a conceptor for each
motion generated. Proceeding with morphing is possible from this step.

The final step is converting the network output into meaningful data. This was a two-step
process: in the first part, plots portraying the position of a stick-man at a given point in
time are generated. Then all these images are merged in a single video played in a chrono-
logical order, ready for inspection.
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5Experimental Results

In this section I present the results of the experiments, as well as further technical details,
where needed.

5.1 Morphing two Rössler Patterns with Different System
Parameters
For the first experiment, two Röessler attractor patterns with similar ODE parameters have
been used. Let us call the two patterns p1 and p2. The values used for generating the pat-
terns, along with important parameters used in the implementation are presented in the Ap-
pendix (6).

Fig. 5.1: The two patterns learned by the network. On first line we can see the initial patterns used
for training: p1 and p2. The second line displays the output of the network y1 and y2,
computed after re-loading the patterns using the conceptor update equation 3.7.

Following an aperture adjustment to 1000, the NRMSE errors present in the training process
are shown in the table below (5.1). These errors reflect how well the network’s representa-
tion of the pattern coincides with the original pattern for 3500 time steps.

The score for the first pattern denotes high degree of accuracy, which doesn’t seem to be the
case for the second pattern. However, if one inspects figure 5.1, the network representation
of the second pattern is less noisy compared to its original, and sufficient for our experiment:
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Tab. 5.1: Training errors in the first experiment

Training Error
Pattern 1 0.0724
Pattern 2 6.8876

determining how well the two patterns can be morphed. This is the case because the com-
parisons are made using the network’s output yi(n) rather than the initial signal pi(n).

Upon completion of the training phase, two conceptor matrices C1 and C2, corresponding
to the initial patterns p1 and p2, resulted, along with a weight matrix W . In order to asses
the evolution of the morphing error relative to the two patterns, 201 morphed signals have
been generated, all computed using the conceptor morphing formula: Cm = µC1 + (1−µ)C2,
ym =W outx, for µ ∈ [−0.5,1.5], taken in increments of 0.01 .

Fig. 5.2: Selected 100-step activations of the network during morphing. The neurons oscillate in a
specific range, without being overexcited or "stepping on each others’ toes".

Examining figure 5.3, one can see that as the morphed signal moves towards a specific pat-
tern, its error with respect to that pattern decreases, while the error with respect to the
other pattern increases. This was intuitively expected, and desired to say the least. The two
lines cross at 0.4/0.6, which it fairly close to the middle.

Typical examples of network behaviour can be seen in fig. 5.2, 6.4 and 6.5 (the last two in
the Appendix). Fig. 5.2 illustrates typical neural activations in a successfully-trained net-
work. Fig 6.4 portrays the two patterns alongside one of the morphed patterns, while fig. 6.5
reveals an averaged frequency domain representation of the same morphed signal, compared
to the frequency domain versions of the original patterns.

Proceeding with the inspection of the graphs’ irregularities, there exist two noteworthy peaks
(fig. 5.4), which, aside from momentarily dropping the errors by a considerable amount, they
accompany a likewise temporary line twist. This causes pattern p2 to appear closer to the
morphed pattern than p1. Furthermore, the central peak occurs roughly where the two lines
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Fig. 5.3: NRMSE plots of the two Rössler patterns and their morphed signals. The red line indicates
NRMSE between ym and y1, while the black shows NRMSE between ym and y2. µ varies
between 0 and 1 in step sized of 0.01, which means that only interpolation is present.

would meet if there were no perturbations. In both cases, the following points in the graph
follow the increase/decrease expected before the perturbation occurred. This indicates ro-
bustness to small perturbations, yet at the same time propensity for such events, since every
µ can be subject to attracting/repelling behaviour.

Overall, the second pattern appears to have a linear decrease, corresponding to a linear in-
crease in µ. The first pattern, on the other hand, though mostly increasing, exhibits a more
accelerate increase in the beginning, only to slow down as the morphed pattern converges to
it.

Another noteworthy phenomenon is present between abscissae 86 and 91, where both func-
tions exhibit a sudden drop in values, better expressed by the second pattern (fig. ??). Un-
like the previously discussed 1-timsestep peaks, these drops are longer-lived and are found
considerably closer to either pattern (in this case, p1).
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µ= 0.22 µ= 0.38

Fig. 5.4: The two peaks where, despite µ < 0.5, the second pattern is closer to the morphed pattern.
On the top tow, the last 500 steps of the signals produced are displayed (steps from 256013
to 256512). On the bottom row, the frequency domain representation of the averages is
presented. We observe that the two patterns barely retain the shape of a Rössler attractor,
therefore the network failed to produce a true morphed pattern for those values.

µ= 0.83 µ= 0.84 µ= 0.85 µ= 0.86

µ= 0.87 µ= 0.87 µ= 0.88 µ= 0.9

Fig. 5.5: Morphed patterns for µ ranging between 0.83 and 0.90.
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5.2 Speed morphing two Lorenz attractors
In the second experiment, two Lorenz patterns with identical attractor conditions and dif-
ferent paces were morphed. More precisely, the patterns were generated under the same con-
ditions, only that the first pattern (p1 saved one point for every 20 points generated, while
the second pattern (p2 saved one point out of every 15). This means, in turn, that the ac-
tual time difference between two points is 0.1 units for p1 and 0.075 units for p2. Section 6
(found in the Appendix) presents the initial conditions used to generate the patterns, along
with important parameters in training. The training errors were: 1.034053 in the case of the
first pattern, and 1.708271 for the second.

Fig. 5.6: NRMSE plots of the two Lorenz patterns and their morphed signals. The red line indicates
NRMSE between ym and y1, while the black shows NRMSE between ym and y2. µ varies
between 0 and 1 in step sizes of 0.01.

Similar to the first experiment, figure 5.6 represents the NRMSE values in the frequency do-
main between the morphed patterns and the reference patterns p1 and p2.

Analysing the plot, the errors obtained in this experiment seem to follow a much better-
behaved overall trajectory than the first experiment, lacking striking perturbations. However,
the shape is rather jagged, which indicates that the path between the two patterns described
by morphing zig-zags extensively, but it could simply be due to the sampling/measurement
technique.
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One interesting aspect of the shape of the plot is found when the morphed patterns approach
the original patterns, for µ values close to 0 or 1. The error climb follows a slightly different
trajectory locally to those points, increasing abruptly as the morphed pattern diverges from
the nearby pattern. Additionally, the shape is more rigged in the affected area. It is even
more remarkable that nothing special appears to happen from the point of view of the non-
local pattern.

DFT(y1), DFT(ym) DFT(y2), DFT(ym)

Fig. 5.7: A sequence of 500 steps of the learned patterns, as outputted by the network.

When extrapolation is introduces in the equation, the results suddenly become unreliable,as
it is the case here. Figure 5.8 stretches the current morphing span by 10 steps to the left
and 10 others to the right, causing µ to vary from −0.1 to 1.1.

Fig. 5.8: NRMSE plots of the two Lorenz patterns and their morphed signals. The red line indicates
NRMSE between ym and y1, while the black shows NRMSE between ym and y2. µ varies
between 0 and 1 in step sizes of 0.01.
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5.3 Morphing Human Gaits
Following the set-up and code of Prof. Herbert Jaeger, I attempted at a linear morphing be-
tween two walking patterns by the same person, one of which had a slower pace. The train-
ing data was taken from the CMU Mocap repository and inserted into a network for train-
ing. The purpose of the experiment was to inspect whether speed morphing is possible in a
raw form of the data.

The resulting video characterizing the output of the network can be found here
[https://www.youtube.com/watch?v=l5thk9V74H0]. On the upper left corned of the screen,
three bars can be seen, out of which only two are of interest for us: the blue and the green
ones. The blue corresponds to the normal walking gait, while the green represents the slower
walking gait. Whenever a bar is full, it means that the respective pattern is being called.
Whenever more than one bar is present, the motion displayed is a morph between the two
patterns, with coefficients corresponding to the heights of the bars. The motion starts with a
normal walking motion, then it slowly transitions to a slower motion, only to revert back to
the normal gait.

As it can be seen from the video, the results were only partly satisfactory. If run for a short
amount of time, the transition from one pattern to the other appears natural. However, if
one tries to inspect the transitions at a slower pace, it becomes clear that the network fails
to produce a true intermediate pattern. The character is slowly rotating during this transi-
tion, which, in my opinion, indicates that the two patterns are out of phase in regards to the
moving leg. The slow walking gait spends more time on each leg, which causes the moving
leg to differ after a few steps. At this point, the network is confused, and takes many tiny
steps in order to resynchronize in turns with either pattern. More intriguingly, the network
appears to slide on invisible ice in some portions. Under these circumstances, the very idea
of "natural intermediate walking" seems an unsafe path to pursue.

Throughout the video, the mistakes the network made in its attempt to morph patterns are
connected to the fact that the network does not appear to comprehend the concept of speed,
but merely rely on physical clues regarding member’s movement. An insurmountable amount
of reasons could sit behind this disappointing behaviour, including the possibility that the
network is simply not capable speed morphing in such a raw form. Looking at the bright
side, the network did produce intermediate walking for some periods of time, and might
be able to produce better results if it learned the concept of speed. Further research will
have to be conducted in this area to give a answer of if and how speed morphing could be
achieved with this architecture.
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6Conclusion

Pattern morphing on attractors proved to be possible, yet not flawless. In the first experi-
ment, there were various intermediate points with abrupt changes in behaviour, only to re-
turn to its previous trajectory after a few iterations. It is always hard to determine whether
these perturbations are the product of floating point errors, or whether attractor dynam-
ics came into play. These doubts are amplified by the lack of powerful tools to diagnose the
behaviour, both conceptually in order to establish what good morphing really is, as well as
numerically, since the named patterns are highly non-linear and non-periodic.

Further research could involve crafting better tools more suitable to the task: sensitive to
fine details in the pattern, insensitive to noise, understanding of the attractors’ "jumps" in
behaviour. Finding the dynamical path followed by conceptor morphing could also be a en-
lightening endeavour, attempted as it may be mathematically or computationally. It would
be able explain the curious shape of the morphing curve, and the mathematical meaning of a
morphed pattern in our context.

A verdict of speed morphing on motion capture data proved to be a challenge. On the one
hand, the experiment was not a complete fiasco, which gives us some hope in a potential
comeback. On the other hand, the network failed to comprehend the very nature of its given
task, which was disappointing, to say the least. Nevertheless, during the second experiment,
in which speed morphing was attempted on Lorenz attractor, the results with satisfactory
enough to give hope that speed morphing on motion capture data might be realizable.
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Appendix

Frequency domain averaging

Figures 6.1, 6.2, and 6.3 display two portions of the same original Rössler signal (red and
black) in the frequency domain. The length of the signals is 512 in all cases, and the NRMSE
error calculated in the frequency domain is presented above. The first figure (6.1) is an aver-
age in the frequency domain over 500 samples, while the last two figures display rather ex-
treme values of NRMSE, which illustrates just how necessary averaging is.

Fig. 6.1: Example of frequency domain averages of 500. Resulting NRMSE of 0.38215.
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Fig. 6.2: Example of frequency domain representation of a signal. Resulting NRMSE of 0.81223,
which is above the average of 0.38215 obtained when averaging over 500 such portions.
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Fig. 6.3: Example of frequency domain representation of a signal. Resulting NRMSE of 0.001224,
which is below the average of 0.38215 obtained when averaging over 500 such portions.
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Experiment 1: Initial Conditions

Pattern
Starting point coordinates Attractor parameters ∆

x y z σ ρ β

p1 0.5943 −2.2038 0.0260 0.2 0.2 8 0.05
p2 0.5943 −2.2038 0.0260 0.3 0.2 8 0.05

Tab. 6.1: Pattern generation parameters for Rössler experiment.

Aperture 1000
Bias scaling 0.2
Spectral radius 1
Win scaling 0.7
Generated pattern length 4000
Washout length 500
Number of input data dimensions 2
Number of internal units 500
ρW 0.01
ρout 0.01

Tab. 6.2: Algorithm parameters for Rössler experiment.

With regards to the above table, ρW and ρout are Tikhonov regularization parameters, used
for calculating W using formula 4.4; respectively Wout using formula 4.3.

The following figure displays the original patterns in the first experiment (margin) alongside
the morphed pattern (center). Like the previous figures, µ= 0.14.

y1 ym y2

Fig. 6.4: Last 500 steps of ym for µ= 0.14, next to y1 (left) and y2 (right).
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Analysing morphed Rössler signals

The following two figures (6.5, 6.6) portray frequency domain representations of the two
Rössler patterns in Experiment 1, as well as a morphed signal obtained for µ = 0.14. The
outline of the morphed pattern follows the first pattern closely, much more so than the sec-
ond pattern.

DFT(y1), DFT(ym) DFT(y2), DFT(ym)

Fig. 6.5: Plots in the frequency domain of the averaged discrete Fourier transforms (DFT).

Fig. 6.6: Plots in the frequency domain of the averaged discrete Fourier transforms (DFT).
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Experiment 2: Initial Conditions

Starting point coordinates Attractor parameters ∆
x y z σ ρ β

10.036677794959058 9.98674414052542 29.024692318601613 10 28 8/3 0.05

Tab. 6.3: Pattern generation parameters for Lorenz experiment.

Aperture 100
Bias scaling 0.2
Spectral radius 1
Win scaling 2.5
Generated pattern length 4000
Washout length 500
Number of input data dimensions 2
Number of internal units 500
ρW 0.0001
ρout 0.01

Tab. 6.4: Algorithm parameters for Lorenz experiment.
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Analysing morphed Lorenz signals

Figures (6.7, 6.8) portray frequency domain representations of the two Lorenz patterns in
Experiment 2, as well as a morphed signal obtained for µ = 0.09. They are plotted for only
one of the two dimensions, as FFT was applied individually.

DFT(y1), DFT(ym) DFT(y2), DFT(ym)

Fig. 6.7: Plots in the frequency domain of the averaged discrete Fourier transforms (DFT).

Fig. 6.8: Plots in the frequency domain of the averaged discrete Fourier transforms (DFT) in one
dimension of the signal.

32



Bibliography

[Aja+13] M. Ajallooeian, J. van den Kieboom, A. Mukovskiy, M. A. Giese, and A. J. Ijspeert. „A
General Family of Morphed Nonlinear Phase Oscillators with Arbitrary Limit Cycle Shape“.
In: Physica D: Nonlinear Phenomena 263 (2013), pp. 41–56 (cit. on p. 4).

[Alb+92] D. Albesano, R. Gemello, and F. Mana. „Word recognition with recurrent network au-
tomata“. In: Neural Networks, 1992. IJCNN., International Joint Conference on. Vol. 2.
1992, 308–313 vol.2 (cit. on p. 2).

[Ben+94] Y. Bengio, P. Simard, and P. Frasconi. „Learning long-term dependencies with gradient
descent is difficult“. In: Neural Networks, IEEE Transactions on 5.2 (1994), pp. 157–166
(cit. on p. 4).

[Bos+13] K. J. Boström, H. Wagner, M. Prieske, and M. de Lussanet. „Model for a flexible motor
memory based on a self-active recurrent neural network“. In: Human Movement Science 32
(2013), pp. 880–898 (cit. on p. 4).

[Doy93] K. Doya. „Bifurcations of Recurrent Neural Networks in Gradient Descent Learning“. In:
IEEE Transactions on Neural Networks 1 (1993), pp. 75–80 (cit. on p. 4).

[FN93] K. Funahashi and Y. Nakamura. „Approximation of dynamical systems by continuous time
recurrent neural networks“. In: Neural networks 6.6 (1993), pp. 801–806 (cit. on pp. 2, 6).

[IT04] M. Ito and J. Tani. „Generalization in learning multiple temporal patterns using rnnpb“. In:
Neural Information Processing. Springer. 2004, pp. 592–598 (cit. on p. 2).

[Jae+12] H. Jaeger, M. Ajallooeian, A. Billard, et al. Technical report on dynamic extensibility meth-
ods. Tech. rep. Jacobs University Bremen, 2012 (cit. on p. 4).

[Jae01] H. Jaeger. „The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note“. In: Bonn, Germany: German National Research Center for Informa-
tion Technology GMD Technical Report 148 (2001), p. 34 (cit. on pp. 2, 4).

[Jae02] H. Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and
the" echo state network" approach. GMD-Forschungszentrum Informationstechnik, 2002
(cit. on pp. 4, 6).

[Jae14a] H. Jaeger. „Conceptors: an easy introduction“. In: Computing Research Repository abs/1406.2671
(2014) (cit. on pp. 2, 17).

[Jae14b] H. Jaeger. „Controlling Recurrent Neural Networks by Conceptors“. In: Computing Re-
search Repository abs/1403.3369 (2014) (cit. on pp. 2, 3).

[Kar+92] T.W. Karjala, D.M. Himmelblau, and R. Miikkulainen. „Data rectification using recurrent
(Elman) neural networks“. In: Neural Networks, 1992. IJCNN., International Joint Confer-
ence on. Vol. 2. IEEE. 1992, pp. 901–906 (cit. on p. 2).

33



[MT91] K. Murakami and H. Taguchi. „Gesture Recognition Using Recurrent Neural Networks“.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’91.
New Orleans, Louisiana, USA: ACM, 1991, pp. 237–242 (cit. on p. 2).

[NP90] K.S. Narendra and K. Parthasarathy. „Identification and control of dynamical systems
using neural networks“. In: Neural Networks, IEEE Transactions on 1.1 (1990), pp. 4–27
(cit. on p. 2).

[Pas+12] R. Pascanu, T. Mikolov, and Y. Bengio. „On the difficulty of training recurrent neural
networks“. In: arXiv preprint arXiv:1211.5063 (2012) (cit. on p. 4).

[ST93] Linda B Smith and Esther Ed Thelen. „A dynamic systems approach to development: Appli-
cations.“ In: This book grew out of a workshop," Dynamic Systems in Development," held for
the Society for Research in Child Development in Kansas City, KS, Apr 1989. The MIT Press.
1993 (cit. on p. 10).

[Wer90] P.J. Werbos. „Backpropagation through time: what it does and how to do it“. In: Proceed-
ings of the IEEE 78.10 (1990), pp. 1550–1560 (cit. on p. 4).

[WJ12] J. Wright and I. Jordanov. „Intelligent approaches in locomotion“. In: Proc. WCCI 2012
IEEE World Congress on Computational Intelligence. 2012, pp. 1–8 (cit. on p. 4).

[WS09] F. Wyffels and B. Schrauwen. „Design of a central pattern generator using reservoir com-
puting for learning human motion“. In: Proc. Advanced Technologies for Enhanced Quality
of Life, 2009. AT-EQUAL ’09. IEEE, 2009, pp. 118–122 (cit. on pp. 2, 4).

[Wyf+14] F. Wyffels, J. Li, T. Waegeman, B. Schrauwen, and H. Jaeger. „Frequency Modulation of
Large Oscillatory Neural Networks“. In: Biological Cybernetics 108 (2014), pp. 145–157
(cit. on p. 4).

[WZ89] R. J. Williams and D. Zipser. „A learning algorithm for continually running fully recurrent
neural networks“. In: Neural computation 1.2 (1989), pp. 270–280 (cit. on p. 4).

Bibliography 34



List of Figures

3.1 Recurrent neural network. Source [Jae02] . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Close-up on information transfer from one state to the next at the neural level. The

set {N1,N2, ...Nn} contains all the units in the network (either internal or input neu-
rons) which have an outgoing connection to N0. x1(t),x2(t), ...xn(t) represent their
state activations; wi, are the synaptic weights. The activations are multiplied by their
respective weights, then summed and fed to the transfer function tanh. An additional

bias b is added, so that the new activation is calculated as follows: x0(t+1) = tanh(
n∑
i=0

xi(t)wi)+
b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Point cloud with its corresponding ellipsoid generated by principal component anal-
ysis. The blue dots mark the data points. . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 One dimension of a section of a Rössler attractor with the length of 500 timesteps.
The red signal represents the first half of the signal, while the the black represents
the second. Seemingly arbitrary jumps from low-amplitude oscillations to high-amplitude
oscillations and back can be spotted. . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Frequency domain visualizations for two 512-length 1D Röesler signals with sim-
ilar conditions. a) represents the frequency domain averages over 500 portions of
the signals, with resulting NRMSE of 0.38215. b) and c) represent two random non-
averaged selections of the signals, one with NRMSE above the average (0.81223) and
the other one with NRMSE below (0.001224). . . . . . . . . . . . . . . . . . . . . 17

5.1 The two patterns learned by the network. On first line we can see the initial patterns
used for training: p1 and p2. The second line displays the output of the network y1

and y2, computed after re-loading the patterns using the conceptor update equation
3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Selected 100-step activations of the network during morphing. The neurons oscil-
late in a specific range, without being overexcited or "stepping on each others’ toes". 19

5.3 NRMSE plots of the two Rössler patterns and their morphed signals. The red line
indicates NRMSE between ym and y1, while the black shows NRMSE between ym
and y2. µ varies between 0 and 1 in step sized of 0.01, which means that only inter-
polation is present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

35



5.4 The two peaks where, despite µ < 0.5, the second pattern is closer to the morphed
pattern. On the top tow, the last 500 steps of the signals produced are displayed (steps
from 256013 to 256512). On the bottom row, the frequency domain representation
of the averages is presented. We observe that the two patterns barely retain the shape
of a Rössler attractor, therefore the network failed to produce a true morphed pat-
tern for those values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.5 Morphed patterns for µ ranging between 0.83 and 0.90. . . . . . . . . . . . . . . . 21
5.6 NRMSE plots of the two Lorenz patterns and their morphed signals. The red line

indicates NRMSE between ym and y1, while the black shows NRMSE between ym
and y2. µ varies between 0 and 1 in step sizes of 0.01. . . . . . . . . . . . . . . . . 22

5.7 A sequence of 500 steps of the learned patterns, as outputted by the network. . . 23
5.8 NRMSE plots of the two Lorenz patterns and their morphed signals. The red line

indicates NRMSE between ym and y1, while the black shows NRMSE between ym
and y2. µ varies between 0 and 1 in step sizes of 0.01. . . . . . . . . . . . . . . . . 23

6.1 Example of frequency domain averages of 500. Resulting NRMSE of 0.38215. . . 26
6.2 Example of frequency domain representation of a signal. Resulting NRMSE of 0.81223,

which is above the average of 0.38215 obtained when averaging over 500 such por-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Example of frequency domain representation of a signal. Resulting NRMSE of 0.001224,
which is below the average of 0.38215 obtained when averaging over 500 such por-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4 Last 500 steps of ym for µ= 0.14, next to y1 (left) and y2 (right). . . . . . . . . . . 29
6.5 Plots in the frequency domain of the averaged discrete Fourier transforms (DFT).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Plots in the frequency domain of the averaged discrete Fourier transforms (DFT).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.7 Plots in the frequency domain of the averaged discrete Fourier transforms (DFT).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.8 Plots in the frequency domain of the averaged discrete Fourier transforms (DFT) in

one dimension of the signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

List of Tables

5.1 Training errors in the first experiment . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Pattern generation parameters for Rössler experiment. . . . . . . . . . . . . . . . 29
6.2 Algorithm parameters for Rössler experiment. . . . . . . . . . . . . . . . . . . . . 29
6.3 Pattern generation parameters for Lorenz experiment. . . . . . . . . . . . . . . . 31

36



6.4 Algorithm parameters for Lorenz experiment. . . . . . . . . . . . . . . . . . . . . 31

List of Tables 37



Acknowledgement

I would like to thank Professor Herbert Jaeger, for his continuous support and supervision. I
would also like to thank Brennan Bell for the insightful discussions in dynamics.

This document uses Clean Thesis style developed by Ricardo Langner.

38



Declaration

With my signature, I certify that this thesis has been written by me using only the indicates
resources and materials. Where I have presented data and results, the data and results are
complete, genuine, and have been obtained by me unless otherwise acknowledged; where my
results derive from computer programs, these computer programs have been written by me
unless otherwise acknowledged. I further confirm that this thesis has not been submitted,
either in part or as a whole, for any other academic degree at this or another institution.

Bremen, August 31, 2015

Alina Dima


	Cover
	Titlepage
	Abstract
	1 Introduction
	2 Statement and Motivation of Research
	3 Theoretical Setup
	3.1 Conceptors
	3.2 Learning and Loading a Pattern
	3.3 Morphing Patterns
	3.4 Dynamic pattern generation and challenges in pattern morphing

	4 Experimental Setup
	4.1 Learning attractors
	4.1.1 Normalized Root Mean Square Error
	4.1.2 Rössler Attractor
	4.1.3 Lorenz Attractor

	4.2 Quantifying morphing
	4.3 Speed Morphing of Human Gaits

	5 Experimental Results
	5.1 Morphing two Rössler Patterns with Different System Parameters
	5.2 Speed morphing two Lorenz attractors
	5.3 Morphing Human Gaits

	6 Conclusion
	Bibliography
	Acknowledgement
	Declaration

