Biomedical Signal Processing

Data Engineering Program, spring 2018

Exercise Sheet 2

April 3, 2018

Submission until April 15th, 24.00 to f.hadaeghi@jacobs-university.de

Exercise 1) Discrete Random Processes

1-1. Let x[n] and y[n] be stationary, uncorrelated random signals. Show if w[n] = x[n] + y[n], then $m_w = m_x + m_y$ and $\sigma_w^2 = \sigma_x^2 + \sigma_y^2$.

1-2. Let e[n] denote a white noise sequence and s[n] denote a sequence that is uncorrelated with e[n]. Show that the sequence, y[n] = s[n]e[n] is white (that is $\mathcal{E}\{y[n]y[n+m]\} = A\delta[m]$ where A is a constant).

1-3. consider a random signal x[n] = s[n] + e[n] where both s[n] and e[n] are independent, stationary random signals with autocorrelation functions $\varphi_{ss}[m]$ and $\varphi_{ee}[m]$, respectively.

a) Determine expressions for $\varphi_{xx}[m]$ and $\Phi_{xx}(e^{j\omega})$.

b) Determine expressions for $\varphi_{xs}[m]$ and $\Phi_{xs}(e^{j\omega})$.

c) Determine expressions for $\varphi_{xe}[m]$ and $\Phi_{xe}(e^{j\omega})$.

1-4. Consider a random process x[n] that is the response of the LTI system shown in Figure P1-4. In the figure, w[n] represents a real zero-mean stationary white noise process with $\mathcal{E}\{w^2[n]\} = \sigma_w^2$.

$$H(e^{j\omega}) = \frac{1}{1 - 0.5 \ e^{-j\omega}}$$

Figure P1-4.

a) Express $\mathcal{E}\{x^2[n]\}$ in terms of $\varphi_{xx}[n]$ and $\Phi_{xx}(e^{j\omega})$.

b) Determine $\Phi_{xx}(e^{j\omega})$, the power density spectrum of x[n].

c) Determine $\varphi_{xx}[n]$, the correlation function of x[n].

Exercise 2) Programming Exercise

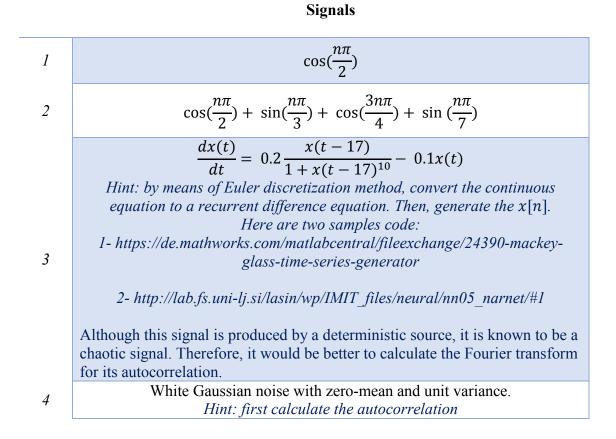
For the signals in Table P2, do the following:

a) Generate 2500 samples of the data (i.e., for n = 0, 1, ..., 2500)

b) Use 64-point DFT (in MATLAB) to calculate the Fourier transform of the signal. Plot the amplitude and the phase of the Fourier transform with respect to the frequency, ω .

c) Use 1024-point DFT (in MATLAB) to calculate the Fourier transform of the signal. Plot the amplitude and the phase of the Fourier transform with respect to the frequency, ω . Compare your results with part b.

Table P2.



2