
Neuromorphic Programming: Emerging Directions
for Brain-Inspired Hardware

Steven Abreu
CogniGron Center & Bernoulli Institute

University of Groningen
Groningen, Netherlands

s.abreu@rug.nl

Jens E. Pedersen
Computational Science and Technology

KTH Royal Institute of Technology
Stockholm, Sweden

jeped@kth.se

Abstract—The value of brain-inspired neuromorphic com-
puters critically depends on our ability to program them for
relevant tasks. Currently, neuromorphic hardware often relies
on machine learning methods adapted from deep learning.
However, neuromorphic computers have potential far beyond
deep learning if we can only harness their energy efficiency and
full computational power. Neuromorphic programming will nec-
essarily be different from conventional programming, requiring
a paradigm shift in how we think about programming. This
paper presents a conceptual analysis of programming within
the context of neuromorphic computing, challenging conventional
paradigms and proposing a framework that aligns more closely
with the physical intricacies of these systems. Our analysis
revolves around five characteristics that are fundamental to neu-
romorphic programming and provides a basis for comparison to
contemporary programming methods and languages. By studying
past approaches, we contribute a framework that advocates for
underutilized techniques and calls for richer abstractions to
effectively instrument the new hardware class.

Index Terms—neuromorphic computing, brain-inspired com-
puting, hardware-software co-design, programming techniques

I. INTRODUCTION

Computing technology is steering toward an impasse, with
Dennard scaling ending and Moore’s law slowing down [1].
The impasse gives rise to innovation opportunities for spe-
cialized hardware in computer architecture [2] as well as in
software [3]. This ‘Golden Age’ of innovation has led many
researchers to investigate neuromorphic computers. Taking
inspiration from how the brain computes has a rich history [4]
and the recent success of deep learning has demonstrated the
power of neural information processing [5]. The development
of event-based sensors, large-scale neuromorphic processors,
and brain-computer interfaces indicate that neuromorphic com-
puting is on the rise and expected to play an important role in
the future of computing [6].

Neuromorphic computers take inspiration from the brain,
both in the way information is processed and in the fact
that the physical dynamics of the underlying substrate are
exploited for computation [7]. A neuromorphic computer is
composed of neurons and synapses which model biological
neural networks. The hardware can either directly implement
these biological neural network models physically [8] or use
them as inspiration and guidelines to design a more general,
flexible, and configurable architecture [9]. Key features of

these biological networks include sparse connectivity, event-
based communication, low-precision activations, and a focus
on temporal processing.

The departure from fundamental assumptions in classical
computing brings an urgent need for new theories to describe
the computations in novel neuromorphic hardware, along with
new theories and methods of programming that can make these
devices useful. The former has been outlined in recent work
[7, 10] whereas the latter is constrained to an as-yet limited
set of “spiking neuromorphic algorithms” [11, 12]. Schuman
et al. [11] argue that progress on neuromorphic programming
requires a paradigm shift in how to think about programming.
Current programming methods are adapted to clocked digital
hardware, but with the forthcoming diversity of computer
hardware and architectures [2] it is time to widen the set of
hardware systems supported by our programming models.

Continuous

Discrete

PlasticImmutable

Analog control

DNF

FRP

Reservoir Computing

Conventional Programming

Reinforcement Learning

Machine learning Lifelong learning

Reflective Programming

Neuromorphic
Systems

D
O
M
A
IN

PLASTICITY

Fig. 1. Programming and computational models plotted against their opera-
tional domain (continuous vs. analog) and the malleability of the computation
during execution (immutable vs. plastic). The class of neuromorphic systems is
shown as a green ellipse, spanning both the continuous and discrete domains.
There is a lack of models for continuous and plastic systems.



However, we need not start from scratch when designing
methods and paradigms for neuromorphic programming. A lot
of work has already been done that we can draw inspiration
from [9], and new hardware is known to rejuvenate uncon-
ventional research ideas, as demonstrated by GPUs reviving
research on neural networks trained with gradient descent
[5, 13]. With the emergence of cutting-edge neuromorphic
hardware, revisiting unconventional programming paradigms
can uncover promising new directions [14].

In this work, we discuss the practical implications of pro-
gramming neuromorphic systems and compare them with con-
ventional methods in computer science. We extend traditional
concepts of programming to embrace the uniquely physical
and adaptive properties of neuromorphic systems so as to
leverage these systems more effectively. Our contributions are
twofold: first, we provide a detailed conceptual framework
in Section III that redefines programming in the context of
neuromorphic hardware, challenging traditional paradigms and
encouraging the adoption of novel approaches. Second, we
identify and discuss advanced programming models in Section
IV that are currently underutilized in the field, proposing new
directions for their evolution and integration into mainstream
computing practices.

II. MOTIVATION

Neuromorphic hardware leverages the computational prin-
ciples of the brain, which are vastly different from those
exploited by conventional digital computers [4]. These fun-
damental differences pose challenges for traditional program-
ming abstractions, and it is clear that we cannot apply conven-
tional theoretical computer science to understand the compu-
tational processes in neuromorphic systems [15]. We highlight
five fundamental differences underpinning this incompatibility.

a) Domain: Neurons are physical systems and operate
in continuous time (see Figure 1). The merits of analog com-
putation in terms of energy efficiency and inherent parallelism
are well-known [16, 17]. Classical symbolic computation, in
contrast, is decoupled from real physical time and time is only
simulated through a discrete global clock signal.

b) Plasticity: When programming digital computers, one
may neglect the physical properties of the underlying hard-
ware, as the underlying hardware does not change during ex-
ecution. In neuromorphic computers, such hardware-agnostic
programming is not generally possible, as these devices are by
definition physical. Any programming model of neuromorphic
systems must, therefore, include the malleability of the system,
since the physical system and the computational model are one
and the same.

c) Stochasticity: Unlike deterministically switching tran-
sistors, neural systems are stochastic, which has lead to models
of computation with probabilistic logic [18] and stochastic
computing [19], where information is represented in proba-
bility distributions.

d) Decentralization: The distributedness of information
representation and processing in neural networks stands in
contrast to the localized information in binary transistor states

and the sequential execution of elementary instructions in
digital hardware. Such distributedness is leveraged in deep
learning [5], in dynamic neural fields [20] where neurons
are considered independent independently evolving dynamical
systems, and in hyperdimensional computing [21] where high-
dimensional random vectors are used for information represen-
tation and computation.

e) Unobservability: Neuromorphic hardware, especially
analog and mixed-signal systems, often show limited observ-
ability, in that the system state can only be read out in parts.
This is a key difficulty for plastic computations that change
over time. It also relates to mismatches between platforms—a
known challenge for analog devices that can also be observed
between digital systems [22].

Figure 1 fits programming and computational concepts onto
two axes: plasticity and domain. It is immediately clear that
the upper right quadrant is largely left unexplored. To explain
the vacuum, it is necessary to expand our concept of classical
computation to include neuromorphic, physical systems.

III. THEORETICAL FRAMEWORK

The present section introduces a theoretical framework
that abstracts “computation” to capture both classical and
neuromorphic systems. We begin by conceptualizing how
neuromorphic computing fits within the broader landscape of
computational models, highlighting areas that remain under-
explored and elucidating why these gaps exist.

A. Computing with physical systems

Horsman et al. [23] provide a general framework for com-
putation with arbitrary physical systems. Therein, a computer
is a physical machine Ψ which can be stimulated by an
input signal uΨ and from which an output signal yΨ can
be read out. The computation λ is specified by an abstract
function from input uλ to output yλ. The machine Ψ then
implements the computation λ if an encoding procedure E
and decoding procedure D is known such that the machine Ψ
will produce yΨ with D(yΨ) ≈ yλ when stimulated with the
input signal E(uλ) = uΨ. This leads to the general form of
the abstract computer model shown in Figure 2: the physical
machine Ψ receives input uΨ and produces output yΨ, thereby
implementing the abstract computation λ from input uλ to
output yλ.

Any machine that is changing during program execution
will, according to Horsman et al. require either that the ma-
chine is insensitive to the change such that the effective input-
output function stays unaffected, or that the computational
model includes the change, so the computation stays correct.
Thus, to fit the framework of Horsman et al., neuromorphic
computing first requires a model that captures their (plastic)
operation. This can be expressed in the formalism of (non-
autonomous) dynamical systems, logic-based systems or other
formalisms [10].

For digital computers, the abstract model of computation
was developed first and only later physically realized. In con-
trast, neuromorphic hardware does not rely on any universally



accepted abstract model [24]. Abstract models of computation
are co-developed with physical implementations [25].

B. Computer programs

While a computation C specifies what is being computed,
a program P specifies how the computation is implemented.
Many different programs P1, . . . ,Pn may implement the same
computation C. Note that the concept of a ‘program’ herein
includes algorithms as Turing machines as well as learning
algorithms and interactive programs—although the latter two
cannot be implemented by Turing machines [26, 27].

A computation C is described by a formal specification
that formalizes the intention of the computation (Figure 3).
The specification of a computation is expressed in some
mathematical formalism. In digital computing, this can be
done using formalisms from logic. In analog computing, there
are various formalisms that describe the computation, for
example qualitative geometrical constructs like attractors and
bifurcations [10].

A program P is described in another formalism. In digital
computing, programs are expressed in some programming
language. In analog computing, one typically uses differential
equations to describe the program. When programs interact
with another, one also speaks of each individual program as
a process and the ensemble of all processes as the program,
whose behavior emerges from the interaction of the processes.

Operationally, a program is defined by the data flow and
control flow. The data flow specifies how signals that carry
computationally relevant information are propagated through
the machine. The control flow specifies what operations or
transformations are done on these signals. For example, in
a field-programmable gate array (FPGA) the data flow is
configured through its routing elements while the control
flow is defined by the function implemented in each logic
block. In a neuromorphic chip, the data flow is defined by
the connectivity of the neural network while the control flow
is defined by the synapse and neuron models, learning rules,
synaptic weights, time constants, thresholds, and more.

C. Programming process

Programming, in the context of the theoretical framework
above, is the process of designing how a certain computation
should be implemented, illustrated in Figure 3. Programming
begins with some informal intention of what computation to
implement. This intention can be formalized into a speci-
fication (right path in Figure 3), or the programmer may
directly come up with an informal idea for a program that
implements the intended computation, and then code this idea
in some formal language (left path in Figure 3). This program
is then communicated to the physical computer through a pre-
defined programming interface. Finally, the system executing
this program can be controlled or instructed to remain within
the program’s specification.

Programming need not be done by a human programmer.
As shown by the green arrows in the diagram, programming
can also be automated: a computer program can take in a

formal specification of a program to then create a program
that satisfies these specifications. In program synthesis, the
specification is given in some algebra or formal model and
a search algorithm then finds a program that meets this
specification. In supervised machine learning, the specification
is given by a dataset of input-output examples and an error
function, which is then minimized for some machine learning
model until it meets a given error threshold.

uΨ

uλ yλ

yΨΨ

λ
abstract evolution

physical evolution

encoding decoding

uλ* yλ*λ*
input computer output

Fig. 2. The relationship between an abstract computation λ : uλ 7→ yλ

(middle), the same computation expressed in a different computational model
λ∗ such as a higher-level programming language (top), and the physical
computer Ψ that realizes this computation (bottom), from [23].

D. Languages and Paradigms

Conventionally, programming amounts to writing source
code, coding, in some formal language. Here, ‘programming
language’ is used in an unconventionally wide sense to include
any formal language that can be communicated to a physical
system. This includes programming languages like Python but
also extends to other formalisms like differential equations
describing dynamical systems, or block diagrams describing
signal processing systems. In any case, the ‘programming
language’ must be compatible with the elementary instructions
that the computer’s programming interface provides. Given
this compatibility, the programmer is free to explore the space
of all possible programs. Work on elementary instruction sets
for non-digital computers goes back at least to the 1940s and
continues to the present day [28, 29] but there is still no
universally accepted model [10]. Consequently, it is not clear
what a neuromorphic programming language may look like
[30]; will it require new syntax such as visual representations,
or will a program be represented by a string of symbols in
some formal language?

Since the goal is to improve the way we think about
programming neuromorphic computers in general, Floyd [31]
argued that it is more effective to turn to programming
paradigms rather than programming languages. A program-
ming paradigm is an approach to programming “based on a
mathematical theory or a coherent set of principles” [32] and



a programming language implements one or more program-
ming paradigms. Centering the discussion on programming
paradigms shifts the focus away from syntactical issues to the
way programs are conceived and designed.

Intention

Idea

thinking

coding

formalize

Physical system

implement

Program
λ

Ω

Ψ

formalization

barrier

implementation

barrier

Specification

input output

search/ 
optimize

feedback

Task

Computation

Physics

Fig. 3. The process of computer programming, inspired by [33]. The abstract
intention lives in the informal space Ω of all possible computational tasks.
This intention is formalized into a program p ∈ λ that is expressed in some
formal language, which is then implemented through some physical system
s ∈ Ψ.

Beyond languages and paradigms, there is a set of well-
developed tools for computer programming without which
most modern software systems would not exist. We mention
the integrated development environment (IDE), the keyboard-
and-mouse interface, version control systems, agile develop-
ment only in passing, as a more detailed treatment of these is
outside the scope of this paper.

IV. PROGRAMMING PARADIGMS

In the present section, existing programming paradigms are
explored and then related to Neuromorphic Programming in
Section V. Conventional computer programming paradigms
can be differentiated by the program’s representation. One
commonly distinguishes imperative programming, where a
program consists of a sequence of instructions, from declara-
tive programming, where a program consists of a sequence of
logical assignments. We use the term decentralized program-
ming for parallel, concurrent, and distributed programming,
spanning both imperative and declarative styles. We distin-
guish these paradigms from automated programming, in which
the human programmer passes a (potentially incomplete) spec-
ification into an optimization or learning algorithm that creates
the final program. Finally, we also give a brief overview of
non-digital programming methods that are applicable to analog
and physical computers.

A. Imperative programming

The most common way of writing sequential, instruction-
based programs uses the imperative paradigm, as implemented
in C. Imperative programming was augmented with objects,
which can contain instructions as well as data, to yield the
object-oriented paradigm, as implemented in C++ or Java.

Imperative programming is the dominant paradigm for large-
scale software systems in conventional computing.

B. Declarative

Instead of describing the control flow of a program in
imperative programming, declarative programs describe the
logic of the program. A declarative program describes what the
program does rather than how it does it. Declarative program-
ming is done in database query languages like SQL, functional
programming languages like Haskell, or logic programming
languages like Prolog. In dataflow programming, a program
is modeled as a graph of data flowing between operations. A
functional cousin of dataflows is the functional reactive pro-
gramming (FRP) that couples hybrid systems of behaviors and
events with continuous-time flow [34]. Dataflow programming
is well-suited for neuromorphic computers, where data flows
between neurons.

While classical programs are deterministic, the execution
of a probabilistic program depends on random numbers, for
example by calling a (pseudo) random number generator. Such
a program can be viewed as sampling from a probability
distribution. In probabilistic programming, the program itself
is considered a distribution, and the programmer can analyze
this distribution and condition the distribution on observations
[35]. Indeed, the goal of probabilistic programming is not
simply the execution of a program, but also the analysis
thereof.

C. Decentralized programming

A single processor core may use time-sharing to allow
multiple programs to run concurrently. In so-called concurrent
programming, the lifetime of multiple computing processes
overlap and may interact with another [36]. Concurrency
introduces issues of synchronization, such as deadlocks and
race conditions. With the advent of multicore microprocessors
came the need to use resources on different cores simulta-
neously. This led to the development of parallel program-
ming techniques, in which multiple processes are carried out
simultaneously on different cores. Distributed programming
deals with programs that are executed on multiple networked
computers, which interact to achieve a common goal. The first
approach to formalizing this appeared by Milner et al. as π-
calculus [37]. Methods from distributed programming are used
for multi-chip systems, and frequently employed in training
large-scale neural networks.

D. Automated programming

In meta-programming, it is possible for a program to write
or modify programs, by simply treating the program as data.
In reflective programming, a program modifies its own behav-
ior whereas in automatic programming, a program generates
another program. If a formal specification of the desired
program is given, program synthesis can be used to generate a
program that provably satisfies this specification [38]. If exact
adherence to a formal specification is not required, but only
the satisfaction of given constraints, constraint programming



may be used [39]. If an incomplete specification is available,
such as input-output examples, then inductive programming
can be used to generate a suitable candidate program [40].

In classical programming, a human programmer defines the
program that specifies how input data is processed. Machine
learning constructs programs that learn from the input data,
in ways that may not have been anticipated by any human.
Machine learning has deep roots in probability theory and
overlaps significantly with probabilistic programming [41]. In
supervised machine learning, a mapping from inputs to outputs
is learned from a set of examples. In reinforcement learning,
a policy of how to act in some environment is learned from
rewards and punishments. Both the learned mapping in super-
vised learning and the learned policy in reinforcement learning
can be used as programs. This makes machine learning a
paradigm for automated programming. Deep learning uses
multi-layered artificial neural networks (ANNs) for machine
learning. The connectivity in ANNs is usually fixed, and the
weights are learned, typically in a supervised fashion using
gradient descent, to minimize the error on given input-output
examples. The techniques of deep learning have also been
adapted for spiking neural networks [42]. In differentiable
programming, programs are written in a way that they are
fully differentiable with respect to some loss function, thereby
allowing the use of gradient-based optimization methods to
find better-performing programs. Deep learning is a special
case of this, where programs are artificial neural networks that
are differentiated using backpropagation.

In machine learning, a core goal is good generalization
to unseen examples. If generalization is not needed, one
may use optimization itself as a programming paradigm in
which the result of the optimization is the desired program
or the optimization process itself. For example, evolutionary
programming uses population-based evolutionary optimization
algorithms to find programs by encoding the program’s speci-
fication in a fitness function that is optimized. Evolutionary
algorithms have been used to generate rules for a cellular
automaton to solve computational problems that are difficult
to solve by manually designing a learning rule [43].

E. Non-digital programming

Building on evolutionary optimization, evolution in materio
[44] was proposed to harness material properties for com-
putation. Natural evolution excels in exploiting the physical
properties of materials, and artificial evolution aims to emulate
this ability. Physical reservoir computing can be used to
harness the dynamics of physical systems for computation by
modeling the physical system as a high-dimensional reservoir
for which a linear readout is trained [45]. It is also possible to
create a surrogate model of the physical device, then optimize
the surrogate model in simulation with deep learning methods
and transfer the optimized model back to the device [46].
Although analog computers have been around for at least
as long as their digital counterparts, analog programming
methods are not at the same level of maturity as those for
digital computers. Ulmann [47] argues that the development

of reconfigurable analog computers will advance the state of
analog computer programming, and efforts to develop such
hardware already exist [48]. Currently, analog programming
often draws on methods from control engineering, signal pro-
cessing and cybernetics. For analog neuromorphic computers,
signal processing provides a rich framework for computing
with temporal signals [49]. Moreover, control theory has
developed a rich repertoire of methods to drive a dynamical
system into a mode of operation that is robust, stable, and
implements some desired dynamics [50]. These methods can
be used to keep analog computers within a desired regime of
operation to implement a desired computation. However, the
expressiveness of behaviors in control theory lags far behind
that of digital programming languages. The field of autonomic
computing aims to design systems that adapt to stay within a
high-level description of desired behavior [51]. The field takes
inspiration from the autonomic nervous system, which can stay
within a stable ‘dynamic equilibrium’ without global top-down
control.

V. NEUROMORPHIC PROGRAMMING

The preceding section already alluded to some methods that
have been adopted for neuromorphic hardware, such as reser-
voir computing, deep learning, and evolutionary optimization.
In the present section, we give a more in-depth review of
existing programming approaches for neuromorphic hardware.

a) Neuromorphic co-design: As neuromorphic comput-
ers exploit physical phenomena of their underlying hardware,
manually designed neuromorphic programs will necessarily be
close to physics. Therefore, although not strictly a ‘program-
ming’ paradigm, it is instructive to consider neuromorphic co-
design as a paradigm for designing neuromorphic systems.
The field is rooted in the original vision of neuromorphic
computing [52] and designs application-specific and recon-
figurable mixed-signal neuromorphic chips in sub-threshold
CMOS technology. This approach uses tools from signal
processing and computational neuroscience to implement a
desired behavior in networks of silicon neurons [8].

b) Machine learning methods: Given the success of deep
learning in applying machine learning techniques to neural
networks, this is a natural starting point for neuromorphic
computers. However, it is unrealistic to expect deep learning
methods to work for SNNs as well as they do for ANNs since
these methods were optimized for ANNs [53]. ANN-to-SNN
conversion is possible, but typically not optimal because the
resulting SNNs do not leverage the computational power of
spiking neurons. Instead, they limit the richer dynamics of
SNNs to the less expressive domain of ANNs [11]. Offline
training methods like backpropagation, the workhorse of deep
learning, can be implemented directly in SNNs using surrogate
gradients [42]. Given a neural network, it is necessary to
communicate this network to the hardware. Neuromorphic
compilation [54] was proposed as a general framework to
(approximately) compile neural networks into different hard-
ware systems, automatically adapting to physical constraints.
Reservoir computing can simplify the training of SNNs on



hardware, but it still requires the reservoir states to be read out
and stored on a digital computer, which may not be possible
given limited observability of some devices or limited data
storage.

c) Online learning: The machine learning methods pre-
sented above all operate offline and often off-device. Frequent
re-training creates a large overhead, limiting the performance
and applicability of neuromorphic computers. As a result, on-
device learning methods are an active topic of research [55].
Plasticity is a popular paradigm for on-device learning, where
local learning rules are used to modify the connectivity (struc-
tural plasticity) and connection strengths (synaptic plasticity)
of a SNN. Parallels to emergent programming may be drawn
here, as the resulting behavior of the SNN emerges from
the interaction of local rules. It is not clear what local rules
will yield a particular network-level behavior, but evolutionary
search [56] and meta-learning [57] have been used to (re-
)discover desirable plasticity rules.

d) Evolutionary methods: A key advantage of evolution-
ary approaches is that they can jointly optimize the network’s
architecture and weights, thus simultaneously designing and
training the network without requiring the network to be dif-
ferentiable. However, evolutionary approaches can be slower
to converge than other training methods and the resulting ar-
chitectures are not easily interpretable or reusable for different
tasks [11].

e) Spiking neuromorphic algorithms: With the increased
availability of neuromorphic hardware, a number of hand-
crafted spiking neuromorphic algorithms (SNA) have been
proposed. SNAs implement computations using temporal in-
formation processing with spikes, often to implement well-
defined computations such as functions on sets of numbers
[58], functions on graphs [59], solving constraint satisfaction
problems or solving a steady-state partial differential equation
using random walks [60].

f) Neurocomputational primitives: Various neurocompu-
tational primitives have been proposed in the neuromorphic
community. Such primitives can be useful for simple tasks
and can be combined into complex neuromorphic systems
[61]. The winner-take-all (WTA) network is a common circuit
motive in the neocortex that has been used extensively for
neuromorphic systems [62]. The more general dynamic neural
fields (DNFs) are a modern framework for neural attractor
networks [20]. The neural state machine (NSM) [63] also
builds on WTA networks to implement finite state machines
in SNNs. The temporal difference encoder (TDE) [64] is a
circuit primitive that has been used for motion estimation
and obstacle avoidance. Neural oscillators generate rhythmic
activity that can be used for feature binding and motor
coordination, for example as a central pattern generator [65].
Other primitives are scattered around the literature, and shared
libraries of neurocomputational primitives are only starting to
be assembled [61].

g) Higher abstractions: The neural engineering frame-
work [66] raises the level of abstraction beyond networks
of neurons—it allows dynamical systems to be automatically

distilled into networks of spiking neurons using the Nengo
programming environment [67]. The framework of vector
symbolic architectures (VSA) is suitable for neuromorphic
systems, enabling knowledge representation and reasoning in
high-dimensional spaces. VSAs interfaced with deep networks
and generalizations of the optimization and search algorithms
described in this survey could provide a path to enabling
fast, efficient, and scalable next-generation AI capabilities
on neuromorphic hardware. Lava is an open-source neuro-
morphic programming framework that includes libraries of
neuromorphic algorithms for optimization, attractor networks,
deep learning methods for SNNs, VSAs, and plans to in-
clude more paradigms. Fugu [68] is a hardware-independent
mechanism for composing SNAs. In Fugu, a program is
specified as a computational graph, reminiscent of dataflow
programming, where nodes represent SNAs and connections
represent dataflow between the SNAs.

VI. FUTURE APPROACHES TO PROGRAMMING
BRAIN-INSPIRED HARDWARE

For neuromorphic systems to scale to large heterogeneous
computing systems, commonly agreed-upon computational
models are required, similar to how programming abstractions
catalyzed the development of the digital computer in the
1950s and 60s. We have argued that it is difficult to program
computers that harness their underlying physical dynamics for
computation without a guiding theory that unites physics with
computation. But, despite the rich history of programming
methods and languages, our analyses in Sections II and III
show that the direct translation of classical methods to neuro-
morphic systems is not a reasonable pursuit: neuromorphic
computing (dually analog/digital, plastic, stochastic, decen-
tralized, and unobservable) is incompatible with the assump-
tions of conventional programming efforts (digital, immutable,
noiseless, centralized, observable, see Figure 1). None of the
methods and approaches we reviewed meet the criteria for a
universally agreed-upon neuromorphic abstraction [6, 11].

However, decades of research in neuromorphic computing
and engineering, provide important insights towards initial
features of neuromorphic programming methods. Revisiting
the requirements from Section II, modern approaches must
accommodate the simultaneously analog and digital nature of
neural computation to supplement digital models with differ-
ential equations in some shape or form. This does not exclude
digital instructions, but implies approximately continuous-time
primitives, such as linearized time-stepped or variable-time
models. Second, the computational models must be able to
capture the inherent change in the underlying substrate. This
further challenges digital instructions because arbitrary bit-
flips are detrimental to digital computation. Online learning
methods may help by continuously adapting to changes in the
environment as well as changes in the underlying substrate.
Third, novel approaches should model noise on the signal-level
and remain robust to small and unpredictable perturbations.
This is challenging, but possible, to achieve in classical
programs, and much more applied in machine learning and



automated programming schemes, and even harnessed in prob-
abilistic programming and stochastic computing. Fourth, any
model should allow for event-based information processing.
Synchronicity in nature is extremely costly, but used almost
everywhere in conventional programming paradigms except
some reactive and concurrent languages. Finally, the compu-
tation should depend solely on locally available information
rather than on global system states, as done by local plas-
ticity rules used in neuromorphic hardware. Some machine
learning and optimization methods, like reservoir computing
or evolutionary optimization, also do not require a complete
description of the computer’s state.

To unite the physical dynamics and computational prin-
ciples, fully neuromorphic abstractions are preferable, but
probably not tractable before the “hardware lottery” has been
won [13] and significant gains have been achieved with
neuromorphic hardware compared against other computational
substrates. A more realistic scenario is that we can play on
the strengths of multiple current approaches, and integrate
them into one cohesive abstraction. The neuromorphic sys-
tem hierarchy [54] provides a common abstraction that can
represent ANNs and SNNs, but is not designed for neurocom-
putational primitives, spiking neuromorphic architectures, or
other neuromorphic abstractions. The Neuromorphic Interme-
diate Representation [22] provides an abstraction for graph-
structured continuous-time computations, which can support
a wider variety of neuromorphic programming paradigms. A
key innovation in NIR is the integration of heterogeneous
representations, such the Neural Engineering framework, Lava,
Fugu, PyNN, and NeuroML. The outcome is that multiple
representations and paradigms can cooperate through a shared
representation, flexible enough to cover multiple approaches,
but unambiguous enough to only provide limits for discrepan-
cies in the execution. However, a complete/full neuromorphic
abstraction must also offer support for computational graphs
that change over time, which NIR presently does not offer.

A longstanding goal in computer science has been to
program physical devices that mimic the efficiency and func-
tionality of the brain [4, 7]. While significant headway has
been made towards instrumenting digital as well as non-digital
systems, more work is needed to find robust programming
methods for neuromorphics. We hope that neuromorphic pro-
grammers can leverage the work outlined in this paper to build
large-scale neuromorphic programs to tackle real-world tasks,
and to further develop guiding principles and paradigms for
neuromorphic programming.

ACKNOWLEDGMENT

S.A. thanks Herbert Jaeger, Guillaume Pourcel, and Mirko
Goldmann for helpful comments and discussions. S.A. grate-
fully acknowledges funding from the European Union’s Hori-
zon 2020 Research and Innovation Programme under the
Marie Skłodowska-Curie grant agreement No. 860360 (POST
DIGITAL). J.P. would like to thank funding by the EC Horizon
2020 Framework Programme under Grant Agreements 785907

and 945539 (HBP) and NeuroPAC under the NSF grant “Ac-
celNet: Accelerating Research on Neuromorphic Perception,
Action, and Cognition.”

REFERENCES

[1] M. M. Waldrop, “The chips are down for moore’s law,” Nature, vol.
530, no. 7589, pp. 144–147, 2016.

[2] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60,
2019.

[3] C. Edwards, “Moore's law,” Communications of the ACM, vol. 64, no. 2,
pp. 12–14, 2021.

[4] J. von Neumann, The computer and the brain. New Haven, CT: Yale
University Press, 1958.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[6] C. Mead, “Neuromorphic engineering: In memory of Misha Mahowald,”
Neural Computation, vol. 35, no. 3, p. 343–383, Feb. 2023.

[7] H. Jaeger, B. Noheda, and W. G. v. d. Wiel, “Toward a formal theory
for computing machines made out of whatever physics offers,” Nature
Communications, vol. 14, no. 1, 2023.

[8] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger,
S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,
F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang,
and K. Boahen, “Neuromorphic silicon neuron circuits,” Frontiers in
Neuroscience, vol. 5, 2011.

[9] C. Frenkel, D. Bol, and G. Indiveri, “Bottom-up and top-down neural
processing systems design: Neuromorphic intelligence as the conver-
gence of natural and artificial intelligence,” 2021.

[10] H. Jaeger, “Towards a generalized theory comprising digital, neuro-
morphic and unconventional computing,” Neuromorphic Computing and
Engineering, 2021.

[11] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, “Opportunities for neuromorphic computing algorithms and
applications,” Nature Computational Science, vol. 2, no. 1, pp. 10–19,
2022.

[12] J. B. Aimone, “Neural algorithms and computing beyond moore's law,”
Communications of the ACM, vol. 62, no. 4, pp. 110–110, 2019.

[13] S. Hooker, “The hardware lottery,” Commun. ACM, vol. 64, no. 12, p.
58–65, nov 2021.

[14] J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, Eds., Unconven-
tional Programming Paradigms. Springer Berlin Heidelberg, 2005.

[15] J. B. Aimone and O. Parekh, “The brain’s unique take on algorithms,”
Nature Communications, vol. 14, no. 11, p. 4910, Aug. 2023.

[16] K. Boahen, “A neuromorph's prospectus,” Computing in Science &
Engineering, vol. 19, no. 2, pp. 14–28, 2017.

[17] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics
to neurobiology,” Neural Computation, vol. 10, no. 7, pp. 1601–1638,
1998.

[18] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, pp. 43–98,
1956.

[19] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded Computing Systems, vol. 12, no. 2s, pp. 1–
19, 2013.

[20] M. A. Giese, “Dynamic neural field theory for motion perception.”
Boston, MA: Springer US, 1999, dOI: 10.1007/978-1-4615-5581-0.

[21] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[22] J. E. Pedersen, S. Abreu, M. Jobst, G. Lenz, V. Fra, F. C. Bauer,
D. R. Muir, P. Zhou, B. Vogginger, K. Heckel, G. Urgese, S. Shankar,
T. C. Stewart, J. K. Eshraghian, and S. Sheik, “Neuromorphic Interme-
diate Representation: A Unified Instruction Set for Interoperable Brain-
Inspired Computing,” Nov. 2023, arXiv:2311.14641 [cs].

[23] C. Horsman, S. Stepney, R. C. Wagner, and V. Kendon, “When does
a physical system compute?” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 470, no. 2169,
p. 20140182, 2014.

[24] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint, 2017.



[25] S. Abreu, I. Boikov, M. Goldmann, T. Jonuzi, A. Lupo, S. Masaad,
L. Nguyen, E. Picco, G. Pourcel, A. Skalli, L. Talandier, B. Vettelschoss,
E. A. Vlieg, A. Argyris, P. Bienstman, D. Brunner, J. Dambre, L. Daudet,
J. D. Domenech, I. Fischer, F. Horst, S. Massar, C. R. Mirasso, B. J.
Offrein, A. Rossi, M. C. Soriano, S. Sygletos, and S. K. Turitsyn, “A
photonics perspective on computing with physical substrates,” Reviews
in Physics, vol. 12, p. 100093, Dec. 2024.

[26] L. Valiant, Probably Approximately Correct: Nature’s Algorithms for
Learning and Prospering in a Complex World. Basic Books, Inc.,
2013.

[27] P. Wegner, “Why interaction is more powerful than algorithms,” Com-
munications of the ACM, vol. 40, no. 5, pp. 80–91, 1997.

[28] C. E. Shannon, “Mathematical theory of the differential analyzer,”
Journal of Mathematics and Physics, vol. 20, no. 1-4, pp. 337–354,
1941.

[29] J. Hasler, “Defining analog standard cell libraries for mixed-signal
computing enabled through educational directions,” in 2020 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS). IEEE, 2020.

[30] O. Michel, J.-P. Banâtre, P. Fradet, and J.-L. Giavitto, “Challenging
Questions for the Rationale of Non-Classical Programming Languages,”
International Journal of Unconventional Computing, vol. 2, pp. 337–
347, 2006.

[31] R. W. Floyd, “The paradigms of programming,” Communications of the
ACM, vol. 22, no. 8, pp. 455–460, 1979.

[32] P. V. Roy, “Programming paradigms for dummies: What every program-
mer should know,” in New computational paradigms for computer music,
G. Assayag and A. Gerzso, Eds. Éditions Delatour France (Le vallier),
2009, pp. 9–47.

[33] G. Grünert, “Unconventional programming: non-programmable sys-
tems,” Ph.D. dissertation, Friedrich-Schiller-Universität Jena, 2017.

[34] Z. Wan and P. Hudak, “Functional reactive programming from first
principles,” ser. PLDI ’00. New York, NY, USA: Association for
Computing Machinery, May 2000, p. 242–252.

[35] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani, “Prob-
abilistic programming,” in Future of Software Engineering Proceedings.
ACM, 2014.

[36] R. Milner, “Elements of interaction,” Communications of the ACM,
vol. 36, no. 1, pp. 78–89, 1993.

[37] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
i,” Information and Computation, vol. 100, no. 1, p. 1–40, Sep. 1992.

[38] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations
and Trends® in Programming Languages, vol. 4, no. 1-2, pp. 1–119,
2017.

[39] F. Rossi, P. van Beek, and T. Walsh, “Constraint programming,” in
Handbook of Knowledge Representation. Elsevier, 2008, ch. 4, pp.
181–211.

[40] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton,
U. Schmid, and B. Zorn, “Inductive programming meets the real world,”
Communications of the ACM, vol. 58, no. 11, pp. 90–99, 2015.

[41] K. P. Murphy, Machine Learning. MIT Press Ltd, 2012.
[42] J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi,

M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural
networks using lessons from deep learning,” Proceedings of the IEEE,
vol. 111, no. 9, pp. 1016–1054, 2023.

[43] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving cellular
automata to perform computations: mechanisms and impediments,”
Physica D: Nonlinear Phenomena, vol. 75, no. 1-3, pp. 361–391, 1994.

[44] J. Miller and K. Downing, “Evolution in materio: looking beyond the
silicon box,” in Proceedings 2002 NASA/DoD Conference on Evolvable
Hardware. IEEE, 2002.

[45] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, “Recent advances
in physical reservoir computing: A review,” Neural Networks, vol. 115,
pp. 100–123, 2019.

[46] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter,
Z. Hu, and P. L. McMahon, “Deep physical neural networks trained
with backpropagation,” Nature, vol. 601, no. 7894, pp. 549–555, 2022,
publisher: Springer Science and Business Media LLC.

[47] B. Ulmann, Analog and Hybrid Computer Programming. De Gruyter,
2020.

[48] J. Hasler, “Large-scale field-programmable analog arrays,” Proceedings
of the IEEE, vol. 108, no. 8, pp. 1283–1302, 2020.

[49] E. Donati, M. Payvand, N. Risi, R. Krause, K. Burelo, G. Indiveri,
T. Dalgaty, and E. Vianello, “Processing EMG signals using reservoir

computing on an event-based neuromorphic system,” in 2018 IEEE
Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2018.

[50] D. Kirk, “Optimal control theory: an introduction,” 1970.
[51] M. Parashar and S. Hariri, “Autonomic computing: An overview,” in

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,
pp. 257–269.

[52] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1629–1636, 1990.

[53] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic com-
puting with Loihi: A survey of results and outlook,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[54] Y. Zhang, P. Qu, Y. Ji, W. Zhang, G. Gao, G. Wang, S. Song, G. Li,
W. Chen, W. Zheng, F. Chen, J. Pei, R. Zhao, M. Zhao, and L. Shi, “A
system hierarchy for brain-inspired computing,” Nature, vol. 586, no.
7829, pp. 378–384, 2020.

[55] A. Basu, J. Acharya, T. Karnik, H. Liu, H. Li, J.-S. Seo, and C. Song,
“Low-power, adaptive neuromorphic systems: Recent progress and fu-
ture directions,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 8, no. 1, pp. 6–27, 2018.

[56] J. Jordan, M. Schmidt, W. Senn, and M. A. Petrovici, “Evolving
interpretable plasticity for spiking networks,” eLife, vol. 10, p. e66273,
oct 2021.

[57] B. Confavreux, E. J. Agnes, F. Zenke, T. Lillicrap, and T. P. Vogels,
“A meta-learning approach to (re)discover plasticity rules that carve a
desired function into a neural network,” 34th Conference on Neural
Information Processing Systems (NeurIPS 2020), 2020.

[58] S. J. Verzi, F. Rothganger, O. D. Parekh, T.-T. Quach, N. E. Miner, C. M.
Vineyard, C. D. James, and J. B. Aimone, “Computing with spikes: The
advantage of fine-grained timing,” Neural Computation, vol. 30, no. 10,
pp. 2660–2690, 2018.

[59] K. E. Hamilton, T. M. Mintz, and C. D. Schuman, “Spike-based
primitives for graph algorithms,” arXiv preprint, 2019.

[60] J. D. Smith, W. Severa, A. J. Hill, L. Reeder, B. Franke, R. B.
Lehoucq, O. D. Parekh, and J. B. Aimone, “Solving a steady-state PDE
using spiking networks and neuromorphic hardware,” in International
Conference on Neuromorphic Systems 2020. ACM, 2020.

[61] C. Bartolozzi, G. Indiveri, and E. Donati, “Embodied neuromorphic
intelligence,” Nature Communications, vol. 13, no. 1, 2022.

[62] R. J. Douglas and K. A. Martin, “Recurrent neuronal circuits in the
neocortex,” Current Biology, vol. 17, no. 13, pp. R496–R500, 2007.

[63] E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, and R. J.
Douglas, “Synthesizing cognition in neuromorphic electronic systems,”
Proceedings of the National Academy of Sciences, vol. 110, no. 37, pp.
E3468–E3476, 2013.

[64] D. Gutierrez-Galan, T. Schoepe, J. P. Dominguez-Morales, A. Jimenez-
Fernandez, E. Chicca, and A. Linares-Barranco, “An event-based digital
time difference encoder model implementation for neuromorphic sys-
tems,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–15, 2021.

[65] R. Krause, J. J. A. van Bavel, C. Wu, M. A. Vos, A. Nogaret, and
G. Indiveri, “Robust neuromorphic coupled oscillators for adaptive
pacemakers,” Scientific Reports, vol. 11, no. 1, 2021.

[66] C. Eliasmith and C. H. Anderson, Neural Engineering (Computational
Neuroscience Series): Computational, Representation, and Dynamics in
Neurobiological Systems. Cambridge, MA, USA: MIT Press, 2002.

[67] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in Neuroinformatics, vol. 7, 2014.

[68] J. B. Aimone, W. Severa, and C. M. Vineyard, “Composing neural
algorithms with fugu,” in Proceedings of the International Conference
on Neuromorphic Systems. ACM, 2019.


	Introduction
	Motivation
	Theoretical framework
	Computing with physical systems
	Computer programs
	Programming process
	Languages and Paradigms

	Programming Paradigms
	Imperative programming
	Declarative
	Decentralized programming
	Automated programming
	Non-digital programming

	Neuromorphic Programming
	Future approaches to programming brain-inspired hardware
	References

