
 

 

 University of Groningen

Continual lifelong learning in neural systems
He, Owen

DOI:
10.33612/diss.625549871

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
He, O. (2023). Continual lifelong learning in neural systems: overcoming catastrophic forgetting and
transferring knowledge for future learning. [Thesis fully internal (DIV), University of Groningen]. University
of Groningen. https://doi.org/10.33612/diss.625549871

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-05-2023

https://doi.org/10.33612/diss.625549871
https://research.rug.nl/en/publications/2e7b9072-e870-4a16-acda-665979cf9e8a
https://doi.org/10.33612/diss.625549871


xu he

C O N T I N UA L L I F E L O N G L E A R N I N G I N N E U R A L S Y S T E M S

Overcoming Catastrophic Forgetting &
Transferring Knowledge for Future Learning



colophon

This document was typeset using the typographical look-and-feel classicthesis devel-
oped by André Miede and Ivo Pletikosić.
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Intellectual growth should commence at birth and cease only at death.

— Albert Einstein

A B S T R A C T

Agents with artificial general intelligence (AGI) are supposed to learn diverse bodies of
knowledge and skills over their entire lifetime. Continual learning refers to the scenarios
where a machine learning system can retain and benefit from previously acquired skills
while learning new ones. However, when trained on a sequence of tasks, connectionist
models usually forget about previous knowledge after their parameters are adjusted for
a new task. This notorious problem, known as catastrophic forgetting, poses a serious
challenge towards continual lifelong learning. In this thesis, we propose novel solutions
to the problem of catastrophic forgetting, continual learning and transfer learning.

• In Chapter 2, we propose a variant of the back-propagation algorithm, Conceptor-
Aided Backprop (CAB) [He and Jaeger, 2017, 2018], in which gradients are shielded
by conceptors against degradation of previously learned tasks. Conceptors have
their origin in reservoir computing, where they have been previously shown to
overcome catastrophic forgetting. CAB extends these results to deep feedforward
networks. In particular, we apply a conceptor at each layer of the deep network to
identify the linear subspace that is already used, and project the gradients to the
free subspace for future learning.

• We show that when the input spaces of two tasks overlap significantly, applying
CAB will lead to intransigence, in other words, the inability of a network to learn
new knowledge. We analyze the reason behind it and propose another CL method
in Chapter 3 called Conceptor Pseudo-Rehearsal (CPR) [He, 2018a] to address this
limitation. Instead of projecting the weight updates on the free subspace in the
pre-synaptic layer, CPR constrains them by the free subspace in the post-synaptic
layer. As a result, new activations triggered by the change of parameters appear
only in the free space, thus it does not interfere with old tasks. Moreover, useful
features from the old tasks can be reused by the new tasks, which allows a forward
transfer between tasks.

• Most continual learning approaches implicitly assume that there exists a multi-task
solution for the sequence of tasks. In Chapter 4, we motivate and discuss realistic
scenarios such as multi-agent games where this assumption does not hold. We
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argue that the traditional metric of zero-shot remembering is not appropriate
in such settings, and, inspired by the meta-learning literature, we focus on the
speed of remembering previous tasks. We propose the What and How framework
[He et al., 2020] to deal with this case by separating the concerns into what task
is currently being solved and how the task should be solved. At each step, the
What algorithm performs task inference, which allows our framework to work in
absence of task boundaries. The How algorithm is conditioned on the inferred task,
allowing for task-specific behaviour, hence relaxing the assumption of a multi-task
solution. From the perspective of meta-learning, our framework is able to deal with
a sequential presentation of tasks, rather than having access to the distribution of
all tasks. We empirically validate the effectiveness of our approach and apply it to
train generative adversarial networks (GAN).

• In Chapter 5, we study catastrophic forgetting from the perspective of information
theory and define forgetting as the increase of description lengths of previous
data when they are compressed with a sequentially learned model [He and
Lin, 2020]. In addition, we show that continual learning approaches based on
variational posterior approximation and generative replay can be considered as
approximations to two prequential coding methods in compression, namely, the
Bayesian mixture code and maximum likelihood (ML) plug-in code. We compare
these approaches in terms of both compression and forgetting and empirically
study the reasons that limit the performance of approaches based on variational
posterior approximation. To address these limitations, we propose a new continual
learning method called ML Mixture Code that combines ML plug-in and Bayesian
mixture codes.

• Finally, we focus on the forward transfer aspect of continual learning and apply
it to the problem of neuromorphic engineering in Chapter 6 [He, 2018b; He
et al., 2019a]. Analog, unclocked, spiking neuromorphic microchips open new
perspectives for implantable or wearable biosensors and bio-controllers, due to
their low energy consumption and heat dissipation. However, the challenges from
a computational point of view are formidable. Here we outline our solutions
to realize the reservoir computing paradigm on such hardware and address the
combined problems of low bit resolution, device mismatch, approximate neuron
models, and timescale mismatch. The main contribution is a computational scheme,
called Reservoir Transfer, which enables us to transfer the dynamical properties of a
well-performing neural network which has been optimized on a digital computer,
onto neuromorphic hardware that displays the above-mentioned problematic
properties. We present a case study of implementing an ECG heartbeat abnormality
detector to showcase the proposed method.
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1I N T R O D U C T I O N

When I started learning English, I did not expect I would completely forget how to play
the bamboo flute once I become fluent in English. Why, you might wonder, would anyone
forget how to play a musical instrument just because they have learned a new language?
Indeed, we humans have such a remarkable ability of learning and maintaining diverse
skills throughout our entire lifespan that the very thought of learning one skill will lead
to dramatic forgetting of another one seems ridiculous. Thanks to the magical balance
between plasticity and stability in my brain [Mermillod, Bugaiska, and Bonin, 2013;
Takesian and Hensch, 2013], now I am able to write this dissertation in English, but
at the same time still remember how to generate melodies with those tubes made of
bamboo. However, would this be possible if my brain were a deep neural network?

The past decade has seen a sequence of successful applications of deep learning, from
image recognition [Krizhevsky, Sutskever, and Hinton, 2012] to machine translation
[Bahdanau, Cho, and Bengio, 2014], from reaching human-level control at playing Atari
games [Mnih et al., 2015] to defeating human champion of an ancient Chinese board
game [Silver et al., 2016]. Behind all of these success stories is the same training scheme:
gradient descent with independently and identically distributed (i.i.d) mini-batches
[Ruder, 2017]. Under this scheme, a mini-batch of data points are used to compute
the gradient at every iteration of the training process, and it is assumed that the mini-
batches from different iterations are samples of random variables that are independently
and identically distributed. To guarantee that the i.i.d assumption holds, a common
practice is to collect and store all the training data before the learning process starts,
and uniformly choose a mini-batch from the entire training set at each iteration of the
stochastic gradient descent algorithm. Once the training is done, the neural network is
deployed for application and its parameters are supposed to stay fixed for the rest of its
life.

A question that naturally arises is: what should we do when there are new data that
become available? This is the very question to be addressed in this dissertation.

1.1 catastrophic forgetting and continual learning

One naive strategy one may opt for when there are more data is to simply use the
current parameters as initialization and restart the i.i.d gradient descent process with
mini-batches of the new data. By doing so, the network is indeed able to improve its
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2 introduction

performance on the new training data. However, as McCloskey and Cohen [1989] and
Ratcliff [1990] found out more than three decades ago, when a connectionist model is
trained on a sequence of different datasets, the model will abruptly, if not completely,
forget the information it has learned from the previous datasets once it has learned the
new data. This phenomenon is called catastrophic forgetting (CF) or catastrophic interference.
Catastrophic forgetting has been the major obstacle towards continual learning (CL) [Ring,
1998] or lifelong learning [Thrun, 1998]. In contrast to conventional machine learning
settings, which focus on training a model to solve a single task, continual learning
studies the scenario where an agent is placed in a non-stationary environment and
has to learn several, distinct tasks in an arbitrary order. Ideally, the continual learner
should be able to constantly absorb information from the stream of its experiences, and
it should not only be able to maintain what it has learned in the past but also use its
past knowledge to facilitate future learning. Continual learning is a hallmark of human
intelligence and a crucial step towards artificial general intelligence (AGI). Without it,
an agent will not be able to extend its repertoire of skills and adapt itself to the rapidly
changing world around us.

1.2 desiderata for continual learning

In practice, to concretely characterize what a continual learning system should achieve,
the Continual Learning community had come up with a list of desiderata at the NeurIPS
continual learning workshop in 2018 [Continual learning Workshop NeurIPS 2018; Schaul
et al., 2018]:

• Online learning: learning takes place at all times, without predefined tasks or
datasets. The data stream can change smoothly and it might not be possible to
segment it by clear boundaries.

• Forward transfer: a continual learner should be capable of utilizing previously
learned knowledge to perform better in new situations or learn faster from new
tasks.

• Backward transfer: a continual learner should also be able to incorporate new
information into its existing strategy and improve performance on tasks learned
from the past.

• Resilience to catastrophic forgetting: learning new tasks should not dramatically
decrease the performance on tasks it has already learned.

• Bounded resources: the agent should not expect to have infinite memory or
computational power. This constraint will force the agent to use the resources
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available wisely. In particular, it should be able to maximize future reward by
prioritizing important knowledge and erasing redundant information.

• YOLO: the agent can only live once, so it should make the most out its life and
cannot rely on resetting the environment or restarting its life.

• Drinking from a firehose: the learning agent should be able to handle a sequence
of observations that is too rich to be stored in a buffer. So once an observation is
gone, the agent might not have direct access to it anymore.

It is important to note that a successful continual learning algorithm does not always
have to meet all the desiderata listed here. In fact, some of these desiderata can be
at odds with each other. For instance, it might be impossible for a learning system
with a fixed size to perfectly remember a never-ending sequence of data. After all,
there is a limit to lossless data compression [Shannon, 2001]. Therefore, some continual
learning algorithms might prioritize certain desiderata over the others. The right trade-
offs between these potentially conflicting objectives should depend on the application
scenarios and test metrics that are used to evaluate the continual learning algorithms.
We discuss these aspects in the following sections.

1.3 different scenarios of continual learning

Since the main question continual lifelong learning studies is what the learner should
do when new data show up. Depending on the type of data and the ways that the
learner will be tested later, there are different scenarios of continual learning. It has been
observed that some continual learning algorithms excel at a specific scenario but fail at
another one. Therefore, it is hard to make meaningful comparisons between different
approaches without properly categorizing and understanding these scenarios.

Conventionally, the stream of data used in continual learning is considered to be
generated by a sequence of different tasks [Kirkpatrick et al., 2017; Parisi et al., 2019].
The learner is usually allowed to take its time to learn the current task before it is
ready to move on to the next one. In this way, there are clear change points between
different tasks, at which the learner can switch its mode to prepare itself for the next task.
Focusing on this task-sequence setup, Ven and Tolias [2019] described three scenarios
of continual learning based on what information about the tasks is available at testing
time:

• Task-incremental learning (Task-IL): this is the easiest continual learning scenario,
where the learner is always told which task it is supposed to solve. Since the task
information is always available, it is feasible to design a model with task-specific
components. At test time, the model can then choose the component corresponding
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to the current task. A classical example for such architecture is the so-called "multi-
head" output [Farquhar and Gal, 2019b; Zenke, Poole, and Ganguli, 2017], where
the model assigns a separate output layer for each task.

• Domain-incremental learning (Domain-IL): In this case, at test time the model
has to solve the task at hand without the task information, but the model does not
need to infer the task identity. This scenario occurs usually when the tasks in the
data stream are the same but their input distributions are different.

• Class-incremental learning (Class-IL): In this scenario, task information is not
available at test time and the model has to infer the task identity based on the input
data. This is usually considered the most difficult among these three scenarios.

One example [Ven and Tolias, 2019] used to illustrate these three scenarios is the split
MNIST task protocol [Zenke, Poole, and Ganguli, 2017], in which the MNIST dataset is
split into 5 parts to create 5 tasks with images of two digits in each task. The first task
consists of images of zeros and ones, the second task consists of images of twos and
threes, and so on. (see Table 1.1). Suppose the five tasks have already been presented
sequentially to the learner for training. In the Task-IL scenario, at testing time, the
learner will be given an image together with its task ID, and it has to classify this image
into one of the two classes. In the Domain-IL scenario, an example test for the learner
will be simply classifying an image as even or odd without knowing which task it comes
from. Finally, a possible test for the Class-IL case will be asking the learner to tell which
digit the image corresponds to. Note that the last question implicitly requires the learner
to also infer the task ID of the image.

Task ID 1 2 3 4 5

Digit 0 1 2 3 4 5 6 7 8 9

Class ID 1 2 1 2 1 2 1 2 1 2

Table 1.1: Five tasks created by the Split MNIST protocol. Each task contains images for two digits
in the MNIST dataset, listed in the second row. Their corresponding class IDs are given
in the third row. In this case, the first class corresponds to even numbers and the second
class corresponds to odd numbers.

The above-mentioned categorization of scenarios is based on what task information is
available at test time. At training time, however, it assumes that the task boundaries are
clearly marked and task identity is available, therefore they all belong to the task-aware
continual learning setting. There are also scenarios where the learner cannot access the
task information during training, so it is not explicitly told which task is presented
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and when the task will change. Such scenarios are called task-agnostic. Many continual
learning methods are not applicable in this case, since they usually rely on the task
identity to select a task-specific component or require the task boundaries to decide
when to consolidate already learned knowledge. In Chapter 4, we propose a continual
learning framework that can be applied in the task-agnostic scenario.

1.4 topics related to continual learning

Many questions studied in continual learning are closely related to other fields of
Machine Learning. The techniques and theoretical tools developed in other fields have
also proved to be helpful in understanding and solving problems in continual learning.
For this reason, here we briefly introduce these topics and discuss their relationship to
continual learning.

multi-task learning Multi-Task Learning (MTL) is a machine learning framework
that learns multiple related tasks at the same time. The goal is to improve overall
generalization by discovering common knowledge among these tasks such that the
shared representations do not overfit to a specific task. A recent survey on MTL can
be found in [Zhang and Yang, 2021]. Both MTL and continual learning aim to solve
multiple tasks. However MTL usually assumes that all tasks are available at the same
time so that they can be trained simultaneously and the parameters of the multi-task
learner are considered fixed after training, whereas in continual learning the tasks are
presented sequentially and the learner should be prepared for further training at any
moment.

transfer learning Given a target task and a source task, the goal of transfer
learning is to improve the performance of the model on the target task by using the
knowledge learned from the source task. Therefore, transfer learning directly relates to
the forward and backward transfer aspects of continual learning, since ideally a continual
learner should allow new tasks to benefit from its knowledge from the previous tasks
and vice versa. However, unlike continual learning, transfer learning only focuses on
the target task, it does not necessarily need to retain or improve the performance of the
source task. Zhuang et al. [2020] and Chapter 4 of Sabatelli [2022] are two recent surveys
on transfer learning.

meta learning Machine learning algorithms are usually designed by human ex-
perts to adapt the parameters of a model. Meta learning (or learning to learn) instead
focuses on learning the machine learning algorithm itself based on the experience from
learning related tasks. Therefore meta learning algorithms usually adapt the hyper-
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parameters such as the weight initialization [Finn, Abbeel, and Levine, 2017], learning
rates [Li et al., 2017] or network architecture [Shaw et al., 2019]. The objective of meta
learning algorithm varies depending on the applications. Examples of meta-objective in-
cludes faster adaptation [Finn, Abbeel, and Levine, 2017], better generalization [Li et al.,
2018], robustness against class imbalance [Lee et al., 2020a], and so on. Due to a dramatic
rise of its popularity in the past few years, there are many recent surveys available on
this topic [Hospedales et al., 2020; Vanschoren, 2018]. Combining meta learning and
continual learning techniques has become a promising research direction. For instance,
meta learning representations or learning algorithms so that the base learner is resilient
to catastrophic forgetting [Javed and White, 2019], or using meta-knowledge learned
from previous tasks to accelerate learning a new task [Nagabandi, Finn, and Levine,
2019]. In Chapter 4, we propose a framework that applies meta learning to address the
task-agnostic continual learning problem.

online learning Online learning refers to the scenario where at each time step t,
a model with parameters wt suffers a loss lt, which might be determined by a pair of
data instances xt,yt. Based on this loss function, it can adapt its parameters to wt+1 so
that its performance in the future can be improved. Here we briefly introduce two main
approaches to online learning. One is based on regret minimization, where the regret at
time T is defined as

RT =

T∑
t=1

lt(wt) − min
w

T∑
t=1

lt(w). (1.1)

The goal of the online learning algorithm is then to minimize the regret by choosing
a sequence of parameters wt such that as T approaches infinity, the average regret
RT/T converges to 0. This approach has its origin in online convex optimization [Hazan,
2021], so many theoretical results rely on the assumption that lt is a convex loss
function and cannot be directly applied to non-convex cases. Although closely related to
continual learning, regret-based online learning does not address catastrophic forgetting
and simply sidesteps this problem by storing all the data that define the losses lt in
the history. Hoi et al. [2021] wrote a comprehensive survey on this approach and its
applications.

Another approach to online learning is the Bayesian online learning [Opper, 1998] or
streaming variational Bayes [Broderick et al., 2013], which is based on the idea that at
every time step t, the posterior pt(w) := p(w|x1,y1, . . . , xt,yt) of the model can be
recursively updated by Bayes’ rule

pt(w) =
p(xt,yt|w)pt−1(w)

p(xt,yt)
, (1.2)
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where the likelihood term p(xt,yt|w) is the probability of the data xt,yt given w.
Since pt(w) is intractable for most applications, online variational Bayes methods
approximate it with a variational distribution qt(w) by recursively minimizing the
following Kullback–Leibler (KL) divergence

qt = min
q
KL(qt(w) ||

p(xt,yt|w)qt−1(w)
p(xt,yt)

). (1.3)

As we will discuss later in this thesis, this idea is directly applicable in continual learning
and has inspired many (online) continual learning methods.

domain adaptation Domain adaptation is a special case of transfer learning where
the source and target tasks are the same but their input distributions are different. For
instance, in the applications of medical imaging analysis, when the scanner is suddenly
replaced by another device, the MRI images might have different properties even though
the tasks remain the same. The goal of domain adaptation is to adapt a model trained
on the source domain to perform well on the target domain. Therefore, the forward and
backward transfer problems in the domain-incremental continual learning scenario can
be viewed as domain adaptation problems. Recent surveys on domain adaptation can
be found in [Csurka, 2017; Wilson and Cook, 2020].

curriculum learning Most experiments in continual learning literature simply
use a random sequence of tasks such as the permuted [Srivastava et al., 2013] or disjoint
[Lee et al., 2017] MNIST tasks to train and evaluate a continual learner. Curriculum learn-
ing [Bengio et al., 2009], on the other hand, focuses on designing a sequence of tasks such
that the learner can learn faster and generalize better at the end. It has been observed
that a meaningful order of learning examples can boost the speed of skill acquisition for
humans and animals [Krueger and Dayan, 2009], thus a more natural alternative to test
continual learning algorithms can be through a well-structured curriculum. A recent
work that explores this direction [Fayek, Cavedon, and Wu, 2020] showed that when the
continual learner is applied in a curriculum of related and progressive tasks, it not only
converged faster but also to a solution with better generalization. Similar results have
also been obtained in [Luo, Kasaei, and Schomaker, 2020].

active learning Another alternative to using a random series of tasks for continual
learning is to apply active learning [Settles, 2009]. Instead of letting the learner passively
receive a sequence of data, active learning gives the learner the freedom to choose the
next data to learn from. In practice, this is usually done by having an oracle (for example,
a human annotator) in the training loop to respond to queries posed by the learner (for
example, to label an unlabeled image selected by the learner). Mundt et al. [2020] and
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Qureshi, Miao, and Yip [2020] showed that combining active learning and continual
learning can lead to synergies of both areas and better data efficiency. Schomaker [2020]
described how active label harvesting can be helpful in lifelong learning for text retrieval
and recognition.

federated learning In many industrial applications, data are distributed over
different clients who cannot share their data with one another or upload their data to a
central server. For instance, the data might be owned by different mobile device users
or large organizations such as hospitals, companies or governments for whom sharing
data will incur either a high communication cost or violation of privacy or security
protocols [Li et al., 2021]. However, a global machine learning model trained on all of
the data together can usually perform much better than a model trained on the data
from a single data owner. The goal of federated learning is to a train a global model that
fits all of these datasets well in a decentralized collaborative way without data leakage
[Yang et al., 2019]. Numerous challenges have to be addressed in order to achieve this
new learning paradigm: privacy and security challenges (providing secure computation
protocols [Mohassel and Zhang, 2017] or achieving differential privacy [Geyer, Klein,
and Nabi, 2018], homomorphic encryption [Acar et al., 2018; Kim et al., 2018], defenses
against data poisoning [Bagdasaryan et al., 2020] and other forms of malicious attacks
[Melis et al., 2019]), system challenges (overcoming communication bottleneck [Konečný
et al., 2017], improving fault tolerance and handling stragglers [Smith et al., 2017]) and
statistical challenges (non-IID data [Zhao et al., 2018], unbalanced distribution [Smith
et al., 2017], concept drifts [Casado et al., 2020]). Among them, the statistical challenges
are common to both federated learning and continual learning. Both research fields
strive to obtain a global model that fits many isolated datasets generated from distinct
sources. For continual learning, the isolation of datasets is temporal, in other words,
learning on one dataset can only happen within a specific time window and the global
model has to accumulate its knowledge over time, whereas the isolation is spatial for
federated learning since learning on one dataset can only take place in a local device
or server and the global model has to aggregate the knowledge across clients. Recently
there have been a few works that touch upon both topics [Casado et al., 2020; Yoon et al.,
2021], but little research has yet been done to thoroughly study the relationship between
them.

1.5 approaches to continual learning

Since catastrophic forgetting was brought to the attention of the machine learning
community, there have been many methods proposed to overcome catastrophic forgetting
and to achieve continual learning [French, 1999; Goodfellow et al., 2014a]. Especially in
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the past five years, there is a renewed interest within the Deep Learning community to
study continual learning, and this field has developed rapidly. Some common patterns
have emerged from these methods, which make it possible to categorize them into
different classes. In this section, we provide an overview of these methods and discuss
their commonalities and distinctions. A detailed review of continual learning literature
can be found in Parisi et al. [2019].

1.5.1 Regularization-based Approaches

These approaches alleviate catastrophic interference by imposing constraints on the
update of the neural network weights. For each task, in addition to learning a model
that solves the task, these methods also learn a regularization term that characterizes
a region in the solution space corresponding to the current task. This regularization
term can then be used to constrain the optimization process for future tasks so that new
solutions are within or close to the solution region of previous tasks.

Kirkpatrick et al. [2017] proposed elastic weight consolidation (EWC), which uses the
diagonal of the Fisher information matrix to weigh the importance of parameters to the
learned task, and only updates the less important ones when learning a new task. Zenke,
Poole, and Ganguli [2017] introduced a method called Synaptic Intelligence (SI) which
maintains an online estimate of the importance of each synapse by tracking the learning
trajectory. Serra et al. [2018] suggested to allocate a hard attention (HAT) mask for each
neuron in the network, and jointly optimize them together with weights. As a result,
these masks can indicate which neurons are already used by previous tasks, and only
the weights connected with free neurons will be updated for future learning. In Chapter
2, we propose a method that uses Conceptors to characterize the linear subspace that
has already been used by previous tasks, and during the back-propagation process on
new tasks, the gradients are projected onto the orthogonal subspace so that the weight
updates do not interfere with existing knowledge.

From a Bayesian perspective, regularization-based continual learning methods can
also be seen as estimating a posterior from previous tasks and utilize it as a prior to
regularize the learning process of new tasks, which is the same idea behind the online
Bayesian learning we introduced before. Therefore, many methods in this class are based
on Bayesian neural networks (BNNs) [Neal, 2012]. They differ from each other in how
the posterior are parametrized and approximated.

Variational Continual Learning (VCL) [Nguyen et al., 2018] approximates the posterior
of the weights by a diagonal Gaussian and use the re-parametrization trick [Kingma and
Welling, 2013] to compute the gradient of the parameters of the Gaussian distribution.
Ritter, Botev, and Barber [2018] achieved better approximation of the posterior with
online Laplace approximation which has a block-diagonal covariance matrix based on



10 introduction

Kronecker factored approximation of the Hessian. Zeno et al. [2018] obtained closed
form update rule for the parameters of diagonal Gaussian approximations by solving the
first order necessary condition of the online objective function. This online closed-form
update rule called Bayesian Gradient Descent (BGD) makes it possible to be applied
directly in a task-agnostic scenario.

1.5.2 Replay-based Approaches

Continual learning methods that require samples in the input and output space of the
network belong to this category. These samples are used to constrain the changes in the
input-to-output mapping of the neural network, thus they are sometimes also called
functional approach to continual learning. These methods differ from each other based
on where these input-output samples come from.

Some replay-based methods simply use the original data stored from the past, these
methods usually focus on how to select the most representative subset of the original
data or how to efficiently use them. This subset of data is referred to by different
names in the literature, such as memory buffer, core-set or episodic memory. Rebuffi
et al. [2017] proposed a strategy called iCaRL to incrementally learn a classifier. iCaRL
uses a neural network as a feature extractor and for each class, it stores a small set of
exemplars and compute the mean feature of that class. Input images are classified based
on the nearest-class-mean. When new classes are introduced, exemplars from previous
classes are replayed to prevent the feature extractor from catastrophic forgetting. Rolnick
et al. [2019] applied the idea of replay in the context of Deep Reinforcement Learning
and proposed Continual Learning with Experience And Replay (CLEAR) which mixes
on-policy learning from new trajectories and off-policy learning from old trajectories
stored in a buffer. If the size of the buffer is bounded, they suggested to use reservoir
sampling to decide when to replace the elements in the buffer by new experience when
it is full. This simple method was shown to be very effective at preventing catastrophic
forgetting in many Deep RL settings.

Instead of jointly training the model on the episodic memory and the new data,
Gradient Episodic Memory (GEM) [Lopez-Paz et al., 2017] uses the stored samples to
define inequality constraints for the optimization on the new task: the loss computed
from the episodic memory cannot increase but is allowed to decrease. The motivation
behind this method is to prevent the model from over-fitting the old tasks to only the
stored data but at the same time still permit positive backward transfer. A follow-up
work dubbed Averaged-GEM (A-GEM) was later proposed by Chaudhry et al. [2019],
who showed that the quadratic programming problem in GEM can be replaced by
simply computing an inner product between gradients, which makes A-GEM both
computationally and memory-wise much more efficient.
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Replay-based methods that do not use the original real data as the input and output
samples are sometimes referred to as pseudo-rehearsal. This idea was first introduced in
[Robins, 1995] as a solution to the problem that previously learned data are no longer
available for replay. In particular, pseudo-patterns consisting of random binary input
values are generated periodically during training and are fed into the network to record
their corresponding output values. After some number of subsequent training iterations,
previously generated pseudo-patterns are selected for rehearsal with the recorded output
values as the targets. In Learning without Forgetting (LwF) [Li and Hoiem, 2017], the
model consists of many task-specific parameters and a set of shared parameters. Before
learning a new task, LwF allocates task-specific parameters for the new task θn and
labels the inputs of the current task with the outputs produced by the model using the
shared parameters θs and the parameters specific for the old task θo. These labels are
used for rehearsal to ensure that θs and θo do not forget the old task while θs and θn
are being adapted for the new task.

The effectiveness of pseudo-rehearsal is limited if the input space is large and the
distribution of pseudo-inputs is very different from that of the real inputs. Thus many
recent replay-based methods started to leverage advanced deep generative models to
approximate the distribution of the real data. Deep Generative Replay (DGR) [Shin
et al., 2017] suggests to train a generative adversarial network (GAN) in addition to a
classifier. When the task switches, the samples drawn from the previous GAN can be
used to approximate the loss of the old task when optimizing the current GAN and
classifier. Continual Unsupervised Representation Learning (CURL) [Rao et al., 2019]
is a strategy for continually learning a variational auto-encoder (VAE) with mixture-
of-Gaussian latent space. The VAE itself is used for generative replay to combat its
own forgetting. Pomponi, Scardapane, and Uncini [2021] used a normalizing flow
(NF) to generate internal neural representations for pseudo-rehearsal. NFs are powerful
invertible generative models that can efficiently perform sampling and density estimation
in both directions.

1.5.3 Expansion-based Approaches

The defining characteristic of expansion-based approaches is that as more and more
data or tasks are learned, the size of the model will grow larger. This is usually because
these methods allocate a set of new parameters or a new module of the architecture for
each task, thus localizing the changes to a subset of model parameters. Therefore, these
approaches are sometimes also referred to as structural, architectural or non-parametric
approaches.

Classical expansion-based methods include Growing Neural Gas (GNG) [Fritzke,
1994], which is an incremental network that uses a Hebb-like learning rule to learn
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topological relations among data. Since the model only adds units and connections and
does not change parameters over time, it is able to learn continously over a stream of data.
More recently within the field of deep learning, Rusu et al. [2016] introduced Progressive
Neural Network (PNN), which blocks any change on the parameters already trained
and assigns a new module for each task with lateral connection to previous modules.
This prevents catastrophic forgetting by construction and allows forward transfer, at the
cost of quadratic growth in model size with respect to the number of tasks. Yoon et al.
[2018] proposed Dynamically Expandable Network (DEN), which selectively retrains
parts of the network and dynamically extends it by adding or duplicating neurons. DEN
decides how many neurons to add by group sparse regularization. Oswald et al. [2020]
presented a continual learning approach based on a hyper-network [Ha, Dai, and Le,
2017] that generates the weights of a base network conditioned on task embeddings.
For each task, a new low-dimension task embedding is learned together with the
hyper-network to generate weights that solve the current task. Since the hyper-network
is shared across all tasks, it also requires rehearsing to maintain the mapping from
previous task embeddings to their corresponding task-specific weights. However, the
task-specific weights do not have to be stored because they can be computed from the
low-dimensional embeddings and the previous hyper-network. The Continual Neural
Dirichlet Process Mixture (CN-DPM) [Lee et al., 2020b] model consists of a group of
neural experts, each specializing in a subset of the data stream. Online variational
inference of Dirichlet Process Mixture is applied to decide when to add more experts.
Once an expert is trained on a subset of data, it is no longer updated to prevent
forgetting.

1.5.4 Meta Continual Learning

While the continual learning methods reviewed before were all designed by human
experts, there exists also works in the literature that apply meta learning techniques to
continual learning problems and learn algorithms that can continually learn.

Riemer et al. [2019] defined measures of interference and transfer between two
data points based on the inner product of the gradients at these two points. Based
on this definition, they discussed the interference-transfer trade-off and proposed an
algorithm called Meta-Experience Replay (MER), which combines experience replay
with optimization based meta-learning. This method learns parameters that make future
gradients less likely to cause interference but more likely to enable transfer.

Online-aware Meta-Learning (OML) [Javed and White, 2019] applies meta learning to
learn a feature extractor from a distribution of tasks such that, after the meta-training
phase and the feature extractor is fixed, downstream layers using representations from
the feature extractor as inputs can continually learn a sequence of tasks similar to those
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used for meta-training. An interesting observation made by Javed and White [2019] was
that although OML did not explicitly encourage sparsity, the resulting representations
still turned out to be sparse, which coincides with the idea of some regularization-based
continual learning methods [Golkar, Kagan, and Cho, 2019; Serra et al., 2018].

Flennerhag et al. [2020] proposed a meta learning method called Warped Gradient
Descent (WarpGrad), which focuses on learning an update rule that preconditions
gradients. Since gradient preconditioning can be defined point-wise in parameter space,
WarpGrad can be applied in an optimization trajectory-agnostic fashion and hence scales
to arbitrarily long inner loops, whereas previous optimization-based meta-learning
methods are limited to few-shot setting because they require back-propagation through
the inner loop optimization process. Due to this advantage, it is possible to meta-learn an
optimizer for continual learning. Experiment results showed that the resulting optimizer
is able to learn a series of sine regression tasks without catastrophic forgetting.

1.6 a unifying bayesian view

The approaches discussed in the previous sections appear very different from each other
at first sight, but since they are all proposed to address the same problem, one may
wonder if it is possible to unify them under a single framework. Having a unifying view
of these approaches will not only help us understand the nature of continual learning
better but can also guide us to find new approaches to continual learning. In addition, if
we were to design a hybrid continual learning system that combines multiple continual
learning approaches, having a unifying view makes it possible to decide a trade-off
among the combinations that optimally fits a particular set of desiderata.

Farquhar and Gal [2019a] suggested that one promising candidate for unifying con-
tinual learning approaches is the Bayesian framework. From a Bayesian perspective,
continual learning can be achieved simply by using the current posterior as the prior
for future learning. As we discussed before, regularization-based methods fit into this
framework: methods based on the Bayesian neural networks (BNNs) directly approxi-
mate the model posterior and use it as a prior for the next task; methods that do not rely
on BNNs also use the Bayesian principle to justify or motivate their algorithms. Some
regularization terms used by these methods can also be interpreted as Bayesian priors.
Therefore, regularization-based approaches are considered prior-focused by Farquhar and
Gal [2019a]. In contrast, replay-based methods are likelihood-focused since the input and
output samples used for replay can be seen as approximating the likelihood terms of
past tasks.

In order to clarify the roles of prior and likelihood terms in Bayesian learning objectives,
we first review the concept of evidence lower bound (ELBO) or variational lower bound,
which is central to many variational inference methods in machine learning. Given a
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dataset D = {(xi,yi)} with N input-output data pairs (xi,yi) and a model p(y|x, θ) with
parameters θ, the posterior of θ given by Bayes’ theorem is p(θ|D) =

p(D,θ)
p(D) , which is

intractable to compute since the evidence p(D) =
∫
θ p(D, θ) requires an often intractable

integral. Hence, variational inference methods use simpler and tractable distributions
q(θ) to approximate the true posterior p(θ|D) by minimizing the KL divergence between
them: KL(q(θ)||p(θ|D)). Even though this KL divergence is still intractable to compute
due to its dependence on the true posterior, it can be minimized since we can rewrite it
in the following way:

KL(q(θ)||p(θ|D)) = Eq(θ)[log
q(θ)

p(θ|D)
] (1.4)

= Eq(θ)[logq(θ) − logp(θ,D) + logp(D)]

= Eq(θ)[log
q(θ)

p(θ)
− logp(D|θ)] + logp(D)

= KL(q(θ)||p(θ)) − Eq(θ)[logp(D|θ)] + logp(D). (1.5)

As the last term in (1.5) does not depend on θ, minimizing (1.4) is the same as minimizing
the first two terms in (1.5), which are actually a negation of the ELBO:

ELBO(q(θ)) = −KL(q(θ)||p(θ)) + Eq(θ)[logp(D|θ)]. (1.6)

This provides a clear separation of the contribution from the prior p(θ) and the likelihood
p(D|θ) to the objective function. It is called the evidence lower bound because (1.5)
implies that

logp(D) − ELBO(q(θ)) = KL(q(θ)||p(θ|D)) > 0. (1.7)

So ELBO(q(θ)) is literally a lower bound of the log evidence term logp(D). If we assume
that the data pairs (xi,yi) with different indices i are independent and the input xi are
independent of model parameters θ, we can further rewrite the ELBO:

ELBO(q(θ)) = −KL(q(θ)||p(θ)) + Eq(θ)[logp(D|θ)]

= −KL(q(θ)||p(θ)) + Eq(θ)[

N∑
i

logp(yi, xi|θ)]

= −KL(q(θ)||p(θ)) +

N∑
i

Eq(θ)[logp(yi|xi, θ)] +
N∑
i

logp(xi).
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Again, since the last sum above does not depend on θ, maximizing the ELBO is equiva-
lent to minimizing the following loss:

L(q(θ)) = KL(q(θ)||p(θ)) +

N∑
i

Eq(θ)[logp(yi|xi, θ)]. (1.8)

Now consider continually learning a sequence of T datasets Dt = {(xti ,y
t
i)} for 1 6 t 6 T ,

given (1.8), training a BNN with parameters θ jointly on all datasets leads to the following
loss of the posterior qT (θ):

LT (qT (θ)) =−

T∑
t=1

[
Nt∑
i

EqT (θ)[logp(yti |θ, xti)]

]
+KL(qT (θ)||p(θ)), (1.9)

where the first term is the sum of negative log-likelihoods on all datasets and the second
term is the KL divergence between the posterior and an initial prior p(θ) chosen before
any data is observed.

For continual learning, the previous datasets Dt for t < T might not be available.
Prior-focused methods such as VCL therefore use the following loss instead

LTVCL(qT (θ)) =−

NT∑
i

EqT (θ)[logp(ytT |θ, xtT )] +KL(qT (θ)||qT−1(θ)), (1.10)

where the sum of negative log-likelihoods −
∑T−1
t=1

[∑Nt
i EqT (θ)[logp(yti |θ, xti)]

]
on

previous datasets and the KL divergence term KL(qT (θ)||p(θ)) in (1.9) are replaced by
a KL divergence KL(qT (θ)||qT−1(θ)) between the current posterior and the previous
posterior qT−1(θ). q0(θ) := p(θ) is the initial prior.

On the other hand, replay-based methods are considered likelihood-focused since
they approximate the log-likelihood term of a previous dataset Dt for t < T in (1.9) by a
generative model pt(x,y):

1

Nt

Nt∑
i

EqT (θ)[logp(yti |θ, xti)] ≈
∫

logp(y|θ, x)pt(x,y)qT (θ)dxdydθ. (1.11)

In practice, since the integral in (1.11) is usually computed by Monte Carlo sampling,
the generative model pt(x,y) can be implemented by storing a coreset or training a deep
generative model such as a GAN or a VAE, as we have reviewed before.

Farquhar and Gal [2019a] did not provide a Bayesian interpretation of expansion-
based approaches. However, there are expansion methods based on Bayesian nonpara-
metric priors, which fit naturally to this unifying view. For example, Kessler et al. [2019],
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Kumar, Chatterjee, and Rai [2019], and Mehta et al. [2021] all used an Indian Buffet
Process (IBP) prior to model the structure of a neural network. By online variational
inference of the Beta and Bernoulli distribution that define the IBP, their models can
automatically decide when and by how much to expand the model complexity.

In Chapter 5, we propose an alternative framework for unifying the prior-focused and
likelihood-focused approaches based on information theory and minimum description
length.

1.7 thesis outline

In this section, we discuss the research questions studied in this thesis and provide an
overview of our main contributions.

continual learning with conceptors How do we quantify the capacity of a deep
network? Does a deep network always exhaust its capacity after it is trained on a task? If not,
how can we exploit the remaining capacity for learning new tasks?

These questions are addressed in Chapter 2 and 3. We study the relationship between
L2 regularization and continual learning. We show that when a neural network is trained
with L2 regularization, which is a commonly used technique to prevent over-fitting,
the neural network weights do not always use the entire input space in the previous
layer. A novel neural mechanism called conceptors can be used to identify the linear
subspace that is already used by the weight matrices and their orthogonal subspace can
be considered still free. In order to exploit the spared capacity to learn new tasks, we
propose a variant of the back-propagation algorithm called Conceptor-Aided Backprop
(CAB) to project the gradients onto the free subspace in order to reduce the interference
between the learning process and the already learned knowledge from the past.

In Chapter 3, we study the limitations of CAB that makes it fail in certain scenarios of
continual learning. To overcome these drawbacks, we propose an alternative continual
learning method that constrains the learning of weights based on the conceptors over the
output space instead of the input space. The resulting method applies pseudo-rehearsal
mechanism to ensure the constrained optimization.

continual learning in task agnostic scenario How can we manage to contin-
ually learn a model in scenarios such as multi-agent games in RL or GANs, where the learning
algorithm is agnostic of task changes and the current task may require a different solution than
the previous tasks?

In Chapter 4, we show that catastrophic forgetting is in fact inevitable when task infor-
mation is unknown and different tasks are conflicting with each other. The solution is to
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instead learn a meta-model, and rely on task inference to quickly recover performance
when the task changes. To this end, we proposed the What and How framework, and
applied Bayesian continual learning techniques on the meta level. Experimental results
show that our framework significantly outperform other alternatives in many task-
agnostic scenarios and it is also shown to be effective in preventing the mode-collapse
problem in GANs.

continual learning from the perspective of compression If we consider
learning as the process of compressing data into a model, then what is forgetting in this view?
Especially, can we formalize the concept of forgetting? Can this perspective help us understand
existing continual learning approaches and even lead us to new continual learning methods?

In Chapter 5, we study catastrophic forgetting from the perspective of information
theory and define forgetting as the increase of description lengths of previous data
when they are compressed with a sequentially learned model. In addition, we show
that the prior-focused and likelihood-focused approaches correspond to two predictive
sequential (prequential) codes: the Bayesian mixture code and maximum likelihood (ML)
plug-in code. We empirically compare these approaches and discuss the reasons that
limit the performance of prior-focused methods. In order to overcome these limitations,
we propose a new continual learning method that hierarchically combines ML plug-in
and Bayesian mixture codes.

continual learning as knowledge transfer How can we build a well-performing
reservoir in an analog, unclocked, spiking neuromorphic microchip which has problems such as
low bit resolution, device mismatch, inaccurate neuron models, and timescale mismatch?

The theory of reservoir computing provides guidelines for how to initialize a well-
performing reservoir in digital simulations. However, these guidelines cannot be directly
applied when the reservoir is realized in a neuromorphic hardware with problems
described above. Other alternative methods for constructing a good recurrent spiking
network in such devices also impose formidable challenges from a computational
point of view, because they require either calibration of individual neurons or running
back-propagation through time (BPTT) on the analog unclocked microchips, which
are infeasible due to the same problems listed above. In Chapter 6, we propose a
simple yet effective solution to overcome these challenges. Our main contribution is a
transfer learning scheme for recurrent networks, called Reservoir Transfer, which makes
it possible for us to transfer the dynamical properties of a well-performing recurrent
network, created and optimized on a digital computer, onto a neuromorphic hardware
that displays the above-mentioned problematic properties. We showcase the proposed
scheme with an application to ECG heartbeat abnormality detection.
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The capacity of a deep neural network can be defined in multiple ways and it has been
shown that neural networks with different amount of neurons and layers have different
capacity [Baldi and Vershynin, 2019; Guss and Salakhutdinov, 2018; Sontag, 1998]. So
does a neural network always use up its full capacity once it is trained on a task? If not,
can we quantify how much capacity is used up and exploit the remaining power of the
network? In this chapter, we will show that the theory of conceptors provides us with
a tool to quantify capacity of a neural network and identify the used and free space
within the network. In addition, we propose a variant of the back-propagation algorithm
called Conceptor-Aided Backprop (CAB) to train deep networks. For each layer of the
network, CAB computes a conceptor to characterize the linear subspace spanned by the
neural activation vectors appeared in the already learned tasks. When the network is
trained on a new task, CAB uses the conceptor to project the gradients to the subspace
orthogonal to the used subspace so that the linear mapping already learned in that layer
will be preserved after applying the gradient descent updates. The rest of this chapter is
a verbatim copy of He and Jaeger [2017, 2018] with a few modifications. 1

2.1 conceptors

Conceptors are a general-purpose neuro-computational mechanism that can be used in a
diversity of neural information processing tasks including temporal pattern classification,
one-shot learning, human motion pattern generation, de-noising and signal separation
[Jaeger, 2017]. In this section, we review the basics of conceptor theory and its application
to incrementally training linear readouts of recurrent neural networks as used in reservoir
computing. A comprehensive treatment can be found in [Jaeger, 2014].

A matrix conceptor C for some vector-valued random variable x ∈ RN is defined as a
linear transformation that minimizes the following loss function:

J(C,α) = Ex[||x−Cx||
2] +α−2||C||2fro,

where α is a control parameter called aperture and || · ||fro is the Frobenius norm. This
optimization problem has a closed-form solution:

C = R(R+α−2I)−1, (2.1)

1 [He and Jaeger, 2017] was also presented at the IV Workshop on Dynamical Systems and Brain-inspired
Information Processing in 2017 and received the Best Poster Award.
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Figure 2.1: 3D point clouds (black dots) and their corresponding conceptors, represented by
ellipsoids whose axes are the singular vectors of conceptors and the lengths of these
axes match the singular values of conceptors. Each edge of the plot boxes range from
−1 to +1 admitted by neural dynamics with a tanh nonlinearity; conceptor ellipsiods
lie inside the unit sphere. Image taken from [Jaeger, 2014]

where R = Ex[xx
>] is the N×N auto-correlation matrix of x, and I is the N×N identity

matrix.

svd of conceptors The result given in (2.1) can be understood by studying the
singular value decomposition (SVD) of C. If R = UΣU> is the SVD of R, then the SVD
of C is given as USU>, where the singular values si of C can be written in terms of
the singular values σi of R: si = σi/(σi + α

−2) ∈ [0, 1). In intuitive terms, C is a soft
projection matrix on the linear subspace occupied by the samples of x. For a vector x̂ in
this subspace, C acts like the identity map: Cx̂ ≈ x̂, and when some noise ε orthogonal
to the subspace is added to y, C de-noises: C(x̂+ ε) ≈ x̂. Figure 2.1 shows the ellipsoids
corresponding to three sets of R3 points.

quota of conceptors We define the quota Q(C) of a conceptor to be the mean
singular values:Q(C) := 1

N

∑N
i=1 si. Since si range between 0 and 1,Q(C) is also a value

between 0 and 1. Intuitively, the quota measures the fraction of the total dimensions of
the entire vector space that is claimed by C.

boolean logic on conceptors Moreover, logic operations that satisfy most laws
of Boolean logic can be defined on matrix conceptors as the following:

¬C :=I−C, (2.2)

Ci ∨Cj :=(Ri + Rj)(Ri + Rj +α−2I)−1, (2.3)

Ci ∧Cj :=¬(¬Ci ∨¬Cj), (2.4)
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where the negation ¬C is a linear transformation that softly projects onto a linear
subspace that can be roughly understood as the orthogonal complement of the subspace
characterized by C. The disjunction Ci ∨Cj is the conceptor computed from the union
of the two sets of sample points from which Ci and Cj are computed. It describes a
linear subspace that is approximately the sum of linear subspace characterized by Ci

and Cj, respectively. The definition of the conjunction Ci ∧Cj reflects the de Morgan’s
law. Figure 2.2 illustrates the geometry of these operations.

Figure 2.2: Geometry of Boolean operations on 2-dimensional conceptors. The OR (resp. AND)
operation gives a conceptor whose ellipsoid approximately is the smallest (largest)
ellipsoid enclosing (contained in) the argument conceptor’s ellipsoids. Image taken
from [Jaeger, 2014]

2.2 incremental ridge regression

This section explains how conceptors can be applied to master continual learning in a
simple linear model trained on a supervised task by ridge regression. The training is
done sequentially on multiple input-to-output mapping tasks. This simplified scenario
illustrates the working principle of continual learning with conceptors and will later
be used repeatedly as a sub-procedure in the CAB algorithm for training multi-layer
feed-forward networks.

Consider a sequence of m incoming tasks indexed by j. We denote the training dataset
for the j-th task by Dj := {(xj1,yj1), · · · , (xjn,yjn)}, where xji ∈ RN are input vectors and
y
j
i ∈ RM their corresponding target outputs. Training a linear model only on the dataset
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Dj by ridge regression leads to a task-specific solution Ŵj that minimizes the following
loss function

Ŵj := arg min
W

1

n

n∑
i=1

||y
j
i −Wx

j
i||
2] +α−2||W||2fro. (2.5)

Since Ŵj does not depend on the dataset of any other tasks, in general there is no
guarantee that Ŵj can fit the dataset Dk for k 6= j. So naively training a linear model
sequentially on each task might lead to catastrophic forgetting.

We now describe a conceptor-based incremental ridge regression algorithm designed
to address this problem. Whenever the training dataset for a new task is available, the
incremental method computes a matrix conceptor Cj for the input variable of the new
task using Equation 2.1 and updates the linear model Wj, resulting in a sequence of
linear models W1, . . .Wm. Our goal is that Wj solves not only the j-th task but also all
previous tasks: for k 6 j, yk ≈Wjxk. Since the conceptor Cj is a soft projection matrix
onto the linear subspace spanned by input patterns from the j-th task, the disjuntion
of all previous conceptors Aj−1 = C1 ∨ · · ·∨ Cj−1 characterizes the memory space
already claimed by the previous tasks 1, . . . , j− 1. Therefore, Fj = ¬Aj−1, the orthogonal
complement of Aj − 1, represents the memory space still free for the j-th task. Here
"memory space" refers to the linear subspace of input vectors. In detail, this method
proceeds in the following way:

• Initialization (no task trained yet): W0 = 0M×N,A0 = 0N×N.

• Incremental task learning: For tasks j = 1, . . . ,m do:

1. Store the input vectors from the j-th training dataset of size n into a N×n
sized input collection matrix Xj, and store the output vectors into a M× n
sized output collection matrix Yj.

2. Compute the conceptor for this task by Cj = Rj(Rj + α−2I)−1, where Rj =
1
nX

jXj>

3. Train an increment matrix Wjinc (to be added to Wj−1, yielding Wj), with
the crucial aid of a helper conceptor Fj:

(a) Fj := ¬Aj−1 (comment: this conceptor characterizes the "still disposable"
memory space for the j-th task),

(b) T := Yj − (Wj−1Xj) (comment: this matrix consists of target values for a linear
regression to compute Wjinc),

(c) S := FjXj (comment: this matrix consists of input arguments for the linear
regression),
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(d) Wjinc = TS>(SS> + nλ−2I)−1 (comment: carry out the regression, regular-
ized by λ−2),

4. Update Wj: Wj =Wj−1 +Wjinc.

5. Update A : Aj = Aj−1 ∨Cj (comment: this is possible due to the associativity of
the ∨ operation on conceptors)

learning without forgetting The weight increment Wjinc in 3(d) does not
interfere much with the previously learned weights Wj−1 because the regularization in
step 3(d) constrains the row space of Wjinc to be only the linear subspace spanned by in-
put arguments defined in 3(c), which are inside the kernel of Wj−1 due to the projection
by Fj. Intuitively speaking, when learning a new task, this algorithm exploits only the
components of input vectors in the still unused space (kernel of Wj−1, characterized by
Fj) to compensate errors for the new task and leaves the directions in the already used
memory space (row space of Wj−1, characterized by Aj−1) intact.

Formally, we can rewrite Wjinc as follows:

W
j
inc =TS

>(SS> +nλ−2I)−1 = T(SS> +nλ−2I)−1S> (2.6)

=T(SS> +nλ−2I)−1Xj>Fj, (2.7)

where 2.6 can be derived by either applying the Woodbury matrix identity or the
(simpler) push-through identity, and Fj = FjT since Fj is symmetric. If we assume the
joint conceptor Aj−1 on all previous tasks can be considered a sharp projection matrix,
in other words, if its singular values are either zeros or ones, then by the idempotence
of projection matrices, we have

FjAj−1 = (¬Aj−1)Aj−1 = (I−Aj−1)Aj−1 = 0. (2.8)

Combining this with (2.7), it follows that WjincA
j−1 = 0, which can be used to show that

the proposed incremental ridge regression method is able to learn new tasks without
forgetting old tasks.
W
j
inc is the closed-form solution to the following cost function

J(Wjinc) := E[|Wjincs− t|
2] + λ−2|Wjinc|

2
fro, (2.9)
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where t = yj−Wj−1xj, s = Fjxj. If Wjinc can successfully achieve the objective specified
in 2.9 such that Wjincs− t ≈ 0, then the updated weights Wj can also successfully learn
the data in Dj:

Wjxj =(Wj−1 +Wjinc)x
j =Wj−1xj +Wjincx

j

=yj − t+Wjinc(A
j−1 + Fj)xj = yj − t+WjincA

j−1xj +Wjincs

=yj − t+ 0+Wjincs ≈ y
j. (2.10)

Furthermore, assuming the previous weights Wj−1 can solve all tasks up to j− 1, in
other words, for k 6 j− 1, Wj−1xk ≈ yk, we can also show that this method does not
forget previous tasks:

Wjxk =(Wj−1 +Wjinc)x
k =Wj−1xk +Wjincx

k

=Wj−1xk +WjincA
j−1xk =Wj−1xk + 0 ≈ yj, (2.11)

where xk = Aj−1xk since xk is in the subspace Aj−1 projects onto.

2.3 conceptor-aided sgd and back-prop

In this section, we first derive a stochastic gradient descent version of the algorithm
described in the previous section, then present the procedure of CAB.

2.3.1 SGD

In the algorithm introduced in the previous section, Wjinc is computed by ridge re-
gression, which directly returns the solution for the loss function in 2.9. One can also
minimize this cost function by stochastic gradient descent (SGD), which starts from an
initial guess of Wjinc and repeatedly performs the following update

W
j
inc ←W

j
inc − η∇Wj

inc
J(Wjinc), (2.12)

where η is the learning rate and the gradient is given by:

∇
W
j
inc

J(Wjinc) = 2E[(Wjincs− t)s
>] + 2λ−2Wjinc. (2.13)

Substituting t by yj −Wj−1xj and s by Fjxj = (I−Aj−1)xj in (2.13), we get

∇
W
j
inc

J(Wjinc) (2.14)

= 2E[(Wjinc(I−A
j−1)xj − yj +Wj−1xj)s>] + 2λ−2Wjinc (2.15)

= 2E[(−WjincA
j−1xj + (Wj−1 +Wjinc)x

j − yj)s>] + 2λ−2Wjinc. (2.16)
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Due to the regularization term in the cost function and the assumption that Aj−1 can
be considered a sharp projection matrix, as the optimization goes on, eventually the
component in Winc that is orthogonal to Fj will vanish from weight decay because all
the input s are only inside the linear subspace characterized by Fj, hence component
in Winc orthogonal to it will make no difference in the output but only increase the
Frobenius norm of Winc. As a result, WjincA

j−1xj will converge to 0 as the algorithm
proceeds. In addition, since Wj =Wj−1 +Wjinc, (2.16) can be simplified to

∇
W
j
inc

J(Wjinc) = 2E[(Wjxj − yj)s>] + 2λ−2Wjinc. (2.17)

Adding Wj−1 to both sides of (2.12), we obtain the update rule for Wj:

Wj ←Wj − 2ηE[es>] + 2ηλ−2Wjinc, (2.18)

where e :=Wjxj − yj. In practice, at every iteration, the expected value can be approxi-
mated by a mini-batch of size nB, indexed by iB:

Ê[es>] =
1

nB

L∑
iB=0

(WjxjiB − yjiB)(F
jx
j
iB
)> =

1

nB

L∑
iB=0

(WjxjiB − yjiB)x
j>
iB
Fj, (2.19)

where the transpose for Fj can be dropped since it is symmetric.
If we only train the j−th task without considering the previous tasks, the update rule

given by normal SGD is

Wj ←Wj − 2ηE[exj>] + 2ηλ−2Wj. (2.20)

Comparing this to the update rule in (2.18), we notice two modifications when a
conceptor is adopted to avoid catastrophic forgetting: first, the gradient of weights are
calculated using the conceptor-projected input vector s = Fjxj instead of the original
input vector xj; second, regularization is done on the weight increment Wjinc rather than
the final weight Wj. These two modifications lead to our design of the conceptor-aided
algorithm for training multilayer feed-forward networks.

2.3.2 Backprop

The basic idea of CAB is to guide the gradients of the loss function on every linear
component of the network by a matrix conceptor computed from previous tasks during
error back-propagation [Rumelhart, Hinton, and Williams, 1986], repeatedly applying
the conceptor-aided SGD technique introduced in the previous section in every layer.
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Consider a feed-forward network with L + 1 layers, indexed by l = 0, . . . L, such
that the 0-th and the L-th layers are the input and output layers respectively. W(l)

represents the linear connections between the (l− 1)-th and the l-th layer, where we
refer to the former as the pre-synaptic layer with respect to W(l), and to the latter as the
post-synaptic layer. We denote by N(l) the size of the l-th layer (excluding the bias unit)

and A(l)j a conceptor characterizing the memory space in the l-th layer used up by the
first j tasks. Let σ(·) be the activation function of the nonlinear neurons and θ all the
parameters of the network to be trained. Then the incremental training method with
CAB proceeds as follows:

• Initialization (no task trained yet): ∀l = 0, . . . ,L− 1, A(l)0 := 0(N(l)+1)×(N(l)+1),

and randomly initialize W(l+1)0 to be a matrix of size N(l+1) × (N(l) + 1).

• Incremental task learning: For j = 1, . . . ,m do:

1. ∀l = 0, . . . ,L− 1, F(l)
j
= ¬A(l)(j−1). (This conceptor characterizes the still dispos-

able vector space in layer l for learning task j)

2. Update the network parameters θ(j−1) obtained after training the first j− 1
tasks to θj by stochastic gradient descent, where the gradients are computed
by CAB instead of the classical backprop. Algorithms 1 and 2 detail the
forward and backward pass of CAB, respectively. Different from classical

backprop, the gradients are guided by a matrix conceptor F(l)
j
, such that

in each layer only the activity in the still disposable memory space will
contribute to the gradient. Note that the conceptors remain the same until
convergence of the network for task j.

3. After training on the j-th task, run the forward procedure again on a batch
of nB input vectors, indexed by iB, taken from the j-th training dataset, to

collect activations h(l)iB
j

of each layer into a N(l) ×nB sized matrix H(l)j, and

set the correlation matrix R(l)
j
= 1
nB
H(l)j(H(l)j)>.

4. Compute a conceptor on the l-th layer for the j-th pattern by C(l)j =

R(l)
j
(R(l)

j
+ α−2IN(l)×N(l))−1,∀l = 0, . . . ,L − 1. Finding an optimal aper-

ture can be done by a cross-validation search2.

5. Update the conceptor for already used space in every layer: A(l)j = A(l)j ∨

C(l)j,∀l = 0, . . . ,L− 1.

2 Jaeger [2014] proposed a number of methods for analytical aperture optimization. It remains for future work
to determine how these methods transfer to our situation.
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Algorithm 1 The forward procedure of conceptor-aided backprop, adapted from the
traditional backprop. Input vectors are passed through a feed-forward network to
compute the cost function. L(ŷj,yj) denotes the loss for the j-th task, to which a
regularizer Ω(θjinc) = Ω(θj − θj−1) = ||θj − θj−1||2fro is added to obtain the total cost
J, where θ contains all the weights (biases are considered as weights connected to the
bias units). The increment of parameters rather than the parameters themselves are
regularized, similar to the conceptor-aided SGD.

Require: Network depth, l

Require: W(l)j, l ∈ {1, . . . ,L}, the weight matrices of the network
Require: xj, one input vector of the j-th task
Require: yj, the target output for xj

h(0) = xj

for l = 1, . . . L do
b(l) = [h(l−1)>, 1]>, include the bias unit
a(l) =W(l)jb(l)

h(l) = σ(a(l))

end for
ŷj = h(l)

J = L(ŷj,yj) + λΩ(θjinc)
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Algorithm 2 The backward procedure of conceptor-aided backprop for the j-th task,
adapted from the traditional backprop. The gradient g of the loss function L on the

activations a(l) represents the error for the linear transformation W(l)j between the
(l − 1)-th and the l−th layers. In the standard backprop algorithm, the gradient of

L on W(l)j is computed as an outer product of the post-synaptic errors g and the
pre-synaptic activities h(l−1). This resembles the computation of the gradient in the
linear SGD algorithm, which motivates us to apply conceptors in a similar fashion as in
the conceptor-aided SGD. Specifically, we project the gradient ∇

W(l)jL by the matrix

conceptor F(l−1)
j

that indicates the free memory space on the pre-synaptic layer.

g← ∇ŷJ = ∇ŷL(ŷ,y)

for l = L,L− 1, . . . , 1 do
Convert the gradient on the layer’s output into a gradient on the pre-nonlinearity

activation (� denotes element-wise multiplication):

g← ∇a(l)J = g� σ ′(a(l))

Compute the gradient of weights, project it by F(l−1)
j
, and add it to the regular-

ization term on the increment:

∇
W(l)jJ =g(F(l−1)

j
b(l−1))> + λ∇

W(l)jΩ(θjinc)

=gb(l−1)
>
F(l−1)

j
+ 2λW

(l)
inc

j

=gb(l−1)
>
F(l−1)

j
+ 2λ(W(l)j −W(l)j−1)

Propagate the gradients w.r.t. the next lower-level hidden layer’s activations:

g← ∇h(l−1)J =W(l)j
>
g

end for
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2.4 experiments

We evaluate CAB on the permuted and disjoint MNIST tasks and compare it to elastic
weight consolidation (EWC [Kirkpatrick et al., 2017]) and incremental moment matching
(IMM [Lee et al., 2017]). EWC is a regularization-based method that uses the posterior
distribution of parameters for the old tasks as a prior for the new task. They approxi-
mated the posterior by a Gaussian distribution with the parameters for old tasks as the
mean and the inverse diagonal of the Fisher information matrix as the variance. IMM
includes two variants which are mean-IMM and mode-IMM. Mean-IMM approximates
the distribution of parameters for both old and new tasks by a Gaussian distribution,
which is estimated by minimizing its KL-divergence from the mixture of two Gaussian
posteriors, one for the old task and the other one for the new task. Mode-IMM estimates
the mode of this mixture of two Gaussians and uses it as the optimal parameters for
both tasks. Experimental results showed highly competitive performance of CAB.

Figure 2.3: Average performance across already learned permuted MNIST tasks using CAB or
EWC

2.4.1 Permuted MNIST Experiment

In the permuted MNIST experiment [Goodfellow et al., 2014a; Kirkpatrick et al., 2017;
Lee et al., 2017; Srivastava et al., 2013], a sequence of pattern recognition tasks are
created from the MNIST dataset [LeCun, Cortes, and JC Burges, 1998]. For each task, a
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random permutation of input image pixels is generated and applied to all images in
MNIST to obtain a new shuffled dataset, equally difficult for a MLP to recognize as the
original one, the objective of each task is to recognize these images with shuffled pixels.

For a proof-of-concept demonstration, we trained a simple but sufficient feed-forward
network with [784-100-10] of neurons to classify 10 permuted MNIST datasets. The
network has logistic sigmoid neurons in both hidden and output layers, and is trained
with mean squared error as the cost function. Vanilla SGD was used in all experiments
to optimize the cost function. Learning rate and aperture were set to 0.1 and 4, respec-
tively. For comparison, we also tested EWC on the same task with the same network
architecture, based on the implementation by Seff [2017]. The parameters chosen for
the EWC algorithm were 0.01 for the learning rate and 15 for the weight of the Fisher
penalty term. Figure 2.3 shows the performance of CAB on this task, the average testing
accuracy is 95.2% after learning all 10 tasks sequentially. Although a fair amount of
effort was spent on searching for optimal parameters for EWC, the accuracies shown
here might still not reflect its best performance. However, the same experiment with
EWC was also conducted in [Kemker et al., 2017], where the authors reimplemented
EWC on a network with higher capacity (2 hidden layers and 400 ReLU neurons per
layer) and the resulting average accuracy after learning 10 tasks sequentially was shown
to be around 93%.
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(a) Singular value spectra of conceptors A(0)j on the input layer.

(b) Singular value spectra of conceptors A(1)j on the hidden layer.

Figure 2.4: The development of singular value spectra of conceptors for "used-up" space on the
input layer and hidden layer during incremental learning of 10 permuted MNIST tasks.
Quota of these conceptors are displayed in the legends.
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Since all tasks are generated by permuting the same dataset, the portion of the input
space occupied by each of them should have the same size. However, as more tasks
are learned, the chance that the space of a new task will overlap with the already used
input space increases. Figure 2.4 shows the singular value spectra and quota of the input
and hidden layer conceptors every time after a new task is learned. As the incremental
learning proceeds, it becomes less likely for a new task to be in the free space. For
example, the second task increases the quota of the input layer memory space by 0.1,
whereas the 10th task increases it by only 0.03. However, CAB still manages to make the
network learn new tasks based on their input components in the non-overlapping space.

2.4.2 Disjoint MNIST Experiment

We then applied CAB to categorize the disjoint MNIST datasets into 10 classes [Lee et al.,
2017; Srivastava et al., 2013]. In this experiment, the original MNIST dataset is divided
into two disjoint datasets with the first one consisting of data for the first five digits
(0 to 4), and the second one of the remaining five digits (5 to 9). This task requires a
network to learn these two datasets one after the other, then examines its performance of
classifying the entire MNIST testing images into 10 classes. The current state-of-the-art
accuracy on this task, averaged over 10 learning trials, is 94.12(±0.27)%, achieved by
Lee et al. [2017] using IMM. They also tested EWC on the same task and the average
accuracy was 52.72(±1.36)%.

To test our method, we trained a feed-forward network with [784-800-10] neurons.
Logistic sigmoid nonlinearities were used in both hidden and output layers, and the
network was trained with vanilla SGD to minimize mean squared errors. The aperture
α = 9 was used for all conceptors on all layers, learning rate η and regularization
coefficient λ were chosen to be 0.1 and 0.005 respectively. The accuracy of CAB on
this task, measured by repeating the experiment 10 times, is 94.91(±0.30)%. It is worth
mentioning that the network used by Lee et al. [2017] for testing IMM and EWC had
[784-800-800-10] rectified linear units (ReLU), so CAB achieved better performance with
fewer layers and neurons.

2.4.3 Computational Cost

If a conceptor is computed by ridge regression, the time complexity is O(nN2 +N3)
when the design matrix is dense, where n is the number of samples and N the number
of features. In terms of wall time measures, the time taken to compute a conceptor
from the entire MNIST training set (in this case, n = 55000 images and N = 784

pixels, corresponding to the input layer in our networks) is 0.42 seconds of standard
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notebook CPU time on average. Although we did not implement it in these experiments,
incremental online adaptation of conceptors by gradient descent is also possible in
principle and would come at a cost of O(N2) per update.

2.5 discussion

The experiment results from the previous section indicate that learning disjoint MNIST
datasets is a more challenging task for CAB than learning the permuted MNIST datasets.
To see why this is the case, it is important to understand that when learning a new task,
CAB exploits only the components of input vectors that are not inside the linear subspace
characterized by the conceptor of previous tasks. In other words, the more overlap there
is between the conceptor of the new task and that of the already learned tasks, the less
components in the input patterns are left for CAB to correct the network’s errors on the
new task, hence more difficult for the network to learn these tasks sequentially.

To quantify the overlap between two conceptors Ci,Cj, we can use the similarity
measure proposed by Jaeger [2014]:

ρ(Ci,Cj) =
||(Si)1/2(Ui)>Uj(Sj)1/2||2fro

||diagSi|| · ||diagSj||
, (2.21)

where Ci = UiSi(Ui)> and Cj = UjSj(Uj)> are their singular value decompositions.
This measure ranges in [0, 1]. It is 0 if and only if Ci,Cj specify two orthogonal linear
subspaces, and 1 if and only if Ci is a multiple of Cj.

In order to compare the difficulties of the permuted and disjoints MNIST experiments,
we selected four datasets: Doriginal, Dpermuted, D5to9 and D0to4, where Doriginal
is the original MNIST dataset; Dpermuted is the whole MNIST dataset but the pixels of
every image is shuffled by the same randomly generated permutation; D5to9 consists
of only the images of digits 5 to 9 from the MNIST dataset, and D0to4 has only
the images of digits 0 to 4. Then for each of these four datasets, we computed a
conceptor from the raw input images data inside it. The results were four conceptors
Coriginal,Cpermuted,C5to9 and C0to4.

In the permuted MNIST experiment, the network has to learn to recognizeDpermuted
and Doriginal sequentially, the overlap between their corresponding conceptors can be
measured by ρ(Coriginal,Cpermuted), which is around 0.3 on average.

In contrast, ρ(C5to9,C0to4) is much higher (≈ 0.95), which means the input images
in D5to9 and D0to4 span roughly the same linear subspaces of the input memory space.
Therefore, if a network is first trained on D5to9 and then on D0to4, only a very small
amount of components of the images in D0to4 can be exploited to compensate the
errors, namely those components preserved by F5to9 := ¬C5to9, whereas the linear
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transformation of the components inside the subspace characterized by C5to9 will be
fixed. Figure 2.5 columns (a) and (b) show some images from D0to4 projected by C5to9
and F5to9. Note that when learning to recognize the second dataset, CAB only allows
the network to adjust its performance based on the projected versions displayed in
column (b), which are much less legible than the images projected by C5to9, shown in
the column (a).

Since the same images are also included in Doriginal, for comparison, we also
visualized their components inside the linear subspaces characterized by Cpermuted
and Fpermuted, which can be found in Figure 2.5 columns (c) and (d). In the setting
of permuted MNIST experiment, after the network is trained on Dpermuted, it can
only rely on the components displayed in column (d) to compensate its output errors.
However, it is clear that the images in column (d) are more distinguishable than those in
column (b), hence the permuted MNIST experiment is easier for CAB than the disjoint
one.

A direction for improvement of CAB, suggested by the analysis above, is to change
CAB such that the weights of the network can be adjusted even when the input patterns
of different tasks lie in the same linear subspace. On the other hand, such similarity
between tasks might be exploited to save training time. So another question for further
investigation is how to turn the similarity between different tasks into a desirable prop-
erty rather than difficulty for continual learning. In the next chapter, we propose one
alternative solution based on conceptors to address these problems.

2.6 conclusion

In this chapter, we proposed a conceptor-aided backprop algorithm by applying a
conceptor to every linear layer of a feed-forward network. This method uses conceptors
to guide gradients of parameters during the back-propagation procedure. As a result,
learning a new task interferes only minimally with previously learned tasks, and the
amount of already used network capacity can be monitored via the singular value
spectra and quota of conceptors.

In [Jaeger, 2014], different scenarios for continual learning are investigated in a
reservoir computing setting. Two extreme cases are obtained when (i) the involved
learning tasks are entirely unrelated to each other, versus (ii) all tasks come from the same
parametric family of learning tasks. The two cases differ conspicuously with regards
to the geometry of involved conceptors, and with regards to opportunities to re-use
previously acquired functionality in subsequent learning episodes. The permuted MNIST
task is an example of (i) while the disjoint MNIST task rather is of type (ii). Conceptors
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provide an analytical tool to discuss the "family relatedness" and enabling/disabling
conditions for continual learning in geometrical terms.
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(a) C5to9 (b) F5to9 (c) Cpermuted (d) Fpermuted

Figure 2.5: Projecting several MNIST images for digits 0 to 4 by different conceptors. Columns (a)
and (b) are results after projection by Conceptors C5to9 and its negation F5to9. After
a network is trained on digits 5 to 9, CAB will only use the components projected
by F5to9 to correct the classification errors on these images. Columns (c) and (d)
are results after projection by the conceptor Cpermuted computed from the shuffled
MNIST dataset and its negation Fpermuted. After a network is trained on the shuffled
MNIST, CAB will only use the components projected by Fpermuted to correct the
classification errors on these images.
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We have seen that conceptor-aided backpropagation (CAB) can alleviate catastrophic
forgetting in a feed-forward network. CAB uses conceptors to characterize the linear
subspaces of the input space already used by representations of previous tasks. During
the backpropagation procedure for learning new tasks, CAB exploits only the compo-
nents outside the already occupied subspace, thus learning new tasks does not interfere
with the old tasks.

For many machine learning systems, however, different tasks may share the same
input space but require distinct outputs. For example, an agent that needs to solve
several vision-based tasks always receives natural images as input. Therefore, the input
distributions for all these tasks are exactly the distribution of natural images. In this
case, training such agent using CAB is difficult, since the input vectors of new tasks are
completely inside the space occupied by previous tasks, and almost no input components
are available for further adaptation.

In this chapter, to overcome this limitation of CAB, we first study the relationship
between conceptors and weight matrices trained using L2 regularization, which mo-
tivates us to propose another conceptor-based continual learning method based on
pseudo-rehearsal. In particular, we modify the original approach of CAB so that in-
stead of shielding the weight matrices based on the subspace in the pre-synaptic layer,
the Conceptor-based Pseudo-Rehearsal (CPR) protects them using the subspace of the
post-synaptic layer. As a result, new activation components triggered by the change
of parameters appears only in the free space, thus it does not interfere with old tasks.
Moreover, helpful features from the old tasks can be used by the new tasks, which allows
a forward transfer learning in the network [Lopez-Paz et al., 2017].

To test CPR empirically and demonstrate that it can overcome the drawback of
CAB, we designed an incremental classifier learning experiment, in which a multi-class
classification task is divided into a sequence of One-vs-All [Rifkin and Klautau, 2004]
binary classification tasks. Experiment results show that, with the proposed method,
a multilayer perceptron (MLP) is able to incrementally learn the binary classification
subtasks and achieve a final multi-label accuracy that matches the performance of a
jointly trained network. The rest of this chapter is a verbatim copy of He [2018a] with
modifications to make it congruent with the previous chapter.

37
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3.1 conceptor and l2 regularization

In this section, we discuss the relationship between conceptors and L2 regularization,
which will later help understand how the proposed method works.

3.1.1 Relationship to Ridge Regression

Consider a training dataset D = {(x1,y1), . . . (xn,yn)} where xi ∈ RN,yi ∈ RM. A
linear map W that fits the dataset D by minimizing Jlinear(W) :=

∑n
i=1 ||yi −Wxi||

2

is given by linear regression:

Wlinear := YX
>(XX>)−1, (3.1)

where X is a N×n data collection matrix whose i-th column is xi and Y is the M×n
output data collection matrix whose i-th column is yi.

If we add a L2 regularization term, and minimize Jridge(W,α) :=
∑n
i=1 ||yi −

Wxi||
2] +α−2||W||2fro instead, we obtain the ridge regression solution:

Wridge =YX>(XX> +α−2I)−1. (3.2)

Recall that a conceptor matrix trained on the input vectors in D is a regularized
identity map that minimizes J(C,α) :=

∑n
i=1 ||xi −Cxi||

2] +α−2||C||2fro and the solution
can be computed in closed form as

C = XX>(XX> +α−2I)−1. (3.3)

Combine 3.1, 3.2 and 3.3, it is easy to see that

Wridge =Wlinear(XX
>)(XX> +α−2I)−1 =WlinearC. (3.4)

Hence, ridge regression is a composition of conceptor projection and linear regression,
and it follows that

∀x ∈ RN,Cx = 0 =⇒ Wridgex = 0. (3.5)

Suppose the singular value decomposition (SVD) of X has the form X = UDV> with
U being an N×N orthogonal matrix and V being an n×N matrix with orthonormal
columns. D is a diagonal matrix with descending diagonal entries σi > 0. The SVD of C
can be written in terms of the SVD of X:
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C = U


σ21

σ21+α
−2

. . .
σ2N

σ2N+α−2

U>. (3.6)

Since α−2 and σ−2i are non-negative, the singular values of C are between 0 and 1.

Futhermore, σ2i
σ2i+α

−2 ≈ 0 for σ2i � α−2. Therefore, the vectors x that satisfy Cx ≈ 0 are

the vectors that live in the linear subspace spanned by principal components (columns
of U) with small variance d2i . Given the implication of 3.5, we know that these vectors
will also be ignored by the ridge weights Wridge. This is sometimes called the shrinkage
effect [Hastie, Tibshirani, and Friedman, 2001] of ridge regression.

3.1.2 Relationship to Weight Decay

One might wonder if a similar shrinkage effect also exists for weight matrices connecting
two layers of neurons in a deep network when they are trained with L2 regularization (or
weight decay [Krogh and Hertz, 1992]). Unfortunately this cannot be shown analytically,
but we can check it empirically. The implication ∀x ∈ RN,Cx ≈ 0 =⇒ WL2x ≈ 0 holds
if WL2 nulls vectors in the linear subspace spanned by principal components (PCs)
corresponding to very low variances. In other words, if we compute the matrix W̃L2 that
represents the same linear transformation as WL2 but changes the basis of input space
to the PCs: W̃L2 :=WL2U, the norms of the last columns in W̃L2 should be close to 0.

To verify our hypothesis that L2 regularization will result in similar shrinkage weights,
we trained two feed-forward networks with [784 − 800 − 800 − 10] neurons on the
MNIST classification task, one with L2 regularization and the other one without. In this
experiment, we only consider the weight matrices that connect the two layers of hidden
neurons. We denote the weight matrix trained with L2 regularization as WL2, and the
one without as W. After training the network, we computed the principal components
of neuron activation in the first hidden layer of each network and collected these PCs
as columns of U and UL2, respectively. Figure 3.1 visualizes the norms of columns in
W̃ = WU and W̃L2 = WL2U. It can be seen that with L2 regularization, the columns
correspond to PC directions with low variances have almost zero norms, and this agrees
with the nulling effect of conceptors.
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Figure 3.1: The L2 norm of columns in WU. When W is trained with L2 regularization, the norm
of the last columns are close to 0, hence vectors in the linear subspace spanned by
principal components corresponding to small variances will be nulled by W. This
shrinkage effect coincides with the nulling effect of conceptors.

3.2 limitations of cab

In this section, we discuss in detail the limitation of CAB when the input space of a new
task overlaps with that of the previous tasks. For simplicity, we illustrate the idea by
studying the scenario of sequentially training two supervised tasks on a 3-layer MLP.

Let T1 = {(x1i ,y1i )}i∈I1 , T2 = {(x2i ,y2i )}i∈I2 be two tasks to be trained on a MLP with
L = 3 layers: ∀l ∈ {0, . . . ,L− 1}

al = [â>l , 1]>, (3.7)

âl+1 = fl(Wlal−1), (3.8)

whereWl, fl are weights and element-wise nonlinear transfer functions (e.g. tanh, ReLU
[Nair and Hinton, 2010]) for layer l. â0 = x is the input vector. CAB trains the network
on the first task by minimizing the objective function

J1 = L(âL(x
1, {Wl}l∈{0,...,L−1}),y

1) + λ

L−1∑
l=0

||Wl||
2
fro, (3.9)

here λ is a regularizer parameter and L is some loss function depending on the network
output âL and the target y1 of task 1. After the network is trained on T1, the resulting
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weights that minimize the loss are saved as {W1l }l∈{0,...,L−1} and a batch of input vectors
from {x1i }i∈I1 are fed into the trained network to collect a set of activation vectors
{a1l i} from each layer l. From these activation vectors, a conceptor C1l is computed to
characterize the linear subspace SCl already used by the first task in layer l. Importantly,
C1l preserves the activation vectors when the inputs are from T1, and its negation
F1l := ¬C1l = I− C1l that characterizes the orthogonal complement of SCl (which is
considered the free space SFl ) will null these vectors:

C1la
1
l i ≈ a

1
l i, (3.10)

F1la
1
l i ≈ 0. (3.11)

When the second task comes, the new weights W2l (which will later replace W1l ) are
computed by adding incremental weightsWinc

l to the old weightsW1l :W2l :=W1l +W
inc
l .

In the training process of the second task,W1l will be fixed and onlyWinc
l will be adapted

to minimize

J2 = L(âL(x
2, {W2l }l∈{0,...,L−1}),y

2) + λ

L−1∑
l=0

||Winc
l ||2fro, (3.12)

subject to Winc
l C

1
l ≈ 0. (3.13)

CAB enforces the constraint in 3.13 by multiplying the gradient of Winc
l with F1l at

every step of the gradient descent, which essentially projects the rows of Winc
l to the

orthogonal complement of SCl , thus Winc
l C

1
l ≈ 0. As a result, the final weight W2l does

not forget the first task:

∀l ∈ {0, . . . ,L− 1}, fl(W2l a
1
l ) = fl((W

1
l +W

inc
l )a1l )

≈ fl(W1l a
1
l + 0) = fl(W

1
l a
1
l ). (3.14)

Although effective at preventing forgetting, the problem with CAB is that it might
not be able to learn new tasks when their input spaces overlap significantly with the
old tasks. Consider an extreme case where two tasks have exactly the same inputs
but different outputs: {x1i }i∈I1 = {x2i }i∈I2 , {y1i }i∈I1 6= {y2i }i∈I2 (for example, {x1i }i∈I1 is
the entire set of MNIST digit images, y1i ,y2i are binary classification outputs such that
y1i = 1 only if x1i is an image of digit 0 and y2i = 1 only if x2i is an image of digit 1). In
this case, it is possible to train both tasks on the same network with a multi-head output
(i.e., using a separate matrix WjL−1 at the last layer for each task j), which is commonly
used in continual learning models ( Bakker and Heskes [2003], Li and Hoiem [2016],
Rusu et al. [2016], and Serra et al. [2018]). However, CAB will perform poorly in this case
because enforcing Winc

l C
1
l ≈ 0 will render Winc

l useless. This can be shown by induction:
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since the input vectors of both tasks are the same, a20 = a10 ∈ SC10 , ∀l ∈ {0, . . . ,L− 1}, if

a2l = a1l , then

a2l+1 = [f(W1l a
2
l +W

inc
l a

2
l )
>, 1]> ≈ [f(W1l a

1
l +W

inc
l C

1
la
1
l )
>, 1]>

≈ [f(W1l a
1
l )
>, 1]> = a1l+1. (3.15)

Therefore, the output of the network will remain the same and it cannot adapt to the
second task.

3.3 conceptor-based pseudo rehearsal

In this section, we introduce the conceptor-based pseudo rehearsal (CPR), which does
not have the drawback discussed in the previous section. Since the intransigence of
CAB is caused by task overlap in the input space, we usually have no control over
representations in the input space because they are given by the data source. Instead
of constraining the incremental weights by the free space of the input layer, the new
method constrains them by the free space of the output layer. Figure 3.2 visualizes this
difference between CPR and CAB.
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(a) CAB (b) CPR

Figure 3.2: Structure of a network trained on two tasks incrementally using CAB and CPR from
layer a0 to a3. The red region in each layer represents the subspace already occupied by
the first task, and the green region represents the free space available to the second task.
By constraining the incremental weights Winc

i based on the free space in post-synaptic
layers instead of pre-synaptic layers, CPR makes the entire input layer available to
all tasks, thus can overcome the drawback of CAB. By tracing the red arrows that
represent old weights from the input layer a0 to the output layer a3, one can verify
that both methods avoid catastrophic forgetting.

Again, we illustrate the idea by considering the scenario of training two tasks T1 =

{(x1i ,y1i )}i∈I1 , T2 = {(x2i ,y2i )}i∈I2 sequentially on a feed-forward network. A complete
algorithm that extends to any finite number of layers and tasks is given at the end of the
section.

To learn the first task, the procedure remains the same as with CAB. For the second
task, for l 6= 3, the new weight W2l := W1l +W

inc
l is defined as the sum of the weight

W1l learned from the previous task and an incremental weight Winc
l ; for l = 3, we use a

multi-head output, so W2l is a new weight matrix independent from W1l (see Figure 3.2
(b)). During the training process for T2, W1l will be considered as a constant and only
Winc
l will be adapted. Unlike CAB, to ensure that adding Winc

l does not interfere with
the previous task, we replace the constraint Winc

l C
1
l ≈ 0 in 3.13 by

∀al,C1l+1fl(W
2
l al) ≈ C

1
l+1fl(W

1
l al). (3.16)

The intuition behind this constraint is that changing the weights from W1l to W2l should
not result in any change of the activation component in the already used subspace
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SCl+1 of the next layer. This forces the change caused by the incremental weight Winc
l

to only happen in the free space SFl+1 of the next layer. Note that CAB constrains
the incremental weights Winc

l of layer l by the conceptor C1l in the pre-synaptic layer,
whereas CPR constrains Winc

l by the conceptor C1l+1 in the post-synaptic layer.
In practice, the constraint 3.16 can be enforced by a pseudo-rehearsal strategy, which

adds the following rehearsal loss to the objective function of the second task described
in 3.12:

γ

L−2∑
l=0

E[||C1l+1(fl(W
2
l εl) − fl(W

1
l εl))||

2
2]. (3.17)

Here εl is a random vector that has the same shape as al and we simply draw its sam-
ples from the standard normal distribution, these random samples can be considered
as the pseudo input vectors for rehearsing the weights in layer l, and its correspond-
ing output vectors given by the old weights in the used space C1l+1fl(W

1
l εl) are the

pseudo targets. We use standard normal distribution instead of a learned distribu-
tion of activation vectors a1l from the previous task because we need the constraint
C1l+1fl(W

2
l al) ≈ C

1
l+1fl(W

1
l al) to hold for any vector al, which might be samples of a

different distribution. This is a necessary condition for the proof in 3.20.
In Section 3.1, we discussed the relationship between conceptors and the weights

trained with L2 regularization, and we concluded with the implication in 3.5. We can
now use this implication to show that when the constraint 3.13 is satisfied, the change
of weights does not lead to forgetting of previous tasks.

Formally, for any activation vector al, if

C1l+1(fl(W
2
l al) − fl(W

1
l al)) ≈ 0, (3.18)

by 3.5, it implies that

W1l+1(fl(W
2
l al) − fl(W

1
l al)) ≈ 0. (3.19)

It can be shown by induction that with the new parameters {W2l }l∈{0,1} and the task-
specific output weight W12 , the MLP does not forget the first task:

f2(W
1
2f1(W

2
1f0(W

2
0x
1
i )))

=f2(W
1
2 [f1(W

2
1f0(W

2
0x
1
i )) − f1(W

1
1f0(W

2
0x
1
i )) + f1(W

1
1f0(W

2
0x
1
i ))])

≈f2(W12f1(W
1
1f0(W

2
0x
1
i )))

=f2(W
1
2f1(W

1
1 [f0(W

2
0x
1
i ) − f0(W

1
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i ) + f0(W

1
0x
1
i )]))

≈f2(W12f1(W
1
1f0(W

1
0x
1
i ))). (3.20)
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On the other hand, as long as the old task does not occupy the entire space of the (l+ 1)-
th hidden layer (in other words, C1l+1 is not almost the identity matrix), the regularization
term does not imply fl(W2l al) = fl(W

1
l al), thus Winc

l can still be adapted. A way to
check how much capacity is left for further learning is, as we described before, to plot
the singular value spectra of C1l+1, if there are still some singular values close to 0, SC1l+1
does not equal to the entire space and the network is capable of learning more. Another
advantage of CPR over CAB is that conceptors are applied to the hidden layers instead
of the input layers in CPR. In the case that the entire space of a hidden layer is occupied,
the capacity can be extended by simply introducing new neurons in the overloaded
hidden layer when using CPR. This is normally not possible with CAB since the size of
the input layer is usually decided by the data and has to stay fixed.

Below is the complete version of the CPR algorithm that trains a network with L layers
on a sequence of J supervised tasks using CPR (∀j ∈ {1, . . . , J}, T j = {(xji,y

j
i)}i∈Ij ) :

• Initialization (no task trained yet):
∀l = 1, . . . ,L− 1, set A0l to zero. ∀l = 0, . . . ,L− 1, set W0l to zero and randomly
initialize Winc

l .

• Incremental task learning: For j = 1, . . . , J do:

1. Let Wjl := W
j−1
l +Winc

l for l < L and W
j
L := Winc

L . Update Winc
l by

stochastic gradient descent to minimize J = L(aL(x
j, {Wjl}l∈{0,...,L−1}),yj) +

λ
∑L−1
l=0 ||Winc

l ||2fro + γ
∑L−2
l=0 E[||C1l+1(fl(W

2
l εl) − fl(W

1
l εl))||

2
2]. The gradient

of J with respect to Winc
l is estimated using a batch of samples for xj, yj

and εl for l = 0, . . . ,L− 2. The samples for εl are randomly drawn from the
standard normal distribution.

2. After training on the j-th task, run the forward procedure again on a batch
of input vectors from the j-th training dataset, and collect activations {a

j
li
} to

compute a conceptor Cjl.

3. Update the conceptor for already used space using the OR operation: ∀l =
1, . . . ,L− 1,Ajl = A

j−1
l ∨C

j
l

3.4 experiments

10 binary mnist To clearly demonstrate that the proposed method can overcome
the limitation of CAB discussed in Section 3.2, we designed an experiment where a
sequence of tasks to be learned have exactly the same input space, but the output of
every task varies. In particular, we turn the standard task of classifying MNIST digits
into a sequence of 10 binary classification subtasks, where every task is trained on
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the images from the entire MNIST training set, but for a different task the network
has to detect a different digit class by returning 1 for images from that class and 0

otherwise. For example, it should return 1 for the first task only if the input is an image
of digit 0. After the 10 binary classification tasks are finished, we test the network by its
performance on classifying the testing images into 10 classes.

The network architecture we use for this experiment has [784− 800− 800− 10] neurons.
We use rectified linear units for the hidden neurons, and the sigmoid transfer function
for the output neurons. For one binary classification subtask, only a single output
neuron is trained and used. Weight matrices in all layers and for all tasks are randomly
initialized by Xavier initializer [Glorot and Bengio, 2010]. The loss function is optimized
by the Adam optimizer [Kingma and Ba, 2014] with default parameters provided by
Tensorflow [Abadi et al., 2015]. Table 3.1 compares the final accuracies on the entire
MNIST testing dataset using different methods.

We first trained a standard classifier with the above-mentioned architecture as a
control experiment. We call this scheme "Joint Training", since the 10 classification tasks
are trained at the same time. An ideal incremental learning method should achieve an
accuracy close to this case.

For CAB, if we choose a large aperture α = 6, the binary classification accuracy
decreases to almost chance level after the first 3 subtasks, since the gradients are nulled
by conceptor projection and new subtasks will not be learned. If we adopt a very small
aperture α = 10−7, CAB is equivalent to normal back-propagation, and the network
learns every subtask perfectly but will also forget catastrophically. Among all apertures
we tried, the best performance achieved is when α = 0.15, in which case the conceptors
partially protect past knowledge, and achieve an optimal balance between learning
and forgetting. However, due to their shared input space, the subtasks are intrinsically
conflicting with each other from the perspective of CAB. Therefore, the overall accuracy
is still far from the joint training scheme.

With aperture α = 4 for all conceptors, weight decay parameter λ = 9× 10−6 and
pseudo-rehearsal strength γ = 10, CPR could achieve an accuracy almost as good as that
of the joint training scheme. Since the last layer of the network is a multi-head operation,
every task has its own output weights. One might argue that the performance of CPR
can be achieved by freezing the first two layers and only adapting the output weights,
which is a common transfer learning technique [Yosinski et al., 2014]. For this reason,
we also conducted an experiment where only the last layer is adapted after the first
subtask is trained. However, this method also performs poorly since the hidden features
for detecting digit 0 is not adequate for classifying all 10 digits. CPR, on the other hand,
allows new features to be developed in the hidden layers during subsequent training.
Figure 3.3 shows how the singular values of conceptors on the two hidden layers grow
as more tasks are learned.
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Table 3.1: Accuracies on 10 Binary MNIST Task using different methods

Method Testing Accuracy

Joint Training 98.18% (best achieved in five runs)

CAB (α = 6) 23.74%

CAB (α = 10−7) 49.16%

CAB (α = 0.15) 69.73% (best achieved in five runs)

Only Last Layer 64.59%

CPR (α = 4) 98.032(±0.02)% (averaged over five runs)

(a) hidden layer 1 (b) hidden layer 2

Figure 3.3: Developments of singular value spectra of conceptors for already occupied space in
two hidden layers as more binary classification tasks are learned.

split mnist Another experiment we conducted is to split the original MNIST dataset
into two disjoint subsets each contains images of five digits (0− 4 in the first dataset and
5− 9 in the second) and compute the average accuracy after learning them one after
the other. In this experiment, the input spaces of two tasks overlap with each other but
they are not exactly the same. The best result on this experiment was 99.0% achieved by
[Serra et al., 2018] after 50 epochs of training. With CPR, the same network architecture
can achieve a final accuracy of 99.05% after 10 epochs. The hyper-parameters adopted
are exactly the same as those used in 10 Binary MNIST experiment.

permuted mnist Finally, we tested CPR on the permuted MNIST experiment, in
which we randomly shuffle the pixels in MNIST to create another dataset of the same size
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as the original MNIST, and compute the average performance after learning them one
after the other. In this setup, due to the random permutation, the input spaces between
two tasks intersect minimally. CAB was shown [He and Jaeger, 2018] to outperform two
other popular approaches [Kirkpatrick et al., 2017; Lee et al., 2017] to continual learning
on this task. We tested both methods on the network architecture described in the first
experiment. CAB achieves a final average accuracy of 97.34% with α = 4. CPR performs
almost as good as CAB with a final accuracy at 97.3% using the same aperture and other
hyper-parameters as in the 10 Binary MNIST experiment.

3.5 conclusion

In this chapter, we discussed the limitation of conceptor-aided backprop on incrementally
training tasks with similar input spaces. To overcome this limitation, we proposed
another continual learning method called conceptor-based pseudo-rehearsal. In contrast
to CAB, CPR constrains subsequent changes of a weight matrix based on the subspace
in post-synaptic layer instead of pre-synaptic layer.

To understand how and why CPR works, we also discussed the relationship between
conceptors and weights trained under L2 regularization. Conventionally, L2 regulariza-
tion has been used to prevent a model from learning noise in training data in order to
achieve better generalization. CAB and CPR show that the capacity saved from learning
randomness in one dataset can be identified by conceptors and utilized for learning new
tasks.
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Most continual learning approaches we have reviewed before implicitly assume that
there exists a multi-task solution for the sequence of tasks and that task information
is available to the learner. In this chapter, we discuss realistic scenarios where these
assumptions do not hold. A natural approach to deal with this case is to separate the
concerns into what task is currently being solved and how the task should be solved.
This approach allows us to move the focus of continual learning from less forgetting
to faster remembering – i.e measuring how quickly the network recovers performance
rather than measuring the network’s performance without any adaptation. It also opens
the door to combining meta-learning and continual learning techniques, leveraging their
complementary advantages. In practice, this What and How framework is implemented
by differentiating task specific parameters from task agnostic (meta) parameters, where
the latter are optimized in a continual meta learning fashion, without access to multiple
tasks at the same time. The rest of this chapter is an almost verbatim copy of [He et al.,
2020], the main idea of which was first introduced in [He et al., 2019b].

4.1 introduction

In the previous two chapters we have introduced two conceptor-based continual learning
(CL) algorithms. Like many other CL algorithms, their goal is to ensure that, after training
on a sequence of tasks, the performance of the network is close to a network trained on
all tasks at the same time. Hence, all these methods implicitly assume that there is always
a multi-task solution that fits all previous tasks. In addition, they are designed with an
assumption that either the identities of different tasks or the boundaries between them
are available to the continual learner so that it knows when to update the conceptors to
protect the already used linear subspace. Such an assumption is also commonly made by
many CL methods [Zeno et al., 2018] in order to decide what parameters to consolidate
and at what time.

However, there are many scenarios where both of the above-mentioned assumptions
do not hold. Consider a multi-agent game in reinforcement learning (RL), where all
agents are learning and adapting their policies. For any of these agents, the objective it
tries to optimize (in other words, its task) depends not only on itself and the environment,
but also on the policies and configurations of other agents, which are usually not directly
observable. Moreover, the other agents might change their policies at any moment as
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they are also learning. As a result, the task for this agent is changing all the time and
there are no clearly defined boundaries available to the agent. It has been observed that
such non-stationarity in multi-agent systems usually causes catastrophic forgetting of
the agent [Hernandez-Leal, Kartal, and Taylor, 2019]. For example, Vinyals et al. [2019]
trained agents to play the video game StarCraft II by self-play [Tesauro et al., 1995], and
they noticed that one salient drawback of this approach is in fact forgetting: the agent
may forget how to defeat a previous version of itself as training progresses, and this
may lead to a "tail-chasing" cycle where the agents always relearn a previously learned
strategy and training never converges.

Furthermore, since the tasks now depend on the configurations of other agents, in
general, there is no guarantee that a multi-task solution would exist in these settings.
A potential example is Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014b], where a generator G and a discriminator D are trained together by playing
a minimax game. The objective of D is to classify the data as real or fake, whereas
the goal of G is to fool D as much as possible by generating fake data. It was shown
in [Goodfellow et al., 2014b] that the optimal discriminator D∗(x) is a function of the
generator probability density function pG(x),

D∗(x) =
pdata(x)

pdata(x) + pG(x)
.

Therefore, if we take two snapshots G1,G2 of the generator at different moments of
the training process such that pG1(x) 6= pG2(x) for some x where pdata(x) 6= 0, then
their corresponding optimal discriminators have to be different. In other words, there
is no multi-task solution for the discriminator to be optimal for both generators. As
a result, optimizing the discriminator with respect to a new version of the generator
will inevitably lead to degradation of its performance with respect to a past generator,
which is considered forgetting by the traditional metric of continual learning. Indeed,
it has been shown empirically by Liang et al. [2019] and Thanh-Tung and Tran [2020]
that GANs suffer from catastrophic forgetting, and they adapted CL methods such as
Elastic Weight Consolidation (EWC) [Kirkpatrick et al., 2017] and Synaptic Intelligence
(SI) [Zenke, Poole, and Ganguli, 2017] to alleviate forgetting in GANs . However, as we
pointed out before, these methods were initially designed with implicit assumptions
that a multitask solution always exists and precise task boundaries are available, which
make them unsuitable for the setting of multi-agent RL games and GANs.

In this chapter, we propose a CL framework that does not make these assumptions and
is applicable in a task agnostic scenario where the tasks can potentially be conflicting
with each other. Furthermore, to evaluate our framework, we shift our focus from less
forgetting to faster remembering: to rapidly recover the performance on a previously
learned task, given the right context as a cue.
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4.2 formal statement

We consider an online learning scenario similar to [Hochreiter, Younger, and Con-
well, 2001; Nagabandi, Finn, and Levine, 2019], where at each time step t, a model f̂
parametrised by θt receives an observation xt and makes a prediction ŷt := f̂(xt; θt). It
then gets the ground truth yt on that task, which can be used to optimize its parame-
ters for better performance in the future. If the data distribution is non-stationary (for
example, (x,y) are sampled from task A for a while, then the task switches to task B at
some moment t ′), then training on the new data might lead to catastrophic forgetting –
the new parameters θ ′ can solve task B but not task A anymore.

Many continual learning methods were proposed to alleviate the problem of catas-
trophic forgetting. Most of them require either the task identities (A and B in the
example) or at least the moment when the task switches (t ′ in this case). This infor-
mation, however, is not available when the ground truth yt depends not only on the
observation xt but also on some hidden task (or context) variable Tt: yt = f(xt, Tt),
a common situation in partially observable environments [Cassandra, Kaelbling, and
Littman, 1994; Monahan, 1982]. Only recently, the CL community started to look at the
task agnostic setting [Aljundi et al., 2019; Zeno et al., 2018]. However, all these methods
have the underlying assumption that no matter what tasks the learner has been learning,
at any time t, it is always possible to find parameters θt that fit all previous tasks:
∃θt s.t. ∀t ′ 6 t, f̂(xt ′ , θt) ≈ yt ′ . As discussed in the previous section, this assumption
does not hold in many realistic scenarios where different tasks conflict with each other:
f(xt, Tt) 6= f(xt ′ , Tt ′) even when xt = xt ′ . It follows that, in those settings, catastrophic
forgetting cannot be avoided if the model f̂(·; θt) does not depend on the hidden task
variable Tt.

4.3 what & how framework

Here we propose a framework for task agnostic continual learning that explicitly infers
the current task from some context data Dctx

t and makes predictions based on both
the inputs xt and the inferred task representations ct. The framework consists of
two modules: a task inference encoder algorithm Fwhat : Dctx

t → ct that predicts the
current task representation ct based on the context data Dctx

t , and a decoder algorithm
FHow : ct → f̂t that maps the task representation ct to a task specific model f̂t : x→ ŷ.

Under this framework, even when the inputs xt and xt ′ are the same, the predictions
ŷt and ŷt ′ can be different from each other depending on the context. In this work, we
choose the recent k observations {(xt−k,yt−k), · · · (xt−1,yt−1)} as the context dataset
Dctx
t . This choice is reasonable in an environment where the task variable Tt is piece-wise
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stationary or changes smoothly. An overview of this framework is illustrated in Figure
4.1.

Figure 4.1: What & How framework

4.3.1 Meta Learning as Task Inference

In fact, many recently proposed meta-learning methods can be seen as decomposing
the problem into What and How modules. For example, Conditional Neural Processes
(CNP) [Garnelo et al., 2018] embed the observation and target pairs in context data
(xi,yi) ∈ Dctx

t by an encoder network ri = h(xi,yi; θh). The embeddings are then
aggregated by a commutative operation ⊕ (such as the mean operation) to obtain a
single embedding of the context: rt = FWhat(Dctx

t ; θh) =
⊕
xi,yi∈Dctx

t
h(xi,yi; θh). At

inference time, the context embedding is passed as an additional input to a decoder g to
produce the conditional outputs: FHow(rt) = g(·, rt; θg).

Model-Agnostic Meta-Learning (MAML) [Finn, Abbeel, and Levine, 2017] infers the
current task by applying one or a few steps of gradient descent on the context data Dctx

t .
In this case, the gradient descent algorithm is the What encoder and the resulting task-
specific parameters can be considered a high-dimensional representation of the current
task: θkt = FWhat(Dctx

t ; θinit) = Uk(θinit,Dctx
t , λin) := θk−1t − λin∇θLin(f̂(·; θk−1t ),Dctx

t ),
where the meta parameters θinit

t are the initial values of the model parameters, Uk is the
operator that updates θinit by k steps of gradient descent on the context data Dctx

t with
an inner loop learning rate λin and an inner loop loss function Lin. The How decoder of
MAML returns the task-specific model by simply re-parametrizing the model f̂ with θt:
FHow(θt) := f̂(·; θt).

Rusu et al. [2019] proposed Latent Embedding Optimization (LEO) which combines
the encoder/decoder structure with the idea of inner loop fine-tuning from MAML. The
latent task embedding zt is first sampled from a Gaussian distribution N(µet ,diag(σet

2))

whose mean µet and variance σet
2 are generated by averaging the outputs of a re-

lation network: µet ,σet = 1
|Dcxt|2

∑
xi∈Dcxt

∑
xj∈Dcxt gr(ge(xi),ge(xj)), where gr(·) is a

relation network and ge(·) is an encoder. Task-dependent weights can then be sampled
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from a decoder gd(·): wt ∼ N(µdt ,diag(σdt
2
)), where µdt ,σdt = gd(zt). The final task

representation is obtained by a few steps of gradient descent: z ′t = FWhat(Dcxt
t ) :=

zt − λ
in∇z ′Lin(f̂(·;wt),Dcxt

t ), and the final task specific weights w ′t are decoded from
z ′: FHow(z ′t) = w

′
t ∼ N(µd′t ,diag(σd′t

2
)), where µd′t ,σd′t = gd(z

′
t).

In Fast Context Adaptation via Meta-Learning (CAVIA) [Zintgraf et al., 2019], a
neural network model f̂ takes a context vector ct as an additional input: ŷ = f̂(x, ct; θ).
The context vector is inferred from context data by a few steps of gradient descent:
ct = FWhat(Dctx

t ; θ) := cinit − λin∇cLin(f̂(·, c; θ),Dctx
t ). Then a context-dependent model

is returned by the How decoder: FHow(ct) := f̂(·, ct; θ).
Table 4.1 shows how some of the meta-learning methods can be considered as consist-

ing of What and How modules.

Table 4.1: The What & How modules of some meta learning methods.

Methods ct := FWhat(Dcxt
t ) FHow(ct)

MAML θt := θ
init
t − λin∇θLin(f̂(·; θ),Dcxt

t ) f̂(·; θt)
CNP rt :=

⊕
xi,yi∈Dcxt

t
hθ(xi,yi) gθ(·, rt)

LEO z ′t := zt − λ
in∇z ′Lin(f̂(·;wt),Dcxt

t ) w ′t ∼ N(µd′t (z ′t),diag(σ
d′
t (z ′t)

2
))

CAVIA ct := c
init − λin∇cLin(f̂(·, c; θ),Dcxt

t ) f̂(·, ct; θ)

In this work, to showcase our framework, we choose a simple meta learning method
called Reptile [Nichol, Achiam, and Schulman, 2018], mainly for its simplicity and for
being computationally inexpensive as it does not require second order gradients. Similar
to MAML, Reptile tries to learn an initialization of model parameters θinit

t such that
optimization on a test task is fast, so its What encoder and How decoder are exactly the
same as those of MAML. To update the meta parameters θinit

t , Reptile simply uses the
difference between the task-specific parameters and the initialization as the gradient
direction: gθinit := θinit

t − θkt = θinit
t −Uk(θinit

t ,Dctx
t , λin).

In 4.7.3, we also tested full MAML and other meta learning instantiations of the
framework, and it can be seen that our framework does not depend on the particular
meta learning implementation.

4.3.2 Continual Meta Learning

In order to train a meta-learning model, one normally needs access to a task distribution
so that i.i.d task samples are available at the same time during training. This is not
possible in the online learning setting where tasks are presented sequentially one after
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the other. Finn et al. [2019] proposed an online meta-learning algorithm called follow
the meta leader (FTML) based on the framework of regret-minimization. However, FTML
requires task information, which is not available in our scenario. In addition, the goal of
FTML is faster adaptation with fewer data rather than avoiding catastrophic forgetting,
so it simply stores all datapoints from previous tasks, which is considered infeasible in
continual learning due to limited resources or privacy reasons. In this work, we choose
an alternative framework of online learning called online variational Bayes [Minka,
Xiang, and Qi, 2009; Opper, 1998], since it does not require unbounded computational
and memory budget. Furthermore, when additional memory budget are available for
storing datapoints, online variational Bayes can also be extended by combining it with
memory-based online learning methods [Kurle et al., 2020; Minka, Xiang, and Qi, 2009;
Nguyen et al., 2018]. In this work, we focus on an algorithm that does not have a growing
memory cost over time.

Formally, consider the meta functions FWhat : Dctx
t → ct and FHow : ct → f̂t, whose

composition results in a meta function that maps a context dataset Dctx
t to its correspond-

ing task-specific model f̂t = FHow ◦ FWhat(Dctx
t ;φ), where φ represents the collection

of all meta parameters. For instance, in MAML and Reptile, FWhat finetunes initial
weights θinit on the context dataset Dctx

t for k steps to get final weights θkt as the task
representation ct = FWhat(Dctx

t ; θinit) = θkt := θk−1t − λin∇θLin(f̂(·; θk−1t ),Dctx
t ), where

θ0t := θinit. On the other hand, FHow simply parameterizes the network with the final
weights as the task-specific model: FHow(ct) = FHow(θkt ) = f̂(·; θt). So in the cases of
MAML and Reptile, the meta parameters of FWhat are θinit and FHow does not have
meta parameters, thus φ is simply θinit.

Using Bayes rule, the posterior p(φ|D0:t) can be recursively updated by

p(φ|D0:t) =
p(Dt|φ,D0:t−1)p(φ|D0:t−1)

p(Dt|D0:t−1)
, (4.1)

where Dt = {(xt,yt)} and D0:t is the union of all datasets up to t.
In addition, we make two assumptions: first, the input xt is independent of the meta

parameters φ given previous data D0:t−1: p(xt|φ,D0:t−1) = p(xt|D0:t−1); second, a
moving window of context data is informative about the task variable: p(Dt|φ,D0:t−1) =
p(Dt|φ,Dctx

t ). Under these assumptions, the posterior can be further simplified:

p(φ|D0:t) =
p(yt|xt,φ,Dctx

t )p(φ|D0:t−1)

p(yt|xt,D0:t−1)
, (4.2)

where the likelihood term p(yt|xt,φ,Dctx
t ) is modeled by the What and How framework:

p(yt|xt,φ,Dctx
t ) = p(yt|f̂t(xt)) = p(yt|F

How ◦FWhat(Dctx
t ;φ)(xt)). (4.3)
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In online variational Bayes, the true posterior p(φ|D0:t) is approximated by a para-
metric distribution qt(φ) by minimizing the Kullback-Leibler divergence

qt(φ) = arg min
q(φ)

KL(q(φ)||p(φ|D0:t)). (4.4)

Using Eq. 4.2, this KL divergence can be written as:

KL(q(φ)||p(φ|D0:t)) =Eq(φ)

[
log

q(φ)

p(φ|D0:t)

]
=Eq(φ)

[
log

q(φ)p(yt|xt,D0:t−1)
p(yt|xt,φ,Dctx

t )p(φ|D0:t−1)

]
=KL(q(φ)||p(φ|D0:t−1)) − Eq(φ)

[
logp(yt|xt,φ,Dctx

t )
]

+ logp(yt|xt,D0:t−1). (4.5)

Since logp(yt|xt,D0:t−1) does not depend on q(φ), it can be omitted in the optimization.
Furthermore, if we use a parametric distribution at every time step, then p(φ|D0:t−1)
can be approximated by qt−1(φ) and the minimization problem in Eqn. 4.4 is equiv-
alent to maximizing the evidence lower bound (ELBO) E(q(φ),D0:t,qt−1(φ))) :=

Eq(φ)[logp(yt|xt,φ,Dctx
t )] − KL(q(φ)||qt−1(φ)):

qt(φ) = arg max
q(φ)

E(q(φ),D0:t,qt−1(φ)) (4.6)

= arg max
q(φ)

Eq(φ)[logp(yt|xt,φ,Dctx
t )] − KL(q(φ)||qt−1(φ)). (4.7)

In this work, we choose the parametric distribution to be a factorized Gaussian
qt(φ) =

∏
iN(φi|µi(t),σi(t)), where φi is the i-th component of φ. Using the re-

parametrization trick [Kingma and Welling, 2013]: φi = µi + σiεi, εi ∼ N(0, 1) and
let qt−1(φ) =

∏
iN(φi|µi(t− 1),σi(t− 1)), we can find the maximum of the ELBO by

solving the following equations

∂

∂µi(t)
E(q(φ),D0:t,qt−1(φ)) = 0, (4.8)

∂

∂σi(t)
E(q(φ),D0:t,qt−1(φ)) = 0, (4.9)

and the results are update rules for µi and σi that are similar to Bayesian Online
Learning [Opper, 1998] and Bayesian Gradient Descent (BGD) [Zeno et al., 2018], but on
the meta-level (see Appendix 4.7.1 for details of the derivation):
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µi(t) =µi(t− 1) − σ
2
i (t− 1)Ep(ε)

[∂Lt(φ)
∂φi

]
, (4.10)

σi(t) =σi(t− 1)

√
1+

(1
2
σi(t− 1)Ep(ε)

[∂Lt(φ)
∂φi

εi
])2

−
1

2
σ2i (t− 1)Ep(ε)

[∂Lt(φ)
∂φi

εi
]
, (4.11)

where Lt(φ) = − logp(yt|xt,φ,Dctx
t ). An intuitive interpretation of these learning

rules is that weights µi with smaller uncertainty σi are more important for the knowl-
edge accumulated so far, thus they should change slower in the future in order to
preserve the learned knowledge.

In practice, we introduce learning rates for both 4.10 and 4.11. Maximum a posterior
(MAP) estimate of φ is used for prediction. We approximate the expectation in the µ
update rule 4.10 by the gradient at the mean, and for the expectation in the σ update
rule 4.11, we estimate it by Monte Carlo sampling method. The final algorithm called
W&H is described in Algorithm 3.

complexity The number of parameters required by the W&H algorithm is 3 times
that of the base model, since it needs to store the mean and the standard deviation
of the initialization and a copy of the current task-specific parameters. In terms of
time complexity, the computation of the mean update ∆µ and the Monte Carlo (MC)
sample of the standard deviation update ∆jσ can be parallelized. In that case, W&H
has only constant computational overhead compared to Reptile due to sampling and
gradient averaging. If the MC sampling process is implemented sequentially, the total
time complexity is O(J+ 1) times that of the Reptile algorithm, where J is the number of
sampling steps. Similar to the findings in Zeno et al. [2018], we find that in practice the
number of MC samples has negligible effect on the performance of the algorithm. So we
used only a single sample for our experiments.

4.4 related work

continual learning While effective at preventing forgetting, most CL methods
we reviewed in Chapter 1 either rely on knowledge of task boundaries or require
task labels to select a sub-module for adaptation and prediction, hence cannot be
directly applied in the task agnostic scenario considered here. To circumvent this issue,
Kirkpatrick et al. [2017] used Forget-Me-Not (FMN) [Milan et al., 2016] to detect task
boundaries and combined it with EWC to consolidate memory when task switches.
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Algorithm 3 What & How (using Reptile)

Input: λin,k, J,Dctx
0 ,ηµ,ησ and initial values of µ,σ

for t = 0, 1, . . . do
θt ← Uk(µ;Dctx

t , λin) = FWhat(Dctx
t ;µ),

ŷt ← f̂(xt; θt) = FHow(θt)(xt)

∆µ ← ηµ
∂Lt(φ)
∂φ

∣∣∣
φ=µ

≈ ηµ(µ−Uk(µ,Dctx
t , λin))

for j = 1 to J do
εj ∼ N(0, 1)
φj = εjσ+ µ

∆
j
σ ← εj

∂Lt(φ)
∂φ

∣∣∣
φ=φj

≈ εj(φj −Uk(φj,Dctx
t , λin))

end for
∆σ ← ησ

1
J

∑
j=1 ∆

j
σ

µi ← µi − σ
2
i∆µi

σi ← σi

√
1+

(
1
2σi∆σi

)2
− 1
2σ
2
i∆σi ,

Update Dctx
t with {(xt,yt)} to get Dctx

t+1
end for

However, FMN requires a generative model that computes exact data likelihood, which
limits it from scaling to complex tasks. Bayesian Gradient Descent (BGD) [Zeno et al.,
2018], as we discussed before, adopts the framework of online variational Bayes, and
approximates the posterior with a diagonal Gaussian distribution. More recently, Aljundi
et al. [2019] proposed a rehearsal-based method to select a finite number of data that are
representative of all data seen so far. All of these methods assume that it is possible to
learn one model that fits all previous data, neglecting the scenario where different tasks
may conflict with each other, hence do not allow task-specific adaptations.

meta learning As with continual learning, different families of approaches exist for
meta-learning. Memory-based methods [Santoro et al., 2016] rely on a recurrent model
(optimizer) such as LSTM to learn a history-dependent update function for the lower-
level learner (optimizee). Andrychowicz et al. [2016] trained an LSTM to replace the
stochastic gradient descent algorithm by minimizing the sum of losses of the optimizees
on multiple prior tasks. Ravi and Larochelle [2017] use an LSTM-based meta-learner
to transform the gradient and loss of the base-learners on every new example to the
final updates of the model parameters. Metric-based methods learn an embedding
space in which new tasks can be solved efficiently. Koch, Zemel, Salakhutdinov, et al.
[2015] trained siamese networks to tell if two images are similar by converting the



58 task agnostic continual learning via meta learning

distance between their feature embeddings to the probability of whether they are from
the same class. Vinyals et al. [2016] proposed the matching network to improve the
embeddings of a test image and the support images by taking the entire support set as
context input. The approaches discussed in Section 4.3.1 instead belong to the family of
optimization-based meta-learning methods, which learn to adjust the gradient descent
optimization process itself. In this category, beside the online meta learning method
[Finn et al., 2019] discussed before, the most relevant work is from Nagabandi, Finn, and
Levine, 2019, who studied fast adaptation in a non-stationary environment by learning
an ensemble of networks, one for each task. Unlike our framework, they applied meta
learning for initialization of new networks in the ensemble instead of for task inference.
A drawback of this approach is that the size of the ensemble grows over time and is
unbounded, hence can become memory-consuming when there are many tasks.

4.5 experiments

We design a series of experiments to thoroughly evaluate the effectiveness of the What
& How framework, and compare it to BGD and other CL methods (EWC, online EWC,
SI, LwF, DGR, DGR+Distill) implemented by Ven and Tolias [2019]. We also include the
following baselines: None: the model is trained sequentially using Adam [Kingma and
Ba, 2014] in the standard way without applying any CL method; Joint: all tasks seen
so far are trained at the same time, this scheme usually sets the upper bound for CL
methods. FTML: a non-CL method that trains a meta model by uniformly sampling
from previously encountered tasks, therefore it requires task labels and stores all data.
Implementation details can be found in the Appendix.

4.5.1 Label-Permuted MNIST

In this experiment, we first create a different permutation of 10 classes for every task,
with which we shuffle the classes in the labels. For instance, digit 0 might be the first
class in one task but the second class in another task. The reason for this design is
to ensure that a multi-task solution does not exist since the network has to map the
same image to different labels for different tasks. In this way, we can test whether our
framework is able to quickly adapt its behavior according to the current context. Five
tasks are created with this method and are presented sequentially for 1000 iterations
each to an MLP with 2 hidden layers of 1000 neurons. In each iteration, a mini-batch
of 128 images is presented to the network. Note that except BGD, None, Joint and our
method, all the other methods simply cannot be directly applied in the task agnostic



4.5 experiments 59

Table 4.2: Zero-shot and few-shot recall (with 128 context examples) accuracies for different
methods on the label-permuted MNIST tasks. The results are average accuracies over all
tasks. The mean and the standard error of mean (SEM) are computed over 5 runs with
different random seeds for each method. The first three methods are non-CL baselines.

Methods Zero-shot Few-shot (k=5) Few-shot (k=200)

None 28.07 ± 1.19 27.65 ± 0.79 82.37 ± 0.58

Joint 35.74 ± 0.99 33.51 ± 1.81 85.29 ± 0.40

FTML 28.85 ± 1.32 97.99 ± 0.03 98.38 ± 0.04

BGD 28.18 ± 1.17 70.23 ± 1.24 85.27 ± 0.53

EWC 27.86 ± 1.19 29.49 ± 0.90 82.00 ± 0.55

Online EWC 27.85 ± 1.20 30.32 ± 0.70 82.45 ± 0.60

SI 28.06 ± 1.19 29.62 ± 0.97 82.97 ± 0.33

LwF 33.70 ± 1.02 32.66 ± 1.18 83.94 ± 0.40

DGR 27.88 ± 1.12 23.40 ± 1.04 84.08 ± 0.25

DGR+Distill 28.03 ± 1.14 28.97 ± 1.14 83.09 ± 0.34

W&H (Ours) 28.16 ± 1.19 74.27 ± 0.56 92.05 ± 0.14

scenario, so we provide the necessary task information for these methods in order to
perform the comparison.

zero-shot vs . few-shot recall At the end of the entire learning process, we test
the learner’s classification accuracy of each task in two ways. The first way is to directly
apply the final model on the testing data without any adaptations, this corresponds
to the zero-shot recall accuracy traditionally used in CL. For the W&H algorithm, this
means we apply the model simply with the learned initialization. In the second way, we
provide the final model with a mini-batch of 128 images from the training set of each
task as context data, the model is fine-tuned on the context data for k steps before it is
tested on the testing data of that task. We call this metric few-shot recall accuracy. We
report our results for two different number of fine tuning steps k = 5 and k = 200 as
they demonstrate different properties of the compared methods. When k = 5, not all
methods have converged, so the few-shot accuracy shows how fast a method adapts to
the context data, whereas when k = 200, all methods have converged, so the few-shot
accuracy shows how good the final solution is.
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Table 4.3: Average test accuracy (over all 10 tasks) on the permuted MNIST experiment. The
accuracies for BGD and W&H reported here are the mean (± SEM) over 5 runs. Other
results are taken directly from Ven and Tolias [2019]

Approaches Methods Domain-IL

Baselines
None 78.51 ± 0.24

Joint 97.59 ± 0.01

FTML 97.47 ± 0.02

Regularization
EWC 94.31 ± 0.11

Online EWC 94.42 ± 0.13

SI 95.33 ± 0.11

LwF 72.64 ± 0.52

Replay
DGR 95.09 ± 0.04

DGR+Distill 97.35 ± 0.02

Online Bayesian
BGD 93.02 ± 0.33

W&H (Ours) 93.37 ± 0.33

Table 4.2 summarizes the performance of our method and other baselines. It can be
seen that in this experiment, it is impossible to achieve good performance with zero-shot
recall since a multi-task solution does not exist. Even the joint training scheme which
is considered the upper bound for CL achieves very poor accuracies. In the few-shot
setting, the upper bound is the FTML method, since it has access to all previous data
and task information. Among the CL methods, our framework significantly outperforms
the other baselines, even without access to any task information during training and
without storing data from the past.

4.5.2 Permuted and Split MNIST

We also test the What & How framework on the standard CL benchmarks called Per-
muted MNIST [Goodfellow et al., 2014a] and Split MNIST [Zenke, Poole, and Ganguli,
2017]. In these experiments, tasks are not conflicting with each other, so multi-task
solutions do exist. Ven and Tolias [2019] described three scenarios for these experiments
based on what task information are available at test time: task-incremental learning:
models are always informed about which task is presented; domain-incremental learn-
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Table 4.4: Average test accuracy (over all 5 tasks) on the split MNIST experiment. The accuracies
for BGD and W&H reported here are the mean (± SEM) over 5 runs. Other results are
taken directly from Ven and Tolias [2019]

Approaches Methods Domain-IL

Baselines
None 59.21 ± 2.04

Joint 98.42 ± 0.06

FTML 98.40 ± 0.07

Regularization
EWC 63.95 ± 1.90

Online EWC 64.32 ± 1.90

SI 65.36 ± 1.57

Replay
LwF 71.50 ± 1.63

DGR 95.72 ± 0.25

DGR+Distill 96.83 ± 0.20

Online Bayesian
BGD 66.07 ± 2.13

W&H (Ours) 67.33 ± 2.03

ing: task ID is not provided at test time; class-incremental learning: task ID is not
provided and should be inferred at test time. However, they assumed that during training
there are clear and well-defined task boundaries available for the learner. Since our focus
is task agnostic CL during training, we only consider the domain-incremental scenario at
test time, because in the other two scenarios, the task boundaries are anyways available
during training (in the class-incremental case, a class corresponds to a task, which can
be simply detected from the labels), it is not necessary to apply a task-agnostic method.

In the permuted MNIST protocol, a new task is created by shuffling the pixels of all
images in MNIST by a fixed permutation. We present 10 such tasks sequentially for
5000 iterations each. After all tasks are learned, the network has to predict the digit
from an image without knowing the permutation. For the split MNIST protocol, the
original MNIST dataset is divided into 5 subsets with 2 digits each. We present one
of these subsets at a time for 2000 iterations. At the end of the training, the network
has to predict if an image was the first class or the second class in its subset, without
knowing which subset the image is from. To be comparable with the results from Ven
and Tolias [2019], we used exactly the same network architecture, experiment setup and
hyper-parameters for these two experiments.
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The results are displayed in Table 4.3 and Table 4.4. Again, BGD and our method do not
have access to any task information, while the other methods cannot be directly applied
without task information. For our method, we use the previous mini-batch as context
data during training, and at testing time, the learned initialization was directly used
without any context-dependent adaption, it can be seen from the tables that our method
performs the same as BGD, which also has similar performance to the regularization-
based task-aware methods. This means our framework is also applicable when multi-task
solutions exist.

4.5.3 Sine Regression

One desideratum of CL is the ability of forward transfer. Lopez-Paz et al. [2017] defined a
metric for forward transfer based on a model’s "zero-shot" performance on a future task.
We generalize the concept of forward transfer to the "few-shot" setting: positive forward
transfer should allow a model to learn faster on a future task similar to the ones it has
learned. This definition coincides with generalization in meta-learning, which refers
to how fast a meta-learner can learn a new task at meta-test time. We show that our
method is capable of forward transfer by comparing it to SGD, BGD, Reptile on the sine
regression tasks commonly used in meta learning literature. We randomly generate 100

different sine curves and present them sequentially to the learners for 500 iterations each
(details in the Appendix). At the end of the learning process, we evaluate the few-shot
performance (in terms of mean squared errors) of all learners on these 100 sine curves as
well as 100 new sine curves it has not seen before. In particular, the learners are evaluated
after they are adapted on 10 context datapoints until convergence. Table 4.5 summarizes
the results of this experiment. Except for the upper bound baseline FTML, the other
methods perform poorly due to either catastrophic forgetting or no multi-task solution.

4.5.4 Continual GAN

Finally, we apply our framework in the setting of GAN training, where the ultimate goal
is to find the optimal parameters θ∗G for a generator G(z; θG) by optimizing a minimax
objective [e.g. Goodfellow et al., 2014b; Metz et al., 2016]:

θ∗G = argmin
θG

max
θD

l(θG, θD) = argmin
θG

l(θG, θ∗D(θG)), (4.12)

where θ∗D(θG) := argmaxθD l(θG, θD) and l(θG, θD) = Ex∼pdata(x)[log(D(x; θD))] +

Ez∼N(0,1)[log(1−D(G(z; θG); θD))].
Following our discussion at the beginning of this section, continually learningD(·; θD)

without forgetting is impossible, because at different moments t and t ′ during training,
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Figure 4.2: The What and How framework prevents mode collapse on the 2D mixture of Gaussians
dataset. The first six columns show KDE plots of 512 samples from the generator at
different training steps. The last column are created from 512 samples of the real
distribution. The first row shows standard training of a vanilla GAN. The second row
shows the same GAN with the discriminator trained by the What and How framework.

the generator distributions may be different (pG 6= pG ′), hence the corresponding
optimal discriminator parameters cannot be the same: θ∗D(θG) 6= θ∗D(θG ′). In other
words, the tasks for the discriminator at time t and t ′ are conflicting with each other.
Adopting the What & How framework, we focus on continually learning a model
for θ∗D(·) in Eq.4.12 instead of the discriminator D(·). This model corresponds to our
What encoder: given a set of data points DG := {G(zn; θG)}n sampled from the current
generator as context data, the What encoder is trained to approximate the optimal
discriminator parameters θ∗D(θG) ≈ FWhat(DG;φ) by k steps of inner loop updates on
the context data, where the meta-parameters φ corresponding to an initialization of
the discriminator φ := θinit

D are learned by Alg.3. The generator-specific discriminator
returned by the How decoder FHow ◦ FWhat(DG;φ) := D(·;FWhat(DG;φ)) is used to
compute the loss of θG and to update the current generator1. This way, the conflict at
the level of θD is resolved at the level of φ: it is possible, in theory, to find a single φ that
maximizes both l(θG,FWhat(DG;φ)) and l(θG ′ ,FWhat(DG ′ ;φ)), even when θG 6= θG ′ .

Thanh-Tung and Tran [2020] and Liang et al. [2019] showed that a notorious problem
for GAN training called mode collapse [Che et al., 2016] is interrelated with catastrophic
forgetting and can cause the training process to never converge, since the generator
is always optimized to revisit a mode that the discriminator has forgotten. Therefore,
overcoming catastrophic forgetting problem in the discriminator should be able to break

1 Unlike the Unrolled GAN Metz et al., 2016, we do not backprop through the inner loop optimization of the
discriminator when we compute the gradients of the generator, even though this can provide more accurate
gradients for the generator and further improve the performance of our GANs. The reason is that we want to
isolate the effect of our method from that of the Unrolled GAN.
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Table 4.5: Average MSE of different methods on the sine curve regression tasks at the end of
training. The "Seen" column contains the MSE over 200 sine curves presented during
training. The "Unseen" column contains the MSE over 200 new sine curves the learners
have not seen before. The results reported here are the mean (± SEM) over 5 trials.

Methods Seen Unseen

FTML 0.24 ± 0.04 0.31 ± 0.06

SGD 0.97 ± 0.06 1.50 ± 0.10

BGD 1.01 ± 0.05 1.82 ± 0.06

Reptile 1.02 ± 0.14 1.23 ± 0.17

W&H (Ours) 0.56 ± 0.02 0.78 ± 0.02

this mode revisiting cycles and reduce mode collapse, as shown in the experiments
below.

2d mixture of gaussians As we discussed before, in GAN training, the objective
function for the discriminator is defined based on the parameters of the generator. So the
task for the discriminator actually depends on the parameters of the generator. As we are
updating the generator, the task for the discriminator is also gradually changing, hence
there are potentially infinite number of tasks and there are no predefined boundaries
between different tasks. To directly visualize the effect of our method, we first applied
it to train a simple GAN with synthetic data generated from a mixture of Gaussian
distributions on 2D space. The network architecture and experiment setup are exactly the
same as in [Metz et al., 2016]. We first trained a vanilla GAN with standard techniques
on this dataset, the first row (Vanilla GAN) of Figure 4.2 shows that it entered a non-
convergent cycle of revisiting the modes. We then applied the What & How method
(with k = 3 steps in the inner loop) to the discriminator while keeping the rest of the
experiment setup and hyper-parameters the same. As can be seen in the second row
(WHGAN) of Figure 4.2, although mode collapse also occurred at the beginning of the
training process, our networks were able to avoid the repeating cycle, and eventually
converged to a distribution covering all modes.

dcgan on cifar10 In this experiment, we compare the differences between a
Deep Convolutional GAN (DCGAN) [Radford, Metz, and Chintala, 2016] trained with
and without our method on the CIFAR10 dataset [Krizhevsky, 2009]. Since it is hard to
visualize mode collapse for high dimensional image data, we used two bin-based metrics
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Table 4.6: Quantitative Evaluation of DCGAN and WHGAN on CIFAR10. The results reported
here are the mean (± SEM) over 5 random trials. ↓ (resp. ↑) indicates lower (resp. higher)
is better.

Metrics DCGAN WHGAN(Ours)

NDB↓ 48.20± 4.68 26.00 ± 0.89

JSD↓ 0.013± 0.0016 0.0069 ± 0.00019

FID↓ 47.52± 0.49 46.78 ± 0.63

IS ↑ 4.40 ± 0.028 4.47 ± 0.027

called NDB and JSD [Richardson and Weiss, 2018] to evaluate the resulting GANs. To
compute NDB, the real samples were first clustered by K-means into K = 200 bins, which
can be considered as modes of the data distribution. Then N = 50000 images sampled
from the generator were assigned to their nearest bins. For each bin, a two-sample test
was performed to decide if the synthesized samples are statistically different from the
real samples. NDB is then simply the number of statistically different bins and JSD is the
Jensen-Shannon divergence between the real distribution and the generator distribution
over these bins. JSD is defined by:

JSD(P||Q) =
1

2
KL(P||M) +

1

2
KL(Q||M), (4.13)

where M = 1
2 (P+Q). Lower NDB and JSD scores imply more similarity between two

distributions, and hence less mode collapse. In addition, we also evaluate the resulting
GANs with the Inception Score (IS) [Salimans et al., 2016] and the Fréchet Inception
Distance (FID) [Heusel et al., 2017], which are metrics based on the image features
extracted by the Inception Network [Szegedy et al., 2015]. Higher IS and lower FID
indicate better quality of the generated images.

Table 4.6 compares the performance of the original DCGAN and one trained with
our framework (WHGAN). Again, we kept the network architecture and all hyper-
parameters the same, except that the discriminator in WHGAN was trained with the
What & How method. In both cases, we trained the networks for 50000 iterations with
a mini-batch size 64. For our method, k = 3 steps are used in the inner loop of the
What encoder. The results show that WHGAN achieved significantly lower NDB and
JSD while maintaining the same image quality. Figure 4.3 are image samples randomly
drawn from a DCGAN and a WHGAN trained in this experiment.
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4.6 conclusions

In this chapter, we showed that when a multi-task solution does not exist and task
information is unknown, catastrophic forgetting is inevitable. A framework that can
infer task information explicitly from context data was proposed to resolve this problem.
The framework separates the inference process into two components: one for repre-
senting What task is presented, and the other for describing How to solve the given
task. In addition, our framework unifies many meta learning methods and establishes a
connection between continual learning and meta learning, leveraging the advantages of
both.

From the meta learning perspective, our framework addresses the continual meta
learning problem by applying continual learning techniques on the meta variables,
therefore allowing meta knowledge to accumulate over an extended period; from the
continual learning perspective, our framework addresses the task agnostic continual
learning problem by explicitly inferring the task when the task information is not
available and a multi-task solution does not exist. This allows us to shift the focus of
continual learning from less forgetting to faster remembering, given the right context.

DCGAN WHGAN

Figure 4.3: Generated images from a DCGAN and a WHGAN trained on CIFAR10.
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4.7 appendix

4.7.1 Update Rule Derivation

The derivation of the update rules 4.10 and 4.11 is the same as the one given in Zeno
et al. [2018]. We repeat them here for ease of reference. We first note that

E(qt(φ),D0:t,qt−1(φ))) :=Eqt(φ)[logp(yt|xt,φ,Dctx
t )] − KL(qt(φ)||qt−1(φ))

=Eqt(φ)[f(φ,µ(t),σ(t))], (4.14)

where we define f(φ,µ(t),σ(t)) := logp(yt|xt,φ,Dctx
t ) + logqt−1(φ) − logqt(φ) to

simplify the formula. Since both qt−1(φ) and qt(φ) are factorized Gaussians, we have

logqt(φ) =−
N

2
log 2π−

N∑
k=1

logσk(t) −
N∑
k=1

(φk − µk(t))
2

2σ2k(t)
, (4.15)

logqt−1(φ) =−
N

2
log 2π−

N∑
k=1

logσk(t− 1) −
N∑
k=1

(φk − µk(t− 1))
2

2σ2k(t− 1)
. (4.16)

Rewrite the first-order necessary condition in 4.8 for the optimal µi(t) using the
reparametrization trick φi = µi(t) + σi(t)εi

∂

∂µi(t)
Eqt(φ)[f(φ,µ(t),σ(t))]

=Ep(ε)[
∂

∂µi(t)
f(φ,µ(t),σ(t))]

=Ep(ε)[
∂f(φ,µ(t),σ(t))

∂φi

∂φi
∂µi(t)

+
∂f(φ,µ(t),σ(t))

∂µi(t)
] = 0. (4.17)

Computing the derivatives using 4.15, 4.16, we get

Ep(ε)[
∂ logp(yt|xt,φ,Dctx

t )

∂φi
−
φi − µi(t− 1)

σ2i (t− 1)
+
φi − µi(t)

σ2i (t)
−
φi − µi(t)

σ2i (t)
]

=Ep(ε)[
∂ logp(yt|xt,φ,Dctx

t )

∂φi
] −

µi(t) − µi(t− 1)

σ2i (t− 1)
= 0, (4.18)

which implies the mean update rule 4.10:

µi(t) = µi(t− 1) − σ
2
i (t− 1)Ep(ε)[−

∂ logp(yt|xt,φ,Dctx
t )

∂φi
]. (4.19)
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Similar to 4.17, we can write down the first-order necessary condition for the optimal
σi(t)

Ep(ε)[
∂f(φ,µ(t),σ(t))

∂φi

∂φi
∂σi(t)

+
∂f(φ,µ(t),σ(t))

∂σi(t)
] = 0. (4.20)

Computing the derivatives leads to the following equation:

Ep(ε)[(
∂ logp(yt|xt,φ,Dctx

t )

∂φi
−
φi − µi(t− 1)

σ2i (t− 1)
+
φi − µi(t)

σ2i (t)
)εi

+
1

σi(t)
−

(φi − µi(t))
2

σ3i (t)
]

=Ep(ε)[(
∂ logp(yt|xt,φ,Dctx

t )

∂φi
εi] −

σi(t)

σ2i (t− 1)
+

1

σi(t)
= 0, (4.21)

which is essentially a quadratic equation of σi(t), solving it for σi(t) > 0 gives us the
update rule 4.11:

σi(t) =σi(t− 1)

√
1+

(1
2
σi(t− 1)Ep(ε)

[∂ logp(yt|xt,φ,Dctx
t )

∂φi
εi
])2

−
1

2
σ2i (t− 1)Ep(ε)

[∂ logp(yt|xt,φ,Dctx
t )

∂φi
εi
]
. (4.22)

4.7.2 Experimental Details

label-permuted mnist Each task is a ten-way classification. The original images
are zero-padded to 32x32 pixels. A random permutation of 10 classes was generated and
applied to all labels. The standard training/test-split was used. For W&H, we used inner
loop learning rate λin = 0.1, initial standard deviation σ = 0.12, mean and standard
deviation learning rates are ηµ = 1. and ησ = 1.0, J = 1 Monte Carlo (MC) sample
was used. For BGD, the initial standard deviation was σ = 0.06 and the mean learning
rate was ηµ = 1.0, the number of MC samples was 2. For FTML, SGD with learning
rate λin = 0.1 was used in the inner loop, and Adam with learning rate 0.001 was used
in the outer loop. For the other baselines, their implementation and hyper-parameters
were the same as in Ven and Tolias [2019] for the domain-incremental permuted MNIST
experiment. To compute the few-shot accuracy, all models were adapted on the 10

context data points for 200 gradient steps to ensure convergence.
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permuted and split mnist In order to have a fair comparison, for these two
experiments, the setup and the hyper-parameters of all baselines were kept the same as
in the domain-incremental scenario in Ven and Tolias [2019].

In permuted MNIST, the original images were zero-padded to 32x32 pixels. Each task
is a ten-way classification. For W&H, k = 5 steps and a learning rate λin = 0.1 were
used in the loop during training, initial standard deviation was σ = 0.06, ηµ = 1, ησ = 1.
J = 1 MC samples was used. At testing time, no inner loop updates were used. For
BGD, initial standard deviation was σ = 0.06, ηµ = 1, and 2 MC samples were used. For
FTML, SGD with learning rate λin = 0.1 was used in the inner loop, and Adam with
learning rate 0.001 was used in the outer loop.

In split MNIST, the original image size 28x28 was used. Each task is a two-way
classification. For W&H, k = 5 steps and a learning rate λin = 0.1 were used in the
loop during training, initial standard deviation was σ = 0.06, ηµ = 1, ησ = 1, J = 1 MC
sample was used. At testing time, no inner loop updates were used. For BGD, initial
standard deviation was σ = 0.06, ηµ = 1 and 2 MC samples were used. For FTML, SGD
with learning rate λin = 0.1 was used in the inner loop, and Adam with learning rate
0.001 was used in the outer loop.

sine curve regression The amplitudes and phases of sine curves were sampled
uniformly from [1.0, 5.0] and [0,π] respectively. The learning rate for SGD was 0.01. For
BGD, the initial standard deviation was 0.06, the learning rate for the mean was η = 1

and 2 Monte Carlo samples were used per iteration. For Reptile and FTML, we used
SGD with learning rate 0.01 in the inner loop and Adam with learning rate 0.001 in the
outer loop. For the What & How method, SGD with learning rate 0.01 was used in the
inner loop and the initial standard deviation of the meta parameter distribution was 0.2,
The learning rates for both the mean and standard deviation were chosen to be 1.0. The
number of Monte Carlo samples was J = 1. For training, each mini-batch had 10 points,
whose input values x were sampled uniformly from [−5.0, 5.0]. For testing, we used 50

equidistant points in [−5.0, 5.0]. Before the evaluation, each model was fine-tuned on 10

context data points. All methods except BGD were adapted for 500 SGD steps with a
learning rate 0.01. For BGD, this learning rate often led to numerical instability, so we
reduced the learning rate to 0.001 and applied 1000 steps of SGD before testing.

continual gan on 2d gaussian mixtures The experimental setup was exactly
the same as in [Metz et al., 2016]: the real distribution was a mixture of 8 Gaussians of
standard deviation 0.02, and their means were equally spaced around a circle of radius
2. The generator and discriminator are both MLPs with 2 hidden layers of 128 relu units.
In the vanilla GAN, the discriminator was optimized using Adam with a learning rate
of 1e-4 and β1 = 0.5. The WHGAN discriminator was optimized with an inner loop
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Table 4.7: The architecture of the generator and discriminator of DCGAN. Here we use the
following abbreviations: N= Number of filters, K= Kernel size, S= Stride size, P= Padding
size. "Conv”, "Dconv”,"BN” denote respectively the convolutional layer, transposed
convolutional layer and batch normalization.

Layer Generator Discriminator

1 Dconv(256-K4-S1-P0), BN, Relu Conv(N64-K4-S2-P1), Leaky-Relu

2 Dconv(N128-K4-S2-P1), BN, Relu Conv(N128-K4-S2-P1), BN, Leaky-Relu

3 Dconv(N64-K4-S2-P1), BN, Relu Conv(N256-K4-S2-P1), BN, Leaky-Relu

4 Dconv(N3-K4-S2-P1), Tanh Conv(N1-K4-S1-P0), Sigmoid

learning rate 0.01, initial standard deviation 0.01, ηµ = 10, ησ = 1 and J = 1 MC sample.
In both cases, the generator networks were optimized using Adam with a learning rate
of 1e-3 and β1 = 0.5.

continual gan on cifar10 For DCGAN, we used the original image size (32× 32)
of CIFAR10. The network architecture of DCGAN is summarized in Table 4.7. The
noise vectors have dimension 128 and were drawn from standard normal distribution.
Both networks were optimized using Adam with learning rate 0.0002, β1 = 0.5 and
β2 = 0.999. Both real and fake mini-batches have size 64.

For WHGAN, we used exactly the same network architecture as the DCGAN baseline.
The generator was also optimized using Adam with learning rate 0.0002, β1 = 0.5 and
β2 = 0.999. For the discriminator, we used inner loop learning rate λin = 0.01, initial
standard deviation σ = 0.01, ηµ = 100, ησ = 1, and MC number J = 1.

4.7.3 Other Instantiations of the What & How Framework

To show that the What & How framework is independent of the Reptile algorithm,
here we introduce other variations of this framework using different meta-learning
algorithms. The first instance is simply replacing Reptile with full MAML, to which
we refer as MetaBGD in the following. In addition, we propose two other instances by
adapting previous continual learning methods to this meta learning framework.

metacog Context-dependent gating of sub-spaces [He and Jaeger, 2018], parameters
[Mallya and Lazebnik, 2018] or units [Serra et al., 2018] of a single network has proven
effective at alleviating catastrophic forgetting. Recently, Masse, Grant, and Freedman,
2018 showed that combining context dependent gating with a synaptic stabilization
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(a) MetaCoG (b) MetaELLA

Figure 4.4: Schematic diagrams of MetaCoG and MetaELLA.

method can achieve even better performance than using either method alone. Therefore,
we explore the use of context dependent masks as our task representations, and define
the task specific model as the sub-network selected by these masks.

At every time step t, we infer the latent masks mt based on the context dataset Dcxt
t

by one or a few steps of gradient descent of an inner loop loss function Lin with respect
to m:

mt := FWhat(Dcxt
t ; θ) = minit − λin · ∇mLin(f̂(· ; θ� σ(m)),Dcxt

t ), (4.23)

where minit is a fixed initial value of the mask variables, σ(·) is an element-wise sig-
moid function to ensure that the masks are in [0, 1], and � is element-wise multiplication.
In general, Lin can be any objective function. For instance, for a regression task, one can
use a mean squared error with an L1 regularization that enforces sparsity of σ(m):

Lin(f̂(· ; θ� σ(m)),Dcxt
t ) :=

∑
xi,yi∈Dcxt

t

(f̂(xi; θ� σ(m)) − yi)
2 + γ||σ(m)||1. (4.24)

The resulting masks mt are then used to gate the base network parameters θt in order
to make a context-dependent prediction: ŷt = f̂(xt; θt � σ(mt)). Once the ground truth
yt is revealed, we can define the meta loss as the loss of the masked network on the
current data: Lmeta(f̂(· ; θ� σ(mt)), {(xt,yt)}) and optimize the distribution q(θ|µ,σ) of
task agnostic meta variable θ by online Bayesian inference.

The intuition here is that the parameters of the base network should allow fast
adaptations of the masks mt. Since the context-dependent gating mechanism is trained
in a meta-learning fashion, we call this particular instance of our framework Meta
Context-dependent Gating (MetaCoG). We note that while we draw our inspiration from
the idea of selecting a subnetwork using the masks mt, in the formulated algorithm
mt rather plays the role of modulating the parameters (i.e. in practice we noticed that
entries of mt do not necessarily converge to 0 or 1). Figure 4.4a shows a schematic
diagram of MetaCoG.
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In addition, the inner loop loss Lin used to infer the context variable mt does not have
to be the same as the meta loss Lmeta. In fact, one can choose an auxiliary loss function
for Lin as long as it is informative about the current task.

metaella Another instance of the framework is based on the GO-MTL model
[Kumar and au2, 2012] and the Efficient Lifelong Learning Algorithm (ELLA) [Ruvolo
and Eaton, 2013]. In a multitask learning setting, ELLA tries to solve each task with
a task specific parameter vector θ(t) by linearly combining a shared dictionary of k
latent model components L ∈ Rd×k using a task-specific coefficient vector s(t) ∈ Rk:
θ(t) := Ls(t), where L is learned by minimizing the objective function

Lella(L) =
1

T

T∑
t=1

min
s(t)

{ 1

n(t)

n(t)∑
i=1

L
(
f̂(x

(t)
i ;Ls(t)),y(t)i

)
+ µ||s(t)||1

}
+ λ||L||2F. (4.25)

Instead of directly optimizing Lella(L), we adapt ELLA to the What & How framework
by considering s(t) as the task representation returned by a What encoder and L as
parameters of a How decoder. The objective Lella can then be minimized in a continual
meta learning fashion. At time t, current task representation st is obtained by minimizing
the inner loop loss Lin(f̂(·;Ls),Dcxt) := 1

|Dcxt|

∑
xi,yi∈Dcxt L(f̂(xi;Ls),yi) + µ||s||1 by one

or a few steps of gradient descent from fixed initial value sinit: st := FWhat(Dcxt
t ;L) =

sinit − λin · ∇sLin(f̂(·;Ls),Dcxt
t ).

Similar to MetaCoG, the parametric distribution q(L|µL,σL) =
∏
iN(Li|µ

L
i ,σLi ) of the

meta variable L can be optimized with respect to the meta loss Lmeta(f̂(·;Lst), {(xt,yt)})
using online Bayesian inference. Figure 4.4b shows a schematic diagram of MetaELLA.

4.7.4 Experiments using other instantiations

We compared BGD and Adam [Kingma and Ba, 2014] to the three instances introduced
above: MetaBGD, MetaCoG and MetaElla. In all experiments, we presented N tasks
consecutively and each task lasted for M iterations. At every iteration t, a batch of K
samples Dt = {xt,1, · · · xt,K} from the training set of the current task were presented
to the learners, and the context data used for task inference was simply the previous
mini-batch with their corresponding targets: Dcxt

t = Dt−1
⋃
{yt−1,1, · · ·yt−1,K}. At the

end of the entire training process, we test the learners’ performance on the testing
set of every task, given a mini-batch of training data from that task as context data.
Since the meta learners take five gradient steps in the inner loop for task inference,
we also allowed BGD and Adam to take five gradient steps on the context data before
testing their performances. In all experiments, the number of Monte Carlo samples was
set to 10. In MetaCoG, the initial value of masks minit

i was 0. In MetaELLA, we used
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Table 4.8: Summary of hyperparameters used for the experiments described in the Appendix. λin

are inner loop learning rates. σ0 are initial values for standard deviation of the factorized
Gaussian. η is the learning rate of the mean in BGD update rule. γ is the regularization
strength for L1 norm of masks in MetaCoG. µ is the regularization strength for L1 norm
of latent code in MetaELLA.

Hyperparameters Sine Curve Label-Permuted MNIST Omniglot

MetaBGD λin
0.0419985 0.45 0.207496

σ0 0.0368604 0.050 0.0341916

η 5.05646 1.0 15.8603

MetaCoG λin
0.849212 10.000 5.53639

σ0 0.0426860 0.034 0.0133221

γ 1.48236e-6 1.000e-5 3.04741e-6

η 38.6049 1.0 80.0627

MetaElla λin
0.0938662 0.400 0.346027

σ0 0.0298390 0.010 0.0194483

µ 0.0216156 0.010 0.0124128

η 42.6035 1.0 24.7476

BGD σ0 0.0246160 0.060 0.0311284

η 20.3049 1.0 16.2192

k = 10 components in the dictionary, and the initial value of latent code sinit
i was set to

1/k = 0.1. Adam baseline was trained with the default hyperparameters recommended
in [Kingma and Ba, 2014]. The hyperparameters of other methods were tuned by a
Bayesian optimization algorithm and were summarized in Table 4.8. Error bars for all
experiments are standard deviations computed from 10 trials with different random
seeds.

sine curve regression In this experiment, we randomly generated 10 sine curves
and present them sequentially to a 3-layer MLP. The amplitudes and phases of sine
curves were sampled uniformly from [1.0, 5.0] and [0,π], respectively. For both training
and testing, input points x were sampled uniformly from [−5.0, 5.0]. The size of training
and testing sets for each task were 5000 and 100, respectively. Each sine curve was
presented for 1000 iterations, and a mini-batch of 128 data points was provided at every
iteration for training. The 3-layer MLP has 50 units with tanh(·) non-linearity in each
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hidden layer. Figure 4.5 shows the mean squared error (MSE) of each task after the
entire training process. Adam and BGD performed significantly worse than the meta
learners, even though they had taken the same number of gradient steps on the context
data. The reason for this large gap of performance becomes evident by looking at Figure
4.6, which shows the learners’ predictions on testing data of the last task and the third
task, given their corresponding context data. All learners could solve the last task almost
perfectly, but when the context data of the third task was provided, meta learners could
quickly remember it, while BGD and Adam were unable to adapt to the task they had
previously learned.

label-permuted mnist The experiment setup is the same as introduced in the
chapter. Five tasks were created and presented sequentially. All tasks were presented for
1000 iterations and the mini-batch size was 128. The network is a MLP with 2 hidden
layers of 300 ReLU units. As can be seen from Figure 4.7, all learners performed well
on the last task. However, BGD and Adam had chance-level accuracy on previous tasks
due to their incapability of inferring tasks from context data, while the meta learners
were able to recall those tasks within 5 inner loop updates on the context data.

Figure 4.8 displays the accuracy curve when we played the tasks again, for 10 iterations
each, after the first training process. The tasks were presented in the same order as they
were learned for the first time. It is clear that after one iteration since the task changed,
when the correct context data was available, the meta learners were able to recall the
presented task to high accuracy, while Adam and BGD had to re-learn each task from
scratch.

Task Index
0
1
2
3
4
5
6
7
8

M
S

E

Adam BGD MetaCoG MetaElla MetaBGD

Figure 4.5: Testing loss per task at the end of the entire learning phase. Task 1 is the first seen task,
and task 10 is the last. Lower MSE means better performance.
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Figure 4.6: Predictions for the last task (left) and the third task (right) after the entire training
process.
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Figure 4.7: Testing accuracy of different tasks in the label-permuted MNIST experiment at the end
of the entire training process.

omniglot In this experiment, we tested our framework and BGD by sequential
learning of handwritten characters from the Omniglot dataset [Lake, Salakhutdinov, and
Tenenbaum, 2015], which consists of 50 alphabets with various number of characters per
alphabet. Considering every alphabet as a task, we presented 10 alphabets sequentially
to a convolutional neural network and trained it to classify 20 characters from each
alphabet. Out of the 20 images of each character, 15 were used for training and 5 for
testing. Each alphabet was trained for 200 epochs with mini-batch size 128. The CNN
used in this experiment has two convolutional layers, both with 40 channels and kernel
size 5. ReLU and max pooling were applied after each convolution layer, and the output
was passed to a fully connected layer of size 300 before the final layer.

Most continual learning methods (including BGD) require a multi-head output in
order to overcome catastrophic forgetting in this set-up. The idea is to use a separate
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Figure 4.8: Accuracy curve when the label-permuted MNIST tasks are replayed for 10 iterations af-
ter the entire training process. The sudden drops of accuracy are due to task switching,
when the context data are still from the previous task.

Figure 4.9: Testing accuracy of the sequential Omniglot task. BGD (MH) uses a multi-head output
layer, whereas BGD (SH) and all meta learners use a single-head output layer. In the
bottom plot, the accuracy of BGD(SH) are 0 for all tasks except the last one.

output layer per task, and to only compute the error on the current head during training
and only make predictions from the current head during testing. Therefore, task index
has to be available in this case in order to select the correct head. Unlike these previous
works, we evaluated our framework with a single head of 200 output units in this
experiment. Figure 4.9 summarizes the results of this experiment. For every task, we
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measured its corresponding testing accuracy twice: once immediately after that task was
learned (no forgetting yet), and once after all ten tasks were learned. Our framework
with a single head achieved comparable results as BGD with multiple heads, whereas
BGD with a single head completely forgot previous tasks.





5C O N T I N UA L L E A R N I N G F R O M T H E P E R S P E C T I V E O F
C O M P R E S S I O N

In this chapter, we study continual learning from the perspective of information theory
and provide a formal definition of forgetting in terms of description lengths. Further-
more, we show that the prior-focused and likelihood-focused approaches to continual
learning that we have introduced in Chapter 1 can be considered as approximations to
two prequential coding methods in compression, namely, the Bayesian mixture code
and maximum likelihood (ML) plug-in code. This offers an alternative view for unifying
these two types of approaches. Finally, to address the limitations of the prior-focused
approaches, we introduce a new continual learning paradigm by combining ML plug-in
and Bayesian mixture codes. This chapter is a verbatim copy of [He and Lin, 2020]1 with
additional preliminaries on minimum description length theory.

5.1 introduction

Intuitively speaking, forgetting can be understood as loss of information about past data.
Previous studies on this problem have indirectly measured forgetting by degradation
of task-specific performance metrics such as classification accuracy [Lopez-Paz et al.,
2017], regression error [Javed and White, 2019] or the Frechet Inception Distance (FID)
[Lesort et al., 2019]. In order to explicitly study the problem of information loss, here
we place continual learning within the framework of information theory and Minimum
Description Length (MDL) [Grünwald, 2007].

According to the MDL principle, any regularity within a dataset can be used for
compression, and learning these regularities using a model is equivalent to compressing
the data with the model [Grünwald, 2007]. So the best model for a given dataset is
the one that results in the minimum total description length of the dataset together
with the model itself. Therefore, MDL formalizes the Occam’s Razor principle for
machine learning and provides a criterion for model selection. Other inspirations and
foundations for MDL include the "comprehension is compression" hypothesis by Chaitin
[2002] and the theory of inductive inference by Solomonoff [1964], the latter proved that
the most likely explanation of some observations of the world is the smallest computer
program, in terms of its Kolmogrov Complexity [Kolmogorov, 1968], that generates
these observations, assuming the world is generated by an unknown computer.

1 This work was also presented as a spotlight talk at ICML2020 Workshop on Continual Learning.

79
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The compression perspective has provided insights in various problems in machine
learning, including generalization [Arora et al., 2018], unsupervised modeling [Ollivier,
2014] and information bottleneck [Tishby and Zaslavsky, 2015]. Recently, Blier and
Ollivier [2018] showed that one particular coding method from the MDL toolbox called
prequential coding outperforms the other coding methods at explaining why deep learning
models generalize well despite their large number of parameters, displaying strong
correlation between generalization and compression.

In this chapter, we show that the compression perspective can also shed light on
continual learning. Our contributions are:

• We provide a formal definition of forgetting based on information theory, which
allows us to evaluate continual learning methods for generative models in a
principled way.

• We show that two major paradigms of continual learning (variational continual
learning and generative replay) can be interpreted as approximations of two
prequential coding methods (Bayesian mixture coding and ML plug-in coding) in
the MDL framework, thus establishing a connection between continual learning
and compression.

• We compare different CL methods for continual generative modeling using the
proposed definition of forgetting and empirically study the limitations of the
variational continual learning approaches.

• We introduce a new CL method that combines the prediction strategies of the
two prequential coding methods and show that it improves over the variational
continual learning.

5.2 minimum description length preliminaries

We start with a review of the basic concepts and results used in the MDL theory. A
comprehensive introduction and overview of this field can be found in [Grünwald, 2007].

coding In general, the word "coding" means to describe sequences of symbols from
one alphabet by other sequences of symbols from some potentially different alphabet.
Here, an alphabet is simply a finite or countable set, whose elements are called symbols.
In the MDL setting, the sequence of symbols we want to describe is usually a data
sequence xn := {x1, . . . , xn} where each xi is from a space of observation X, which is
countable or finite, and we always encode xn with the binary alphabet B = {0, 1}. In other
words, we are mapping a sequence xn to a binary sequence in the set B∗ =

⋃
k>1Bk.
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coding system Let A be an alphabet. A coding system C is a relation between A

and B∗. If (a,b) ∈ C, we say b is a code word for the source symbol a. A coding system is
called partial if for some a, there is no b such that (a,b) ∈ C. A coding system is called
singular or lossy if two different source symbols a,a ′ ∈ A,a 6= a ′ share the same code
word (there exist b such that (a,b) ∈ C and (a ′,b) ∈ C). In what follows, the alphabet
A will in some cases represent the set of single outcomes (A = X). In other cases, it
might represent the set of sequences of either a fixed length (A = Xn) or arbitrary
lengths (A = X∗). Sometimes, it can also be a set of model parameters (A = Θ for some
parameter set Θ).

code A code is a non-singular coding system such that each a ∈ A is associated with
at most one b ∈ B∗. Therefore, a code may be identified with an encoding function
C : A → B∗ ∪ {↑} that maps each a ∈ A to its unique code word in B∗ and C(a) =↑
means a does not have a code word. In addition, since a code is non-singular, there is
also a corresponding decoding function C−1 : B∗ → A∪ {↑} that maps a code word b to
its unique source symbol C−1(b). C−1(b) =↑ means b is not a code word for any source
symbol.

prefix code A code with the property that no code word is a prefix of any other
code word is called a prefix code. With a prefix code, we know exactly when we are done
decoding a code word if we decode from left to right, since we must be done when
the sequence of symbols we see so far correspond to a code word. If not, we should
proceed to the next symbol and check again. In MDL, we only work with non-singular
(lossless) prefix coding systems, so in the rest of this chapter, the word "code" always
means "prefix code".

code length function Let C be some code for A, then ∀x ∈ A, the code length
(or sometimes codelength) function LC(x) is the length (number of bits) of the code
word (or description) of x when it is encoded with C. If C is a partial code and C(x)
is not defined, we set LC(x) = ∞. In MDL, one is only interested in the code length
function LC but not the code C itself. If two codes C1 and C2 for the same alphabet use
different code words but have the same code length, i.e. ∀x ∈ A,LC1(x) = LC2(x), then
these two codes make no difference in the view of MDL. We use LA to denote the set
of all functions L for which there exists a prefix code C such that L(x) = LC(x) for all
x ∈ A. Since the code length function is the only thing people are interested in MDL,
"code length functions" are sometimes also referred to as "codes".
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extended kraft inequality For any code C over countable alphabet A, the code
length function LC must satisfy the inequality∑

x∈A
2−LC(x) 6 1. (5.1)

Conversely, given a set of code lengths {Lx|x ∈ A} that satisfy this inequality, there
exists a prefix code C with these code word lengths: LC(x) = Lx,∀x ∈ A. A proof of the
extended Kraft inequality can be found in Cover and Thomas [2006].

shannon-fano code Let P be a probability distribution over the countable space
X, it follows from Kraft inequality that there exists a code C for X such that ∀x ∈ X :

LC(x) = d− logP(x)e. This is called the Shannon-Fano code.

non-integer code lengths Since a code length refers to the number of bits of a
code word, its value should be integer (or∞ if the code word is not defined). However,
in MDL, we use code length only as a metric to measure the amount of information
and do not care about the actual encodings, hence we adopt the idealized view of code
lengths which does not require them to be integers. As shown in Grünwald [2007],
this noninteger view of code lengths is not only harmless in practice but also more
fundamental: it makes the code lengths invariant to the size of encoding alphabet; it
offers an interpretation of description methods as gambling schemes described in Kelly
gambling; it also makes the mathematics easier and more elegant.

Once we dropped the requirement of integer values, the only requirement we have
for code length functions is the Kraft inequality, and this leads to the following new
definition of codelength functions:

generalized codelength function The set of all codelength functions for
sample space X is redefined in MDL as

LX = {L : X→ [0,∞]|
∑
x∈X

2−L(x) 6 1}. (5.2)

Notably, this generalized definition applies to not only countable but also continuous
sample spaces X. In the latter case, the sum in the Kraft inequality above should be
replaced by an integral

∫
x∈X 2

−L(x)dx 6 1. This new definition of codelength functions
also allows us to extend the definition of Shannon-Fano code to probability density
functions.

shannon-fano code for continuous space Let p be a probability density
function over a continuous space X. It’s not hard to see that L(x) := − logp(x) satisfies
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∫
x∈X 2

−L(x)dx 6 1, hence it is a generalized codelength function, which is also called
the Shannon-Fano code2.

two-part code mdl principle Given a dataset xn := {x1, . . . , xn} where each xi
is from a space of observation X, the MDL principle tells us to choose the model θ that
minimizes the overall description length of xn, which can be divided into two parts:

L(xn) = L(xn|θ) + L(θ). (5.3)

The first part L(xn|θ) corresponds to the code lengths of xn when encoded with the help
of a model parametrized by θ, and the second part L(θ) corresponds to the codelength
of the model itself. A model with more capacity can fit the data better, thus resulting in
shorter codelength of the first part. However, higher capacity might also lead to longer
description length of the model itself. Therefore, the best explanation for xn, according
to MDL, is given by the model that minimizes the total length L(xn).

To understand coding schemes in MDL intuitively, it is usually helpful to imagine the
scenario where Alice wants to send a dataset xn to Bob as efficiently as possible. What
the two-part code says is that Alice can send the dataset compressed by some model to
minimize the communication cost. However, the descriptions of the model itself have
to be transmitted as well. Therefore, the total communication cost includes both the
transmission of the data encodings as well as the transmission of the model parameters.
Note that, before the parameters are transmitted, we assume that Alice and Bob have
already agreed on a model class (such as a Gaussian distribution or "a neural network
with a hidden layer of 200 neurons"). If not, they could also first communicate this meta
information and since the amount of meta information to send does not depend on the
data, its communication cost is negligible in the long run.

Given the model parameters θ and the data xn, we can compute the overall description
length using Equ. 5.3. For probabilistic models, the natural choice for computing the first
part L(xn|θ) is the Shannon-Fano code L(xn|θ) = − logp(xn|θ). In order to compute the
second part L(θ), we also need an encoding of the parameters θ. One strategy to encode
the parameters is to consider them also as random variables and use the (variational)
Bayesian coding scheme.

2 There is no problem using this continuous version of Shannon-Fano code in MDL, since we only need to
measure and compare the amount of information. However, in communication and compression applications,
it is impossible to encode samples of continuous space such as real numbers of infinite precision because an
infinite amount of information is needed to represent them. In those cases, one has to first quantize the real
numbers into intervals, then assign a probability mass to each interval based on the underlying probability
density function [Hinton and Van Camp, 1993].
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bayesian and variational codes For any parametric model family p(·|θ), θ ∈ Θ,
if we consider the parameters θ as random variables, then any prior p(θ) over Θ
corresponds to a Bayesian code:

LBayes(xn) := − logp(xn) = − log
∫
θ
p(xn|θ)p(θ)dθ. (5.4)

However, the integral in 5.4 is rarely tractable, so we usually use variational methods to
compute the variational code. Given the model family p(·|θ), θ ∈ Θ and a prior p(θ), for
any distribution q(θ) over Θ, there exists an encoding of xn called the variational code
with the the following codelength:

LVar
q (xn) := Eq(θ) [− log(xn|θ)] +DKL [q(θ)‖p(θ)] . (5.5)

It is easy to see that 5.5 is just the additive inverse of the evidence lower bound (ELBO)
of logp(xn), thus LVar

q is an upper bound for the Bayesian code LBayes: for any q, we
have

LVar
q (xn) > LBayes(xn), (5.6)

where equality holds only when q equals the true Bayesian posterior p(θ|xn) =

p(xn|θ)p(θ)/p(xn).
The first term in (5.5) corresponds to L(xn|θ), describing the expected code length of

xn if encoded with θ sampled from the approximate posterior q(θ). The second term
in (5.5) corresponds to L(θ), which is the average code length of θ using the "bits-back"
argument given by Hinton and Van Camp [1993]. The "bits-back" coding describes the
following coding scheme:

Alice and Bob first agree on the parametric model family p(xn|θ), a prior distribution
p(θ), and an algorithm for learning variational posterior distributions from data. To
communicate the data xn, Alice runs the learning algorithm on xn to obtain a variational
posterior q(θ) and sample a random parameter θ from q(θ) using a source of random
bits. Alice then sends the random sample θ encoded by the prior distribution p(θ),
which incurs a communication cost3 of Lp := − logp(θ). Finally, Alice encodes xn using
θ and sends the encodings to Bob with a communication cost of − logp(xn|θ).

On the receiving end, Bob first decodes θ from the first message using p(θ). He
can then decode xn from the second message using p(xn|θ). Once he has the data, he
can run the same algorithm Alice used to recover the exact same variational posterior

3 As explained by Hinton and Van Camp [1993], the actual communication cost for sending the parameters
should also include a term that depends on the precision for quantization. However, here we ignore this
additional term since it is independent of the data and the model, and it will anyway be canceled out when
we get the bits back.
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q(θ). Now, since Bob knows the posterior of parameters and he knows which random
parameters were sent to him, he can also recover the random bits that Alice used to
sample θ. Therefore, these random bits are also transmitted to Bob successfully and they
should be subtracted from the overall communication cost to get the net cost of sending
the model θ and the data xn. The number of random bits used to collapse q(θ) to one
sample θ is Lq := − logq(θ). Thus we can get the variational code in 5.5 by taking the
expected value of the net overall communication cost − logp(xn) + Lp − Lq over the
distribution q(θ). In particular, the net cost for communicating the parameters is

LVar(θ) = Eq(θ) [Lp − Lq] = DKL [q(θ)‖p(θ)] . (5.7)

prequential (online) code There is also a way to compute the total description
length L(xn) without explicitly separating it into two parts, which is to use the prequen-
tial or online code, based on the prequential approach to statistics [Dawid, 1984]. The
prequential coding considers a dataset xn as a sequence of observations and encode
each observation xt at time t by predicting its value based on past observations xt−1.
Note that for any xt, we can write its Shannon-Fano code as a sum of negative log
conditional probabilities:

− logp(xn) =
n∑
t=1

− logp(xt|xt−1). (5.8)

Hence the total description length can be computed by accumulating the code length
− logp(xt|xt−1) at every step t using a prediction strategy. Formally, a prediction
strategy is a function S :

⋃
16t6n Xt−1 → PX that maps any initial observations xt−1 to

a distribution on X corresponding to the conditional model p(Xt|xt−1). For example,
the Bayesian mixture code uses the following prediction strategy:

p(xt|x
t−1) =

∫
θ
p(xt|θ)p(θ|x

t−1), (5.9)

where p(θ|xt−1) is the posterior of model parameters given all previous data xt−1.
Another example of prequential coding is the maximum likelihood (ML) plug-in code, which
encodes each observation by

p(xt|x
t−1) = p(xt|θ(x

t−1)), (5.10)

where θ(xt−1) is given by a maximum likelihood estimator:

θ(xt−1) = arg max
θ

logp(xt−1|θ). (5.11)
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The communication scenario corresponding to the prequential coding is as follows:
Before sending any messages, Alice and Bob agrees on an initial model p(x) and
a prediction strategy S. Then Alice encodes the first data point x1 using the initial
distribution p(x) and sends it to Bob with a communication cost of − logp(x1). Once x1
is sent, Alice can update the model by S to get p(x|x1), which is used to transmit x2 at
the cost of − logp(x2|x1). On Bob’s side, upon receiving the code for x1, Bob decodes
the message using p(x) and runs the prediction strategy to get the same p(x|x1) for
decoding x2. As such, they can repeat this process to transmit x3, x4 and so on.

It is worth noting that the prequential approach does not require the sequence of
data xn to be i.i.d. For instance, Alice and Bob can also train a recurrent neural network
(RNN) as the prediction strategy to compute p(xt|xt−1) = p(xt|ht−1, θ(xt−1)). In this
case, they need to update both the RNN weights θ(xt−1) and the hidden state ht−1 at
every step.

In practice, the conditional model p(x|xt−1) might not be updated at every t but only
at certain time steps 0 < t1 < t2 < · · · < tm 6 n, and all data between two updates are
encoded with the most recent model. If the prediction strategy relies on some stochastic
process such as sampling or stochastic gradient descent, Alice and Bob also need to
agree on a random seed before they start the transmission process so that they can
obtain the same conditional probabilities at each step.

As we will show in the next section, this online incremental view of prequential
coding is well-aligned with the setting of continual learning.

5.3 continual learning

Continual learning studies the scenario where data are provided at different times
in a sequential manner, and the learning algorithm incrementally updates the model
parameters as more data are presented. However, due to reasons such as privacy or
limited memory budget, the learning algorithm may not always have access to all the
data xt−1 it has seen so far. Alternatively, even if all data are stored, naively retraining
on all previous data will increase the computational complexity per step over time,
which may not be affordable for very long data streams. On the other hand, if the model
is only trained on the data presented recently, as we have seen in previous chapters, it
usually suffers from "catastrophic forgetting". This problem is especially severe when
the data stream is non-stationary. Here we provide a definition of forgetting that allows
us to precisely measure the amount of information forgotten.
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5.3.1 An Information-Theoretic Definition of Forgetting

We can see from (5.3) that when the data xn is compressed with the help of a model,
the information of xn is divided into two parts, with one part contained in the code
words of xn and the other part contained in the model. Hence, the model alone is not
enough to recover the data losslessly, it requires also the code words of the compressed
data, which can be understood as the information of xn not captured by the model.
This intuition leads to our definition of forgetting: for any data point x, the amount of
forgetting about x caused by changing the model parameters from θi to θj is given as
the increase of the codelength of x:

F[θj/θi](x) := max(L(x|θj) − L(x|θi), 0). (5.12)

In other words, the number of extra bits required for the model to losslessly recover x is
the amount of information the model has forgotten about x. The max(·, 0) function in
(5.12) is used to prevent "negative forgetting": if the codelength does not increase, there
is no forgetting4.
In the prequential setting, at any time t, we can measure the cumulative average forgetting
of a learning algorithm over the entire sequence xt seen so far by the following metric:

C(xt) :=
1

t

t∑
i=1

F[θt/θi](xi) =
1

t

t∑
i=1

max(L(xi|θt) − L(xi|θi), 0), (5.13)

where θi are the parameters given by the learning algorithm at time i, after seeing xi.

5.3.2 Prequential Interpretation of CL Approaches

A primary goal of continual learning is to overcome or to alleviate catastrophic for-
getting. Many CL methods have been proposed for this purpose [Parisi et al., 2019].
Some common paradigms emerged from these methods. One paradigm is based on the
sequential nature of Bayesian inference and it applies variational methods to approxi-
mating the parameter posterior. The approximated posterior is then used as the prior for
future learning. Examples of this paradigm include Bayesian Online Learning [Opper,
1998], Variational Continual Learning (VCL) [Nguyen et al., 2018] and Online Structured
Laplace Approximations [Ritter, Botev, and Barber, 2018]. Some regularization-based
CL methods such as Elastic Weight Consolidation (EWC) [Kirkpatrick et al., 2017] and

4 Mathematically, "negative forgetting" is possible and it corresponds to the concept of backward transfer
[Lopez-Paz et al., 2017] in continual learning. But here we want to be aligned with the the conventional
understanding of forgetting as information loss, and refer to "negative forgetting" as backward transfer when
it happens.
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Uncertainty-guided Continual Bayesian Neural Networks (UCB) [Ebrahimi et al., 2020]
are also motivated by this idea. Another paradigm combats forgetting by training a
generative model of past data. When new data are provided later, the samples from the
generative model are replayed instead of the original data. Representative works of this
class are Deep Generative Replay (DGR) [Shin et al., 2017], Memory Replay GAN [Wu
et al., 2018] and Continual Unsupervised Representation Learning (CURL) [Rao et al.,
2019]. Farquhar and Gal [2019a] proposed a unifying Bayesian view that encompasses
both paradigms and named them prior-focused and likelihood-focused approaches,
respectively. From the perspective of MDL, these two types of approaches can be seen as
approximations of the two prequential coding methods introduced before. We discuss
their relationships below using VCL5 and Generative Replay as examples.

vcl The first paradigm corresponds to the Bayesian mixture code, which uses (5.9)
as its prediction strategy. Since the exact posterior p(θ|xt−1) in (5.9) depends on all
previous data xt−1, which might not always be available in the continual learning
scenario, VCL therefore uses a variational model q(θ|xt−1) to approximate the real
posterior p(θ|xt−1). By the Bayes’ rule, we have

p(θ|xt) =
p(xt|θ)p(θ|x

t−1)

Zt
, (5.14)

where Zt :=
∫
θ p(xt|θ)p(θ|x

t−1) is a normalizing factor that does not depend on θ.
Therefore, q(θ|xt) can be updated recursively by minimizing the following KL divergence
at every step t:

q(θ|xt) = arg min
q(θ)

DKL(q(θ)||
1

Zt
p(xt|θ)q(θ|x

t−1)). (5.15)

The first approximate posterior q(θ|x0) is usually a fixed prior chosen before learn-
ing starts: q(θ|x0) = p(θ). Since Zt does not depend on θ, it is not required for the
optimization above.

replay The second paradigm, on the other hand, corresponds to the ML plug-in
code, which uses the prediction strategy defined in (5.10) and (5.11). The objective
function in (5.11) requires all previous data xt−1. In order to relax this requirement for

5 Here we use the term "VCL" to refer to the online variational Bayesian method used in [Nguyen et al., 2018].
The original VCL paper also combines it with a coreset to improve its performance. However, since we want
to compare the differences between prior-focused and likelihood-focused approaches and coreset is a form of
likelihood-focused approach, we exclude the usage of coreset for VCL here.
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continual learning, replay-based methods approximate the real objective function using
a generative model p(x|θ). Assuming xi ∈ xt are independent given θ, we have:

logp(xt|θ) =
t∑
i=1

logp(xi|θ) = logp(xt|θ) +
t−1∑
i=1

logp(xi|θ)

≈ logp(xt|θ) + (t− 1)Ep(x|θt−1))[logp(x|θ)]

= logp(xt|θ) + (t− 1)

∫
x
p(x|θt−1) logp(x|θ), (5.16)

where θt−1 are the parameters of the generative model at time t− 1 and the expected
value can be computed by Monte Carlo sampling. In this way the generative model
can be recursively updated by the following rule, based on the maximum likelihood
principle:

θt = arg max
θ

logp(xt|θ) + (t− 1)

∫
x
p(x|θt−1) logp(x|θ). (5.17)

measuring forgetting and compression We empirically compare the two
prequential coding methods and their continual learning approximations in terms of
both forgetting and compression on the MNIST dataset. Data are presented in a class-
incremental fashion: first only images of digit zero, then only images of digit one, and
so on. Throughout the paper, we use a variational autoencoder (VAE) [Kingma and
Welling, 2013] for encoding and generative modelling. In this experiment, we update
the model and measure the performance after presenting an entire class of images.

Fig.5.1 shows the cumulative average forgetting after learning each digit. Since ML
plug-in and Bayesian Mixture methods are trained on all data seen so far, they have
almost zero forgetting. VCL and Replay, on the other hand, do not have access to
previous data, so information are lost over time. However, thanks to the variational
posterior and generated samples, they achieve less forgetting than the Catastrophic
baseline, which only trains the model on images of the current digit.

The results on prequential coding as defined in (5.8) are shown in Fig. 5.2. After all
the images of one class are presented, the model is updated and used to encode all
the images of the next class. The subplot (a) shows the codelength of each class, since
models are only trained on the images from previous classes, the results shown here
correspond to the concept of forward transfer in continual learning. We can see that
Bayesian Mixture and VCL have high codelength at the beginning, when there is no
forgetting yet. The reason for this phenomenon is discussed in Sec. 5.4.1. The subplot
(b) shows the prequential codelength of the entire MNIST dataset measured in bits per
dimension (bpd) using different methods as the prediction strategy.
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Figure 5.1: Cumulative average forgetting (defined in (5.13)) measured after learning each digit in
MNIST. The resulting codelength was divided by the number of pixels in an image
to get bits per dimension (bpd). The means and standard errors of the mean (SEM)
were computed over ten random mini-batches of 32 images from each class. The
shaded region correspond to 3 times of SEM. Here "Catastrophic" corresponds to the
method that trains the model only on images from the current class. The "ML Mixture"
method is introduced in Sec. 5.5. Both ML plug-in and Bayesian Mixture have near
zero forgetting, so their curves are overlapping with each other.

5.4 limitations of vcl

It can be seen from both Fig.5.1 and 5.2, VCL performs poorly compared to generative
replay. A systematic comparison between VCL and replay on discriminative tasks
was carried out by Farquhar and Gal [2019b]. VCL was reported to work similarly to
generative replay on simple tasks like Permuted MNIST. On the more challenging Split
MNIST task, VCL requires both a multi-head output layer and a coreset of past examples
in order to be comparable with generative replay. For generative modeling, the results
in Fig. 5.1 confirm the limitation of VCL at retaining information of past data. In this
section, we analyze the reasons that limit the performance of VCL.

5.4.1 Overhead of Bayesian Mixture due to Prior

With deep generative models, the integration in Bayesian mixture code defined in (5.9) is
intractable because p(x|θ) is a neural network generator. Therefore, the ELBO is used in
practice as an approximation, which adapts q(θ) in (5.5) to minimize the total description
length. We make two observations here. First, in VCL, the best achievable description
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Figure 5.2: Compression performance of different coding methods on the MNIST dataset. The
shaded region correspond to 3 times of SEM. (a) Prequential codelength of images in
class i, measured after the model has seen all images in class i− 1. Since the images of
the first class are encoded with a predefined model for all methods, their codelength
does not affect the comparison results. (b) The total prequential codelength of the
MNIST dataset, averaged over number of samples.

length, corresponding to LBayes in (5.6), is predetermined by the selected prior p(θ).
Second, compared to ML plug-in code, which directly minimizes the encoding length
L(x|θ), the approximate Bayesian code has an extra KL regularization, indicating a longer
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description length L(x|θ) for the code words. Since we do not explicitly encode data
and keep their code words in continual learning, a larger encoding length means more
information is lost about the data as the online process continues.

This overhead is negligible asymptotically if the data sequence is very long. This can
be seen from the relative weights of the two terms in (5.5). The relative weight of the KL
regularization diminishes when the data sequence grows longer. This is why we see a
high initial codelength for Bayesian Mixture in Fig. 5.2 (a), but gradually it closes the
gap to ML plug-in.

However, for a sequence with fixed length, the overhead due to prior can be significant
and is very sensitive to the choice of the prior. Figure 5.3 compares the prequential
codelength of Bayesian Mixture code using Gaussion priors with different standard
deviation σ. One can see that good performance can be achieved only when σ is within
a small region around 0.1. And the best description length is obtained when the prior
is not used. Similar effects were observed for VCL in [Swaroop et al., 2019], where the
authors showed the choice of prior variance has great impact on the performance of
VCL.

5.4.2 The Variational Gap

As we describe before, in continual learning, the true posterior p(θ|xt−1) is not available,
thus VCL approximates it with a variational posterior q(θ|xt−1). The underlying assump-
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Figure 5.3: Prequential description length of Bayesian Mixture code using Gaussian priors with
different standard deviations σ. Here, "None" means no prior is used, and the KL term
in (5.5) is not optimized.
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tion is that when their KL divergence is small enough: DKL[q(θ|x
t−1)‖p(θ|xt−1)] < ε,

the following approximations are good enough for continual learning:

q(θ|xt−1) ≈ p(θ|xt−1) (5.18)

LVCL
t (q) =

∫
θ
q(θ|xt) logp(Xt|θ) −DKL[q(θ|x

t)‖p(θ|xt−1)] (5.19)

≈
∫
θ
q(θ|xt) logp(Xt|θ) −DKL[q(θ|x

t)‖q(θ|xt−1)]. (5.20)

However, for VCL with a simple distribution family such as diagonal Gaussian, this
assumption can hardly hold, as the real posterior is proportional to p(xt−1|θ)p(θ), which
is usually complex and multimodal. Since the only difference between VCL and Bayesian
Mixture code is the substitution of (5.19) by (5.20), the error between these two terms is
entirely responsible for their large performance gap observed in Fig.5.1 and 5.2. One
potential remedy to this problem is to use more complex distributions on the parameter
space, for example, normalizing flow as a Bayesian hypernetwork [Krueger et al., 2017].
However, unlike Gaussian distributions, the KL divergence of complex distributions
usually cannot be calculated analytically. It is also unclear whether sampling in the
parameter space to minimize DKL[q(θ|x

t−1)‖p(θ|xt−1)] would be any cheaper than
sampling in the data space for replay.

Furthermore, the approximation error between (5.19) and (5.20) could be arbitrarily

large even if DKL[q(θ|x
t−1)‖p(θ|xt−1)] < ε, which only states that log q(θ|x

t−1)
p(θ|xt−1)

is small

in its expectation over the distribution q(θ|xt−1). As shown in (5.21), the approximation
error is the expectation of the same log ratio over q(θ|xt−1)p(xt|θ)/Zt. Unfortunately,
this distribution could be very different from q(θ|xt−1). It depends on p(xt|θ), which
is not available at the time q(θ|xt−1) is optimized. One sufficient condition to bound

the substitution error is maxθ | log q(θ|x
t−1)

p(θ|xt−1)
| < ε. However, this involves a minimax

optimization of the log ratio, which is a hard problem in itself.

∆(LVCL
t ) = −

∫
θ
q(θ|xt) log

q(θ|xt−1)

p(θ|xt−1)
= −

∫
θ

1

Zt
q(θ|xt−1)p(xt|θ) log

q(θ|xt−1)

p(θ|xt−1)
.

(5.21)

5.5 ml mixture code

In order to overcome the two limitations discussed above, we can combine the predic-
tion strategies of Bayesian mixture and ML plug-in using a hierarchical model with
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hyperparameters φ. The resulting prediction strategy, which we call maximum likelihood
(ML) mixture, is as follows:

p(xt|x
t−1) = p(xt|φ(x

t−1)) =

∫
θ
p(xt, θ|φ(xt−1)) =

∫
θ
p(Xt|θ)p(θ|φ(x

t−1)),

(5.22)

where p(xt|θ) is a generative model of xt parameterized by θ (for instance, a variational
auto-encoder with weights θ) and p(θ|φ) is a density function over parameters given
hyper-parameters φ (for instance, if p(xt|θ) is a Bayesian neural network whose weights
are drawn from a diagonal Gaussian distribution, then p(θ|φ) would be a Gaussian and
φ are the mean and standard deviation of θ. φ(xt) is defined as the hyper-parameters
that maximize logp(xt|φ):

φ(xt) = arg max
φ

logp(xt|φ) = arg max
φ

t∑
i=1

log
∫
θ
p(xi|θ)p(θ|φ). (5.23)

Hence it is still a maximum likelihood approach but on the hyper-parameter level.
Since the integral above is intractable, in practice, we instead maximize its lower bound
LMLM
t (φ):

logp(xt|φ) =
t∑
i=1

log
∫
θ
p(xi|θ)p(θ|φ)

>
t∑
i=1

∫
θ
q(θ|xi) log

p(xi|θ)p(θ|φ)

q(θ|xi)
=: LMLM

t (φ). (5.24)
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Computing LMLM
t (φ) requires all past data xt, for continual learning, in order to

remove any dependency on previous data, we can rewrite LMLM
t (φ) recursively with

the following trick:

LMLM
t (φ) =

t∑
i=1

∫
θ
q(θ|xi) log

p(xi|θ)p(θ|φ)

q(θ|xi)
(5.25)

=

∫
θ
q(θ|xt) log

p(xt|θ)p(θ|φ)

q(θ|xt)
+

t−1∑
i=1

∫
θ
q(θ|xi) log

p(xi|θ)p(θ|φ)

q(θ|xi)
(5.26)

=

∫
θ
q(θ|xt) log

p(xt|θ)p(θ|φ)

q(θ|xt)
+

t−1∑
i=1

∫
θ
q(θ|xi) log

p(xi|θ)p(θ|φt−1)

q(θ|xi)

+

t−1∑
i=1

∫
θ
q(θ|xi) log

p(θ|φ)

p(θ|φt−1)
(5.27)

=

∫
θ
q(θ|xt) log

p(xt|θ)p(θ|φ)

q(θ|xt)
+LMLM

t−1 (φt−1)

+

t−1∑
i=1

∫
θ
q(θ|xi) log

p(θ|φ)

p(θ|φt−1)
. (5.28)

This result motivates us to use a greedy continual learning update rule, for which
we assume that, at time t, the second term in (5.28) LMLM

t−1 (φt−1) has already been
optimized in the previous step and hence we only optimize the first and the last terms
in (5.28).

Furthermore, we know from Hoffman and Johnson [2016] that if p(θ|φt−1) can be
any arbitrary probability density function, then the optimal solution for p(θ|φt−1) that
maximizes LMLM

t−1 (φt−1) is the aggregated posterior pagg(θ):

pagg(θ) := arg max
p(θ|φt−1)

LMLM
t−1 (φt−1)

= arg max
p(θ|φt−1)

t−1∑
i=1

∫
θ
q(θ|xi) log

p(xi|θ)p(θ|φt−1)

q(θ|xi)

=
1

(t− 1)

t−1∑
i

q(θ|xi). (5.29)
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This result allows us to further rewrite the first and the last term in (5.28), leading to
the following greedy objective function at time t that does not depend on previous data:

L
Greedy
t (φ) =

∫
θ
q(θ|xt) log

p(xt|θ)p(θ|φ)

q(θ|xt)
− (t− 1)DKL[p(θ|φt−1)‖p(θ|φ)]

= Eq(θ|φ)[logp(xt|θ)] −DKL[q(θ|xt)||p(θ|φ)]

− (t− 1)DKL[p(θ|φt−1)‖p(θ|φ)], (5.30)

where φt−1 := arg maxφ L
Greedy
t−1 (φ) is the value of φ obtained from the previous step.

This is a greedy method since the previous approximate posteriors q(θ|xi) for i 6 t− 1
were optimized temporally locally at time i, so they can be different from the global
optimal solutions qt(θ|xi) = p(θ|xi,φt) that maximize LMLM

t (φ). This is also why, if we
use this greedy objective, we can only have an approximation instead of an equality in
(5.31).

Like VCL, the optimization involved in the greedy objective (5.30) of ML Mixture code
takes the form of a KL regularization in the parameter space. However, it overcomes
the two above-mentioned limitations of VCL. First, the prior overhead described in
Sec. 5.4.1 is resolved because the mixture distribution is now optimized via maximum
likelihood instead of chosen in advance. Second, VCL tries to approximate a fixed
multimodal distribution p(θ|xt−1) with a simple parametric distribution (a diagonal
Gaussian) q(θ|xt−1), whereas the proposed ML Mixture code optimizes the parametric
density function p(θ|φt−1) to approximate the aggregated posterior:

p(θ|φt−1) ≈
1

(t− 1)

t−1∑
i

q(θ|xi). (5.31)

This approximation is more plausible than (5.18) because the right side of (5.18) is
complex and fixed, whereas both sides of (5.31) can be adjusted to be close to each other
and thus make the approximation closer.

The performance of ML Mixture code in terms of forgetting and compression are also
presented in Fig.5.1 and 5.2. One can see that although both VCL and ML Mixture use
diagonal Gaussian for the distribution of model parameters (corresponding to q(θ|xt−1)
in VCL and p(θ|φ) in ML Mixture), ML Mixture achieves much less forgetting and
smaller prequential codelength.

5.5.1 The Intuitive Interpretation

The ML Mixture code is effectively performing ML plug-in coding with a VAE. Unlike
normal VAEs, the latent code includes the entire parameter vector of the decoder. This
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means that the mapping from the latent code to the input space is predetermined by the
decoder architecture. Intuitively, ML Mixture projects each data xi from the input space
to a local posterior distribution over the parameter space through the encoder q(θ|xi).
It then uses the prior distribution p(θ|φ) to model the projected data in the parameter
space. For each xi, there exists a large number of simple distributions q(θ|xi) that can
be used as the encoder. Potentially, one can select the encoder so that the mirrored data
points in the parameter space obeys a simple distribution, i.e. 1n

∑n
i q(θ|xi) is a simple

distribution. In this case, p(θ|φ) which is used to model the mixture distribution can
also be kept simple. One supporting evidence for this possibility is the success of normal
VAE/WAE [Tolstikhin et al., 2019]. The prior distribution over the joint vector of latent
code and the decoder parameters of VAE/WAE is a diagonal Gaussian, if we see the
deterministic parameters as Gaussian random variables with zero variance.

5.5.2 Limitation and Future Improvements

There are a few limitations of the ML Mixture code that need to be solved before it is
practical for continual learning. First, as we greedily optimize only the first and the last
terms of (5.28) in a sequential manner, the previous approximate aggregated posterior
p(θ|φt−1) is fixed once learned. This locks the prior distribution p(θ|φ) to a local region
biased to the early tasks. In addition, since the first KL term in (5.30) pushes the solution
to the new task q(θ|xt) close to the prior p(θ|φ) biased to solution space of the early
tasks, if there are no solutions to the new tasks that are close to the solution space of the
early tasks, applying the ML Mixture code will lead to intransigence [Chaudhry et al.,
2018], in other words, the model will not be free to learn new tasks well. In Fig. 5.4 - 5.8,
we measured the description lengths (in bpd) of all classes encoded by the model trained
with different methods throughout the training process (for example, subplot (c) shows
the description lengths of images of digit 2 over time), it can be seen that after task 5,
with ML Mixture code, the description lengths only improve marginally. A potential fix
is to introduce a certain level of generative replay to re-optimize part of the previous
loss LMLM

t−1 (φt−1). Second, both VCL and ML Mixture use approximate objectives to
remove dependency on previous data. Although (5.31) could be more plausible than
(5.18), the error introduced in the objective could still be arbitrarily large as pointed
out earlier in Sec. 5.4.2. In the future, it would be preferable to develop an alternative
objective for which the approximation error is bounded.
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Figure 5.4: The change of description lengths of digits 0 and 1 throughout the training process.
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Figure 5.5: The change of description lengths of digits 2 and 3 throughout the training process.
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Figure 5.6: The change of description lengths of digits 4 and 5 throughout the training process.
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Figure 5.7: The change of description lengths of digits 6 and 7 throughout the training process.
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Figure 5.8: The change of description lengths of digits 8 and 9 throughout the training process.



6R E S E RV O I R T R A N S F E R O N A N A L O G N E U R O M O R P H I C
H A R D WA R E

Reservoir computing [Jaeger, 2001; Maass, Natschläger, and Markram, 2002] (RC) is a
computational paradigm originated from research on recurrent neural networks that pro-
cess input signals by transforming them into high-dimensional features via the dynamics
of a randomly created, non-linear recurrent network called a reservoir. Instead of adapt-
ing the recurrent connections, RC usually keeps them fixed and focuses on only learning
a linear readout that maps the reservoir activation to the desired target signals. For this
reason, RC has the advantage of being computationally cheap, easy to implement and
suitable for online adaptations. Despite of its simplicity, it can often achieve competitive
performance on various signal processing tasks. Moreover, it can be applied to a wide
range of complex black-box systems by harnessing their intrinsic non-linear dynamics.
This renders RC a popular framework for non-conventional computing substrates such
as neuromorphic hardware. However, creating a good reservoir in neuromorphic devices
can be challenging due to the following constraints imposed by the hardware: device and
time scale mismatch, approximate neuron models, unobservable and non-differentiable
dynamics and low bit resolution. To overcome these challenges, in this chapter, we take
inspirations from the forward transfer idea in continual learning and propose an algo-
rithm called Reservoir Transfer (RT). To achieve forward transfer, CL methods usually
apply transfer learning techniques such as knowledge distillation [Hinton, Vinyals, and
Dean, 2015] to distill and transfer the knowledge of existing networks to a new network
by forcing the student network to map input vectors to the same outputs of the teacher
networks. RT shares the same idea and extends it to recurrent networks. With the help
of RT, we are able to successfully learn ternary weights in a reservoir of physical spiking
neurons by transferring features from a well-tuned echo state network simulated on
a digital computer. Empirical results demonstrate that the proposed method is able
to train a well-performing recurrent spiking network without precise calibration of
individual neurons or using Back-propagation Through Time (BPTT). The Reservoir
Transfer method described in this chapter was first proposed in [He, 2018b]. The rest of
this chapter is largely a verbatim copy of [He et al., 2019a]1 with an additional review of
forward transfer in CL to illustrate its connection to RT.

1 This work received the Best Paper Award, Third Place at the 9th International IEEE Conference on Neural
Engineering (NER), 2019.
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6.1 introduction

Implantable or wearable biosensors, signal generators, controllers or bidirectional brain-
machine interfacing modules are widely investigated. For such devices, a very small
energy consumption is always desirable and sometimes mandatory – for instance, in
brain implants that must not dissipate noticeable heat [Birmingham et al., 2014]. A
promising route toward such devices is to develop analog, unclocked, spiking neu-
romorphic microchips implementing artificial neural networks (ANNs). These ANNs
obtain their functionality by being trained rather than being programmed, using methods
from machine learning. With regards to the latter we perceive two main trends. First,
adapt deep learning methods [Goodfellow, Bengio, and Courville, 2016] to spiking neural
networks (for instance [Tsai et al., 2017]). Second, apply computational mechanisms
known from biological brains to neuromorphic hardware [Indiveri and Liu, 2015]. Here
we follow the second route and employ principles of reservoir computing to realize a
heartbeat abnormality detector on an analog spiking neuromorphic device.

Reservoir computing (RC) is a learning paradigm in recurrent neural networks (RNNs)
for processing temporal input signals. The core RC principles have been discovered
several times independently, both in AI/machine learning and in computational/cog-
nitive neuroscience (brief history reviewed in [Jaeger, 2007]), indicative of the nature
of RC as bridging between machine learning and neuroscience. Within computational
neuroscience, RC is best known as liquid state machines (LSMs) [Maass, Natschläger, and
Markram, 2002], whereas the approach is known as echo state networks (ESNs) [Jaeger
and Haas, 2004] in machine learning. Reflecting the different objectives in these fields,
LSM models are typically built around more or less detailed, spiking neuron models
with biologically plausible parametrizations, while ESNs mostly use highly abstracted
rate models for its neurons.

An RC architecture is composed of three major parts: the input layer feeds the input
signal into a random, large, fixed recurrent neural network that constitutes the reservoir,
from which the neurons in the output layer read out a desired output signal. In tradi-
tional (and “deep”) RNN training methods, all synaptic weights in a neural learning
architecture are optimized by descent on the output error gradient. In contrast, the
input-to-reservoir and the recurrent reservoir-to-reservoir weights in an RC system are
left unchanged after a random initialization, and only the reservoir-to-output weights
are optimized during training – typically by minimizing the mean square error between
the teacher signal and the network’s output signal through linear regression.

In the work reported here, we sought to create a functional spiking reservoir on an
analog, unclocked, spiking neuromorphic microprocessor board. The system’s task is
to detect and classify heartbeat abnormalities from electrocardiographic (ECG) input
signals. The system should function in an online processing mode in real-time. Our
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hardware is the Dynap-se board [Moradi et al., 2017]. This work constituted a work
package in the European Horizon 2020 project NeuRAM3 (http://neuram3.vsos.ethz.
ch/), which is concerned with the design and fabrication of memristor-based, spiking
neuromorphic microchips.

6.2 dynapse board

(a) (b)

Figure 6.1: The DYNAP-se board used for this project. (a) The exterior appearance of the board, it
comes with a USB interface to standard personal computers. (b) The internal layout
of the board. It consists of four DYNAP chips: DYNAP 0-3. Images were taken from
Dynap-se user guide [Dynap-se user guide 2017].

The working device of our project is a unclocked analog spiking microchip called
DYNAP-se (Fig. 6.1 (a)) [Moradi et al., 2017], which stands for Dynamic Neuromorphic
Asynchronous Processor (Scalable). The Dynap-se board we used contains four chips
(see Fig.6.1), each of the four neuro-chips contains four cores with 256 neurons each
(see Fig. 6.2). These on-chip neurons are designed based on the Adaptive Exponential
Integrate-and-Fire (AdEx) model [Brette and Gerstner, 2005], which generalizes the
leaky integrate-and-fire (LIF) model [Burkitt, 2006]. The behavior of one neuron is
characterized by 25 parameters such as injection current level, refractory period length,
time constants, and synaptic efficacy. These parameters can be set globally for each
of the cores but not on the individual neuron level. Due to device mismatch, effective
values of these parameters vary across a neuron population. As a result, although we
can specify the same parameter bias for all neurons on Dynap-se, every individual

http://neuram3.vsos.ethz.ch/
http://neuram3.vsos.ethz.ch/
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Figure 6.2: A photo of the DYNAP multi-core neuromorphic processor. The chip consists of four
cores, with 256 neurons each. Neurons in different cores or different chips can send
spikes to each other via the routers: R1-R3. The dynamics of the neurons and synapse
can be specified by the bias generators (BiasGen-1 and BiasGen-2) built on-chip. Image
source: [Moradi et al., 2017]

neuron exhibits very different behavior, as reported in the Dynap-se user guide [Qiao
et al., 2015]. Moreover, the connections between neurons are restricted to only ternary
values +a,−a, 0 (the scaling factor a can be set per core), corresponding to excitatory,
inhibitory or no connections. The synapic connections are stored as content-addressable
memory (CAM) on the chip. Each neuron can have up to 64 CAMs for pre-synaptic
connections and unlimited post-synaptic connections. Finally, since the chip is an analog
device, state variables such as membrane potentials and post-synaptic currents are only
observable through an oscilloscope, which can be connected to the analog monitor outlet
marked in Fig. 6.1 (b). However, these state variables cannot be recorded. Therefore, for
information processing and learning, only spike trains can be recorded and used. These
spike trains can be recorded by a standard PC connected via the USB interface shown in
Fig. 6.1 (a).

6.3 the challenges

Our project encountered interesting difficulties that arose from its dual nature of being
half engineering/machine learning, half bio-/neuroscience:
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Machine learning: We want to achieve numerically accurate and robust information
processing performance, goals of which are characteristic for machine learning rather
than for computational neuroscience. This would suggest using the machine learning
version of RC, namely ESNs. Indeed we found that the addressed processing task could
be solved by the standard ESN methods with high performance. However, standard
ESN methods rely on floating-point precision and reproducible arithmetics, and ESN
neuron models are non-spiking and thus entirely inappropriate to capture Dynap-se
neurons.

Bio-/neuroscience: The physical neurons on the Dynap-se board share core properties
with biological neurons. They are spiking, unclocked, individually different from each
other (“device mismatch”), (slightly) noisy, and must be (approximately) modeled by
rather intricate, multi-parameter ODEs with several time constants. Furthermore, the
input ECG signal is of biological origin and must be processed with the appropriate
biological timescales. All of this would indicate to use LSM models. The LSM literature
offers numerous successful accounts of modeling biological neural systems. However,
these reports did not provide useful guidance for us because first, they rest on approxi-
mate copies of biological systems whose neuron models and parameters (especially time
constants) are incommensurate with our physical device, and second, LSM literature
reports are typically proof-of-concept studies whose numerical accuracy or robustness
would not match our needs.

Additional challenges result from the circumstance that many physical variables (cur-
rents and potentials) determining the behavior of Dynap-se neurons are not measurable
– a condition familiar to neuroscientists but alien to machine learning programmers.

In summary, we were suspended between two well-proven computational paradigms
of which we would want to use the first for accuracy and robustness, the other for
matching our hardware, but none of the two could easily be accommodated.

The solution came from an unexpected side. In our initial investigations, we found
ourselves confronted with yet another problem which we did not anticipate: a mismatch
of timescales. Our Dynap-se hardware was far too fast for processing our slow ECG
signals in a time-coupled online fashion. Classifying a heartbeat as normal vs. abnormal
requires to integrate information over a timespan in the order of 1 second. Even when
the few programmable time constants on the Dynap-se board were set to the slowest
possible values, the Dynap-se dynamics was still inherently too fast to realize the
requisite real-time memory spans.

At this point, we recall some facts about short-term memory in RNNs. There are two
complementary mechanisms by which information is preserved through time in an
RNN (or, in fact, in any input-driven dynamical system modeled by ODEs):

• The model’s timescale can be set by the time constants of the governing equations.
With large (slow) time constants, the effects of an input signal u will only slowly
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“wash out” over time. However, large time constants amount to smoothing the
effects of the input signal on the current system state. In our concrete case, if we
would induce slowness solely by slow time constants, any characteristic of the
input signal u(t0) which is relevant for the classification at time t0 + 1 (sec) would
become overshadowed by almost equally preserved but distracting information
from earlier input times.

• The second mechanism is inherent in the nonlinear geometry of dynamical systems.
In its core, it is captured by extensions of Takens’ theorem [Stark, 1999; Stark et al.,
2003]. Roughly speaking, in any dynamical system (continuous or discrete time)
some portion of the preceding input and internal state history is nonlinearly
encoded in the current system state, such that parts of the previous input history
can be recovered from the current state. This effect has been investigated in depth
in the RNN literature in general and the ESN literature in particular (for instance
[Ganguli, Huh, and Sompolinsky, 2008; Hermans and Schrauwen, 2010]). This
dynamical short-term memory capacity is unfortunately quite sensitive to system
noise.

To make the most of the first mechanism, we discovered a few heuristic tricks to
set the biases of the on-chip neurons and synapses in order to alleviate the timescale
mismatch problem. For example, we used slow synapses for recurrent connections and
set the parameters for the time constants of neurons to their slowest possible values
(a detailed account of these heuristic parameter settings and the reasons behind them
can be found in [Liu, 2019]). These heuristic solutions were able to slow down the
dynamics of the on-chip neural network. Their effects are evidently demonstrated in
Fig. 6.3, where we created two reservoirs (baseline and tuned) with the same network
topology but different parameters for the bias generators. The baseline reservoir are
configured with the default bias given by the software interface for Dynap-se called
NetParser2. The tuned reservoir, on the other hand, used the parameters obtained by the
heuristics we discovered. To both reservoirs, after an initial silence of 0.5 seconds, we
sent a pulse of spikes for 1 second, then we stop sending any input for 5 seconds. Every
two consecutive spikes in the 1-second spike train are separated by only 0.001 seconds.
The responses (output spikes) of the on-chip neurons were recorded and smoothed by
an exponential-decay kernel, Fig. 6.3 visualizes the responses of 100 randomly picked
neurons from each reservoir. It can be seen clearly that the neuron activity in the baseline
reservoir started to decay to silence as soon as we stopped sending input spikes, whereas
the tuned reservoir had long-lasting activation and the firing patterns were also more
diverse.

2 https://gitlab.com/aiCTX/caer-modules-dynapse/
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Figure 6.3: The exponentially smoothed reservoir responses to a one-second pulse of spike trains.
100 neurons were randomly selected from each of the reservoirs. The input spike trains
are visualized with green vertical bars. Left: responses of the default reservoir. Right:
responses of the tuned reservoir. Image source: [Liu, 2019].

After tuning the bias generators to slow down the individual synapses and neurons,
we capitalized on the second mechanism to bridge the remaining memory gap into
the required 1 second time range. To this end we first optimized the Takens-type
dynamic memory characteristics of a standard ESN with leaky integrator neurons using
a digital computer, employing routine methods from the ESN field. The optimized
dynamics of this reservoir was then “mirrored” in a hardware reservoir on the Dynap-se
board with the same number of neurons, in a novel, local, neuron-by-neuron training
scheme that relied on linear regression. In this hardware training process, the reservoir-
to-reservoir synaptic weights on the Dynap-se board were determined in a way that
made the hardware reservoir inherits the (slow, input-history preserving) dynamical
characteristics of the optimized source ESN. By using a regularized version of linear
regression, the noise robustness of the hardware reservoir was optimized as a side-effect.

In summary, solving the slow timescale problem resulted in a Reservoir Transfer Method
which effectively built a bridge from the engineering/machine learning world of ESNs
to the bio/neuroscience world of LSM-like systems. Before we present the technical
details in Section 6.5, we outline the connections of our approach with forward transfer
in continual learning.

6.4 forward transfer in continual learning

Forward transfer refers to the phenomena that learning a similar task in the past has
positive influence on the performance of tasks in the future. In order to achieve forward
transfer, a continual learning agent should be capable of preserving the knowledge from
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the past. This can be done by distilling the knowledge of an older model from the past
and transferring it to the current model. This problem of transferring knowledge from
one model to another without much loss of validity is thoroughly studied in the field of
model compression, which was introduced by Buciluǎ, Caruana, and Niculescu-Mizil
[2006]. They observed that even though ensembles of a large amount of base-level
classifiers can achieve good performance, they often require a large space to store the
models and a lot of time to execute the computation during inference. On the other
hand, unlike the unknown true function, the high performing ensemble model is known
and can be used to generate large amounts of pseudo-data. They also showed that
with enough pseudo-data as supervision, a smaller and faster model can approximate
the large complex ensemble well with little loss of performance. This idea was later
generalized and popularised by the Knowledge Distillation technique proposed by
Hinton, Vinyals, and Dean [2015]. Contrary to the traditional view of machine learning,
a large over-parameterised deep neural network tends to generalize better than a smaller
network when they are both trained on the same dataset with the same computational
resources [Gou et al., 2021; Neyshabur et al., 2018]. This motivates deep learners to use
increasingly larger models for greater performance [Brown et al., 2020; Devlin et al.,
2019]. However, this also renders most of these high-performing models too cumbersome
to be deployed for many use cases such as real-time or on-device applications, which
have stringent requirements on latency and computational resources. On the other hand,
even though directly training smaller networks on the same dataset often leads to poor
generalization, they actually have enough capacity to approximate the same functions
as the larger models. For this reason, knowledge distillation was designed to distill the
knowledge from a large high-performing teacher network to a smaller faster student
network. The main idea of knowledge distillation is to use the softmax class probabilities
produced by the teacher network as the soft targets for the student network as these
probabilities contain much more information than the hard targets. Via distillation, the
smaller network is trained to generalize in the same way as the larger network, hence it
will typically perform much better on test data than trained on the original data directly.

In Continual Learning, this idea of transferring knowledge by matching the outputs
with a teacher model is also widely adopted. For instance, in Deep Generative Replay
[Shin et al., 2017], the authors trained a deep generative model ("generator") in tandem
with a task solving model ("solver") on a sequence of tasks. For every new task, a
new solver is created and trained to replace the previous solver and it preserves the
knowledge of the old solver by matching the outputs on the same sampled inputs from
the generator during the replay process. Expansion-based continual learning approaches
grow the size of the model as more tasks are learned, thus some of these approaches
apply this transfer technique to compress the model in order to maintain a bounded
size. Schwarz et al. [2018] proposed a CL framework called Progress and Compress,
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which consists of two components: a knowledge base, capable of solving all previous
tasks, and an active column network that has lateral connections from the knowledge
base and can efficiently learn the current task. During the progress phase, the new
task is quickly learnt by the active column reusing features from the knowledge base.
During the compress phase, the new knowledge of the active column is distilled into
the knowledge base by minimizing the KL divergence between the output probabilities
of the active column and those of the knowledge base.

In the next section, we propose a knowledge transfer technique that extends this idea
of function matching to dynamics matching in recurrent neural networks and apply it
to creating a functional reservoir in a spiking neuromorphic device.

6.5 reservoir transfer method

the teacher reservoir We use an ESN with leaky integrator neurons as the
teacher reservoir for this work. This ESN is driven by some m-dimensional input signal
u(t) and its dynamics are described as follows

ẋ(t) = −λxx(t) + tanh(Wx(t) +Winu(t)), (6.1)

where x(t) is the n-dimensional state vector of the network at time t, λx the leaking
rate, Win ∈ Rn×m and W ∈ Rn×n are input and recurrent weights, respectively. In RC,
these weight matrices are first randomly initialized then scaled according to some global
parameters such as the dimension of Win or the spectral radius of W [Lukoševičius,
2012]. Since this teacher reservoir is simulated in a digital computer, we can use high
precision weights and all its state variables are available for training and evaluation.
So we can guarantee it is a well-performing reservoir before we use it for the reservoir
transfer process. The state trajectory x(t) can be considered as the high-dimensional
temporal features of u(t), which we would like to transfer to a student reservoir.

the student reservoir The spiking network that we use as the student reservoir
in this work is a recurrent network of leaky integrate-and-fire (LIF) neurons, whose
dynamics are approximately modeled by:

v̇(t) = −λvv(t) − θs(t) + Ŵr(t) + Ŵinu(t) + I, (6.2)

ṙ(t) = −λsr(t) + s(t), (6.3)

where v, s, r are all n-dimensional vectors whose i-th entries are denoted as vi, si
and ri, respectively. vi is the membrane potential of the i-th neuron, and si(t) =∑
ts
δ(t− ts) is its output spike train with spike times ts and Dirac delta function δ(·). A

LIF neuron spikes when its membrane potential vi reaches a firing threshold θf, then vi
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is immediately reset to a resting potential θr. θ in (6.2) is the difference between spiking
threshold and reset potential: θ = θf − θr, ri is the exponentially decaying synaptic
currents triggered by si. I is a constant current set near or at the rheobase (threshold to
spiking) value, as used in [Nicola and Clopath, 2017]. Ŵin ∈ Rn×m is the input weight
matrix of the spiking reservoir and Ŵ ∈ Rn×n is the recurrent weight matrix, whose
value will be learned in the following transfer process.

mirror the dynamics To transfer the temporal features x(t), we inject the ESN
feature signals x(t) element-wisely into the corresponding LIF neurons, replacing the
recurrent inputs Ŵr(t). This results in the dynamics:

v̇x(t) = −λvvx(t) − θsx(t) + x(t) +Winu(t) + I, (6.4)

ṙx(t) = −λsrx(t) + sx(t). (6.5)

Ideally, we would like the same dynamics vx(t) to be sustained by the recurrent input
Ŵr(t) instead of the teacher signal x(t). In other words, if we consider y(t) := Ŵrx(t) as
the state vector of the spiking reservoir, we aim to learn the weight matrix Ŵ such that
y(t) = x(t). In order to make the learned weights generic and input-independent, we
choose u(t) to be a white noise signal for training, and compute the weights by linear
regression to minimize

LTransfer(Ŵ) :=
∑
tk

||Ŵrx(tk) − x(tk)||22, (6.6)

where tk are discrete time samples. In this way, we have turned the weight initialization
problem into a linear regression problem.

This reservoir transfer method can be easily generalized to other type of recurrent
networks. For instance, the teacher reservoir can be a trained Long Short-Term Memory
(LSTM) network [Hochreiter and Schmidhuber, 1997] or another spiking network with
different neuron models. The student network can also be an artificial recurrent network.
In addition, for simplicity, we used the same number of neurons for teacher and student
reservoirs in the descriptions above. However, this method is not limited to only such
cases. One neuron in the teacher reservoir can correspond to multiple student neurons
if the student reservoir has more neurons. In the case that the teacher network has more
neurons, a subset of representative neurons from the teacher network can be selected to
teach the student reservoir.

Figure 6.4 shows the dynamics y(t) = Ŵr(t) of a reservoir of 100 LIF neurons created
in the Brian simulator [Stimberg, Brette, and Goodman, 2019] using this method and the
dynamics x(t) of its teacher leaky ESN reservoir of the same size when they are driven
by a sinusoidal input. Only the first four dimensions of x(t) and y(t) are displayed
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Figure 6.4: Dynamics of different reservoirs in response to a sinusoidal input. For visual simplicity,
only the first four dimensions of the state vectors are displayed. Top: x(t) in a leaky
ESN teacher reservoir. Middle: corresponding y(t) in the target LIF reservoir created
using the reservoir transfer method. Bottom: corresponding ỹ(t) in a reservoir whose
recurrent weights are from a sparse matrix with randomly distributed values (for
explanation, see text).
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for visual simplicity. One can see that although the reservoir was trained using white
noise input, its similarity to the teacher reservoir can generalize to other types of input
signals (a sinusoidal wave in this case). For comparison, we also created a LIF reservoir
whose recurrent weights W̃ are from a sparse matrix with values first randomly sampled
from a standard normal distribution, then scaled by a constant so that the recurrent
dynamics do not evoke constant bursts of spikes. The first four dimensions of its response
ỹ(t) = W̃r(t) to the same sinusoidal input is shown in the bottom panel of Figure 6.4.

6.6 experiments

We empirically evaluate the transferred reservoirs by experiments with both software
simulation and hardware experiments.

6.6.1 Short-term Memory of Transferred Reservoir

In order to validate that the reservoir generated from the transfer learning method
has short-term memory despite the connections are of low bit-precision and there is
no synaptic short-term plasticity, we created such a reservoir in the Brian simulator
[Stimberg, Brette, and Goodman, 2019]. Instead of using the standard ridge regression
during transfer learning, we used ternarized linear regression [Zhu et al., 2017] so that
the resulting weights are of ternary precision: −a, 0,a. To test its short-term memory,
a sequence of pulses with very short pulse widths (10 ms) separated by long (200 ms)
periods of silence was used as input to drive the ternary reservoir. A linear full precision
readout was then trained to map the filtered spikes to a reverse-chirp signal. The time
constant of the exponential decay kernel used to filter spike trains is only 15 ms. Since
the output depends on the past input values, it can only be possible if the reservoir
preserves some information about the input history. Figure 6.5 shows the step signal,
the output of the reservoir and its target during the testing phase.

6.6.2 ECG Monitoring using Dynap-se

In this experiment, we exploited our transferred spiking reservoir in a patient-customized
electrocardiogram (ECG) heart beat classification task realized on Dynap-se. To circum-
vent the constraints imposed by the hardware, we implemented the above-mentioned
Reservoir Transfer method to create a reservoir using 3 cores on Dynap-se. A leaky
ESN of equal size was created in simulation as a teacher reservoir, and its response to
white noise input signal u(t) was collected and converted into spike trains to be sent
to the target reservoir in Dynap-se. After the output spike trains from the hardware
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Figure 6.5: A reverse-chirp signal can be generated by a reservoir of LIF neurons with ternary
weights when it is driven by a step signal with very short (10 ms) high signal followed
by a long (200 ms) silence.
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neurons are recorded, we smooth both the input and output spike trains by an exponen-
tial decay kernel to get x(t) and r(t), respectively. Finally, ternarized linear regression
[Zhu et al., 2017] was applied to compute the ternary weight matrix Wternary such that
x(t) ≈Wternaryr(t).

In this way, we can circumvent the problem that the internal variables of individual
neurons cannot be recorded and calibrated: there is no need to know the exact values
of the membrane potentials and other parameters, because all we need to run this
algorithm are the input and output spike trains, which are accessible from the Dynap-se
board. The neurons do not have to share the same parameter value as long as their
collective response to the input current x(t) contains enough information to linearly
decode x(t). The linear regression algorithm will automatically adapt to their variety,
hence it also addresses the problem of device mismatch. Moreover, learning is needed
only once using a white noise signal, afterwards the connection weights can stay fixed.
Hence no online adaptation on hardware is needed.

Figure 6.6: Left panel: a normal heartbeat. Right panel: a PVC heart beat.

To verify that the transfer learning method yields a functional physical spiking reser-
voir, we conducted an ECG signal classification experiment using the learned reservoir
on Dynap-se. The experiment aims to detect Premature Ventricular Contractions (PVCs),
which are abnormal heartbeats initiated by the heart ventricles. Figure 6.6 shows a
normal heartbeat and a PVC. More concretely, we formulate the PVC detection task as a
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supervised temporal classification problem which demands a binary output signal z(n)
for each heartbeat indexed by n:

z(n) =

1 if the n-th heartbeat is a PVC,

0 otherwise.
(6.7)

The experiment was conducted with the following routine.

1. ECG pre-processing: we removed the baseline drift from an ECG signal by applying
a high-pass Butterworth filter and then normalized the signal into the numerical
range [0,1].

2. Signal-to-spike conversion: we placed a spike at a time index if the increase/decrease
of the ECG signal relative to its value at the previous spike time surpassed a
threshold of numerical value 0.1.

3. Reservoir response harvesting: we sent ECG-converted spike trains into Dynap-se to
harvest the reservoir responses, which were also in the form of spike trains.

4. Spike-to-signal conversion: on a digital computer, we smoothed the spike trains
collected from the physical reservoir to continuous-valued time-series by an expo-
nential decay kernel with a decay time constant 3.5.

5. Classifier training: the training of the readout mechanism amounted to solving a
linear regression problem, where the input for linear regression was the smoothed
reservoir responses and the target output was a {0, 1}-valued binary signal indicat-
ing the correct labels of heartbeats.

6. Result evaluation: with a testing ECG time-series, we repeated the above procedure
to procure its smoothed reservoir responses and then readout the predicted labels
with learned weights. The predictions are then compared to ground truth labels
to evaluate the classification performance. The metrics we used are described in
details below.
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We used the following standard metrics for evaluating binary classification tasks: accu-
racy (Ac), sensitivity (Se), precision (P), and F1-score:

Ac =
(TP+ TN)

(TP+ FP+ TN+ FN)
,

Se =
TP

TP+ FN
,

P =
TP

(TP+ FP)
,

F1 =
(2TP)

(2TP+ FP+ FN)
.

where the symbols above denote the following quantities

• TP: the number of true positive predictions (PVC heartbeat detected as PVC).

• TN: the number of true negative predictions (normal heartbeat detected as normal).

• FP: the number of false positive predictions (normal heartbeat detected as PVC).

• FN: the number of false negative predictions (PVC heartbeat detected as normal).

We used MIT-BIH ECG arrhythmia database [Goldberger et al., 2000; Moody and Mark,
2001] in this experiment. The database provides 48 half-hour excerpts of two-channel
ambulatory ECG recording files, obtained from 47 different patients. The recordings were
digitized with a sampling frequency of 360 Hz and acquired with 11-bit resolution over
a 10mV range. Each record was annotated by two or more cardiologists independently,
both in timing information and beat classification. In this work, we present the results of
a case study where recordings from lead II of file #106, #119, #200, #201, #203, #223, and
#233

3. Since each individual patient has specific features that are different from other
patients, it has become a trend in the field of smart healthcare to deliver personalized
medical solutions [Khan, Zomaya, and Abbas, 2017]. Therefore, we also customize the
classifier for each subject and train a different readout layer for each subject using the
corresponding annotation file. The reservoir itself, in other words, the recurrent weight
matrix is shared across different subjects. In particular, for each subject, we employed the
first 10 minutes of the recording signal for training and the next 5 minutes for testing.

A comparison of classification accuracy on testing data between the low-precision
spiking reservoir and the digitally simulated, high-precision reservoir baseline is pro-
vided in Table 6.1. Simulation on baseline standard ESN was performed with parameters
set as leakage rate = 0.99, spectral radius= 0.9 and regression parameter = 1e-6.

3 We only used the file #119 in [He et al., 2019a], this experiment was later extended to the other subjects in
[Liu, 2019].
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Table 6.1: PVC detection results on testing data

Performance Metrics

subject number classifier Accuracy Sensitivity Precision F1

subject #106

Standard ESN 98.75 % 97.22 % 97.22 % 97.22 %

Dynap-se reservoir 91.30 % 88.89 % 76.19 % 82.05 %

subject #119

Standard ESN 99.70 % 100 % 99.10 % 99.55 %

Dynap-se reservoir 97.87 % 100 % 94.07 % 96.94 %

subject #200

Standard ESN 99.07 % 98.24 % 99.40 % 98.82 %

Dynap-se reservoir 95.80 % 93.53 % 95.78 % 94.64 %

subject #201

Standard ESN 99.24 % 100 % 97.18 % 98.57 %

Dynap-se reservoir 97.74 % 95.71 % 95.71 % 95.71 %

subject #203

Standard ESN 98.14 % 100 % 90.32 % 94.92 %

Dynap-se reservoir 89.28 % 79.38 % 70.64 % 74.76 %

subject #223

Standard ESN 99.07 % 99.05 % 98.11 % 98.58 %

Dynap-se reservoir 90.53 % 76.15 % 84.69 % 80.19%

subject #233

Standard ESN 99.78 % 100 % 99.21 % 99.60 %

Dynap-se reservoir 97.46 % 93.01 % 97.79 % 95.34 %

It can be seen from Table 6.1 that although the Dynap-se reservoir created by the
proposed reservoir transfer method performed in general worse than the standard
ESN simulated on full bit-precision digital computer, it has achieved reasonably good
performance despite its low bit-precision, device mismatch and analog signal noise.

6.7 conclusion

Implementing efficient algorithms on neuromorphic hardware with low energy con-
sumption is a promising yet challenging path towards novel brain-machine interfacing
neuro-technologies. In this chapter, we reviewed the major difficulties we encountered
along this path: low bit resolution, device mismatch, uncharacterized neural models,
unavailable state variables, physical system noise and most importantly, timescale mis-
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match. As a solution, we proposed a computational scheme called Reservoir Transfer to
circumvent these difficulties and created a functional spiking reservoir on the Dynap-se
analog asynchronous neuromorphic microprocessor board. Empirical results from an
ECG signal monitoring task showed that this reservoir with ternary weights was able to
not only integrate information over a time span longer than the timescale of individual
neurons but also functioned as an information processing medium with performance
close to a standard, high precision, deterministic, non-spiking ESN.

For future work, it remains to be understood how a transferred weight matrix is related
to the time constant and leakage rate of the teacher reservoir. In addition, applying this
method to transferring trained recurrent neural networks instead of a randomly created
ESN will also be an exciting direction for further research.



7E P I L O G U E

Continual lifelong learning is an important aspect of artificial general intelligence. In
this thesis, we have approached this goal from multiple angles, and proposed several
solutions according to different scenarios of continual learning. In this chapter, we
summarize the main contributions of this thesis, point out the limitations of the proposed
methods, discuss new understandings and perspectives that came to light towards the
end of this Ph.D. program, and finally suggest new directions for future research.

7.1 summary

We started with the conventional task-aware setting of continual learning, in which a
sequence of tasks are presented with clearly defined boundaries during training time.
To address the problem of catastrophic forgetting in this setting, we applied the theory
of conceptors to define and identify memory space in each layer of a deep network. In
particular, we showed that training a neural network on one task does not necessarily
exhaust all of its capacity. The remaining power can be capitalized by conceptors. To
this end, we have proposed two continual learning methods based on conceptors.

In Chapter 2, we introduced Conceptor-Aided Backprop (CAB), which prevents the
weights of a network from forgetting by only exploiting the free space in the input layer
during the back-propagation process. The gradients are projected by the conceptors
corresponding to the free space, thus leaving the linear mapping from the used space
intact. We have also shown that the singular value spectra and the quota of conceptors
can be used to monitor how much memory space has been used in each layer of a deep
network.

In Chapter 3, we introduced Conceptor-based Pseudo-Rehearsal (CPR), which prevents
forgetting in each layer by requiring the change of upstream weights to only result in
change of activation in the free subspace of this layer. In practice, this requirement is
enforced by rehearsing randomly generated pseudo-inputs and their corresponding
pseudo-targets in the already used subspace. In this way, learning new tasks does
not overwrite the representations in the already used subspace and the mapping for
previous tasks can be preserved.

We then moved on to the more challenging and less explored task-agnostic scenario
of continual learning. In Chapter 4, we showed that the learning process of many real
applications such as multi-agent reinforcement learning games or generative adversarial
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network correspond to this scenario. Due to the lack of task information and the potential
conflict between different tasks, most existing continual learning methods simply could
not be applied to this scenario. In order to overcome these limitations, we have proposed
the What & How framework for inferring the task information and resolving the conflict
between different tasks. More specifically, we showed that when the model is not
informed about the task identity and the current task requires a different solution than
a previous task, forgetting is simply inevitable. Therefore, we shifted our main focus
from less forgetting to faster remembering. This led us to adopt meta-learning as a
task-inference mechanism. At each time step, the meta-model infers the current task
based on its immediate context data and selects the corresponding model to solve the
current task. In this way, when the task changes, the meta model can quickly respond to
the change by returning the right task-specific model. Instead of continually learning
a base model, our method focuses on continually learning the meta model. From this
perspective, our framework can also be viewed as a continual meta learning approach.

To further deepen our understanding of forgetting, we studied this problem from the
perspective of compression in Chapter 5. This new perspective allowed us to provide
a formal definition of forgetting that is task-independent and also aligned with our
common interpretation of forgetting as information loss. In particular, for any data point
x, we define the amount of information forgot about x caused by a change of model
parameters as the increase of code length when x is encoded with the help of this model.
With this formal definition, it is possible to measure forgetting precisely in number
of bits. Furthermore, the perspective of compression also offered a unifying view of
two main approaches to continual learning as approximations to prequential coding
methods: the prior-focused approach corresponds to Bayesian mixture code, and the
likelihood-focused approach corresponds to Maximum Likelihood (ML) Plug-in code.
Finally we combined the predictive strategies of these two prequential coding methods
and proposed a new continual learning paradigm called ML Mixture code. A Greedy
recursive update rule for ML Mixture code was designed to address the limitations of
prior-focused approaches.

In the last Chapter, we applied continual learning ideas to real problems occurred in
the application of neuromorphic engineering. In particular, we were facing a challenging
task of realizing a well-performing reservoir on an analog, unclocked, spiking, low
precision, heterogeneous and slightly noisy neuromorphic microchip, very similar to
the biological brain in many ways. Instead of taking the paths of manually designing
the topology of such a network or training it with Back-Prop Through Time (BPTT),
which were both infeasible due to the undesirable properties of the hardware, we
followed the thinking of continual lifelong learning and proposed an algorithm called
Reservoir Transfer to distill the knowledge from a well-understood system, namely, a
leaky Echo State Network simulated in digital computer, and transferred it to the spiking
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network on the intricate analog device. As explained and demonstrated in Chapter 6, the
Reservoir Transfer algorithm was able to circumvent all the difficulties associated with
the peculiar features of the hardware: it only uses the input and output spike signals
and doses not require the measurement of the internal analog values; there is no need
to back-propagate errors through the discrete spikes, which are non-differentiable; the
transferring process is essentially a linear regression, which only has to be performed
once and can be done very efficiently; existing method for quantized linear regression
is available, so the resulting weights can be ternary and thus compatible with the
hardware constraint that the weights can only be ternary; since the network was trained
on spike responses recorded from the chip, device mismatch is automatically taken into
consideration during training; finally, the regularization applied for linear regression
can prevent the weights from over-fitting the small noise in device.

7.2 limitations

As with all machine learning algorithms, the methods introduced in this thesis have
limitations. In fact, the motivation for most chapters in this thesis was to address the
limitations of the settings or algorithms proposed in previous chapters.

For example, when the input space of different tasks have significant overlap, the CAB
algorithm proposed in Chapter 2 will suffer from the gradient vanishing problem and
will fail at learning the new task well. This limitation is addressed in Chapter 3 by the
CPR algorithm. Since CAB relies on the free subspace in the input space to continually
learn new tasks and the dimension of the input is fixed, CPR instead constrains the
learning process based on the output space of each layer, thus leaving the entire input
space available to all tasks.

The CPR method, however, has its own limitations. First, it relies on pseudo-rehearsal
to maintain the functional mapping from the input space to the free output subspace,
therefore it inherits the limitations of pseudo-rehearsal methods, which do not scale
well with very high dimensional data, since the probability density of real data under a
high dimensional Gaussian distribution is very small. There are two potential solutions
to address this limitation. One way is to apply this method to a deep generative model,
and replace the Gaussian samples used for rehearsal by the generated data from the
model itself. This will result in a hybrid continual learning approach that combines deep
generative replay and the conceptor constraints. The second solution is to introduce
a regularization mechanism to the training process of the network such that the used
subspace in each hidden layer corresponds to a canonical linear subspace. In this
way, each dimension in the used subspace corresponds to a neuron in this layer and
the constraint that any change to the pre-synaptic weights should not cause change
of activation in the used subspace can be simply enforced by freezing the weights



124 epilogue

connected to the subset of neurons corresponding to the canonical subspace, thus there
is no need to employ pseudo-rehearsal.

Both CAB and CPR share the same limitation that they require task boundaries to
know when to update the conceptor matrices, thus they can only be applied in the
task-aware scenario. To address the task-agnostic scenario, we proposed the What &
How framework based on meta-learning techniques in Chapter 4. This framework relies
on Bayesian online learning to combat catastrophic forgetting, therefore it shares the
drawbacks of all prior-focused approaches such as the prior overhead and the large
approximation gap between real posterior and simple variational posterior, as we have
discussed in details in Chapter 5. Another limitation of the What & How framework is
that it assumes that a fixed window of k previous observations are sufficient to infer
the task information. However, this assumption might be violated if the task changes
with a long temporal dependency. A straightforward fix for this problem is to use
an LSTM-based meta-learner instead of an optimization-based meta-learner. However,
current methods for online learning recurrent networks such as truncated BPTT or
real-time recurrent learning (RTRL) [Jaeger, 2002] do not scale well with sequence
length or network size. This remains a challenge for future research.

In Chapter 5, to address the limitations of prior-focused approaches, we have proposed
a new prequential coding method called ML Mixture Code and designed a greedy update
rule for continual learning. The main downside for this new paradigm is that, as a
greedy algorithm, the approximate posterior component at each time step is optimized
only with the data currently available and has to stay fixed in the future. Therefore the
components optimized at earlier steps might no longer be globally optimal at a later
time. A potential fix is to introduce a certain form of generative replay so that earlier
components can also be adjusted later. Another downside, as we have discussed at the
end of Chapter 5, is that this new paradigm also relies on a distribution approximation
by a variational method, although this approximation is more plausible than the one
assumed by prior-focused methods, a small approximation gap can still cause arbitrarily
large increase of the loss function. In the future, it would be preferable to develop a
different method that can bound the error by reducing the approximation gap.

Finally, we discuss the limitations of the Reservoir Transfer method. Although it can
efficiently and successfully realize a functional reservoir on an analog neuromorphic
hardware with many unconventional and undesirable properties, it assumes that we
already have a well-performing teacher system available and there is an interface between
the teacher system and the student system that allows them to interact with each other.
Therefore, this method cannot be applied when learning has to be performed directly
on the device or if we do not have a working teacher system already. Another potential
problem with this method is that, since our goal is to obtain a general-purpose and
task-independent reservoir, the transferring procedure matches the dynamics of the two
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systems based on their responses to white noise signals, which might have different
distributions than those of the real signals to be processed in the future. When this
difference is large, the transferred weights might over-fit to the white noise and cannot
generalize to the real signals. This, however, might not be a big problem if we know in
advance what data will be processed later. In such cases, we can use samples of real
signal instead of white noise for the transfer process.

7.3 discussion and future work

Although continual lifelong learning has become a very popular topic within machine
learning in the past few years and many algorithms have been proposed to achieve this
goal, these methods still perform considerably worse than the i.i.d joint training strategy
on large-scale datasets in challenging scenarios such as incremental classification [Lange
et al., 2021]. For this reason, for most applications, machine learning practitioners would
still prefer storing all the data in the history and simply retrain the model every time
new data become available. Comparing to this embarrassingly simple store-everything-
and-retrain strategy, current continual learning methods usually only have demonstrated
advantage in terms of memory consumption, since they do not require all the data
from the past and usually assume the memory budget is bounded. However, as a
Turing Award winner used to tell the author, memory is cheap! Indeed, with the ever-
decreasing cost of information storage [McCallum, 2020a,b] and the advance of cloud
computing [Shamsi, Khojaye, and Qasmi, 2013], nowadays even for the very large-scale
applications, most companies in the industry have no problem to store all the data
available. Furthermore, there are experimental results which suggest that when not all
data can be stored, simply greedily storing as much as possible while balancing the data
in each class and retraining the model at testing time will outperform most continual
learning methods [Prabhu, Torr, and Dokania, 2020]. These findings plus the fact that
memory is usually not expensive cast doubt on the current focus in continual learning.
It seems that except for some very specialized application scenarios such as intelligent
health-care [Lee and Lee, 2020], neuromorphic hardware [Indiveri and Liu, 2015] or
embedded devices [Joyce and Audsley, 2016], where not all data can be stored due to
privacy or limited memory resource, the simple store-everything-and-retrain strategy
should be preferred over most of the current continual learning methods.

Therefore, to develop realistically useful continual learning algorithms in the future,
perhaps we should relax the restriction on memory budget and instead shift its focus to
address other limitations of the store-everything-and-retrain strategy: its high computa-
tional cost and inability of real-time inference. When the tasks are very different, the
current retraining strategy usually still takes many epochs before it converges to a new
solution, even when the retraining starts from an initialization that has been pre-trained
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on previous tasks [Raghu et al., 2019]. This suggests that, to gain more comparative
advantage against the retraining method, practical continual learning methods should
either reduce computational complexity per iteration, converge faster or require less data
for retraining. Starting from this new perspective, we foresee several potential topics to
be explored in the future:

First, the continual learning community should establish different benchmarks and
metrics for comparing computational complexity. Most existing works on continual
learning only focus on measuring forgetting but neglect the computational costs or con-
vergence speed when evaluating their methods. Since memory is no longer a constraint
in this new computation-centric paradigm, forgetting may not be a problem anymore,
we should instead create tasks that require fast convergence and online processing.

Second, even if we have large enough memory to store everything we want, what we
store still makes a difference. Should we store data as in the replay-based approaches
or models as in the expansion-based approaches? It might not be an optimal strategy
to just store the raw data, since it is usually computation-intensive to convert raw data
to models and our goal is now to reduce computation cost. On the other hand, if we
store models, although we can directly use them for inference, we now need to run
inference on many models to select and combine their results before we can make a
prediction. This will also result in substantially more computation when the number of
models is large. It remains an open question which type of storage is better in terms of
computation.

Third, we might want to store other forms of memory medium than raw data or
models. It is unclear yet which memory medium is the best, but alternative forms do
exist. For instance, hidden states in a recurrent network are neither raw data nor model
parameters, yet they are usually considered as a form of memory. Another example
is conceptors, which are not raw data but also not models that can be directly used
for inference. However when combined with a base model, conceptors can be used to
recover memory from the past [Jaeger, 2014]. Ideally, the alternative memory medium
should be an intermediate form between raw data and model parameters such that they
can be combined and converted to a single model and the conversion cost in terms of
computation should be less than from raw data. In this way, we can always first convert
the raw data into this intermediate form and whenever new data arrive, we do not have
to repeat the effort spent on converting previous data to this intermediate form.

Finally, we should develop a formal theory for the trade-off between memory, com-
putation and task performance. Although nowadays computation is generally more
valuable than memory, there are still scenarios where memory is the bottleneck instead
of computation, as we mentioned before. Therefore, there can be diverse application
scenarios where we want to trade one performance for another one. A formal guidance
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for how to find the optimal compromise among these three performance dimensions is
still missing for continual lifelong learning.
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S A M E N VAT T I N G

Agenten met kunstmatige intelligentie horen gedurende hun gehele levensduur kennis
moeten vergaren en vaardigheden moeten op pakken. Continual learning verwijst naar
de scenario’s waarin een machinaal lerend systeem eerder verkregen vaardigheden kan
behouden en benutten terwijl het nieuwe leert. Wanneer connectionistische modellen
getraind worden op een reeks van taken, vergeten ze echter doorgaans eerder ver-
gaarde kennis nadat hun parameters zijn aangepast voor een nieuwe taak. Dit beruchte
probleem, bekend als catastrophic forgetting, vormt een serieuze uitdaging voor voort-
durend levenslang leren. In deze dissertatie leggen wij nieuwe oplossingen voor, voor
het probleem van catastrophic forgetting, continual learning en transfer learning.

• In hoofdstuk 2 stellen wij een variant van het backpropagation algoritme voor,
Conceptor-Aided Backprop (CAB) [He and Jaeger, 2017, 2018], waar gradiënten
worden afgeschermd tegen de degradatie van eerder geleerde taken. Conceptors
vinden hun oorsprong in reservoir computing, waar eerder is aangetoond dat ze
catastrophic forgetting tegen kunnen gaan. CAB breidt deze resultaten uit naar
diepe feedforward netwerken. In het bijzonder passen wij in elke laag van het diepe
netwerk een conceptor toe om de voorheen gebruikte lineaire deelruimte te iden-
tificeren, en de gradiënten te projecteren op de vrije deelruimte voor toekomstig
leren.

• We laten zien dat wanneer de invoerruimten van twee taken een grote mate van
overlap overlappen hebben, het toepassen van CAB zal leiden tot onverzettelijkheid,
oftewel het onvermogen van een netwerk om nieuwe kennis te leren. Wij analy-
seren de achterliggende reden en stellen in hoofdstuk 3 een andere CL-methode
voor, Conceptor Pseudo-Rehearsal (CPR) [He, 2018a], om met deze beperking om
te gaan. In plaats van de parameter updates te projecteren op de vrije deel-
ruimte in de presynaptische laag, beperkt CPR ze door de vrije deelruimte in de
post-synaptische laag. Nieuwe activeringen als gevolg van aanpassingen van de
parameters verschijnen alleen in de vrije deelruimte. Dientengevolge interfereren
deze activeringen niet met oude taken. Daarenboven kunnen nuttige features van
de oude taken worden hergebruikt door de nieuwe taken, wat een voorwaartse
overdracht tussen taken mogelijk maakt.

• De meeste benaderingen voor continual learning gaan er impliciet van uit dat er
een multitaak oplossing voor meerdere taken bestaat. In hoofdstuk 4 onderbouwen
en bespreken wij realistische scenario’s, zoals multiagent spellen, waarin deze
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veronderstelling niet opgaat. Wij beargumenteren dat de traditionele metriek van
zero-shot onthouden niet geschikt is in dergelijke omstandigheden en wij richten
ons op de snelheid van het onthouden van voorgaande taken, geïnspireerd door
de meta-leren literatuur. Wij stellen het What and How kader voor [He et al., 2020]
om dit geval aan te pakken, waarin een onderscheid gemaakt wordt tussen welke
taak momenteel wordt opgelost en hoe de taak opgelost moet worden. Bij elke
stap voert het What algoritme taakinferentie uit, waardoor ons kader kan werken
zonder taakgrenzen. Het How algoritme is geconditioneerd op de afgeleide taak,
waardoor taakspecifiek gedrag mogelijk wordt, en de aanname van een multitaak
oplossing wordt versoepeld. Vanuit het perspectief van meta-leren kan ons kader
omgaan met een sequentiële presentatie van taken, in plaats van toegang te hebben
tot de verdeling van alle taken. Wij valideren de doeltreffendheid van onze aanpak
empirisch en passen deze toe om generative adversarial networks (GAN) te trainen.

• In hoofdstuk 5 bestuderen wij catastrophic forgetting vanuit het perspectief van
de informatietheorie en definiëren wij vergeten als het toenemen van de beschri-
jvingslengte van eerdere data wanneer deze worden gecomprimeerd met een
aaneenvolgend geleerd model [He and Lin, 2020]. Ook tonen wij aan dat methodes
voor voortdurend lerend op basis van variationele posterior benadering en genera-
tive replay kunnen worden beschouwd als benaderingen van twee prequentiële
coderingsmethoden in compressie, namelijk de Bayesiaanse mixture codes en
grootste aannemelijkheid (GA) plug-in code. Wij vergelijken deze benaderingen in
termen van zowel compressie als vergeten en bestuderen empirisch de oorzaken
die de prestaties van benaderingen die gebaseerd zijn op variationele posterior
benadering beperken. Om deze beperkingen aan te pakken, stellen wij een nieuwe
methode voor continu leren voor, genaamd GA Mixture Code, die GA plug-in en
Bayesiaanse mixture codes combineert

• Als laatste richten wij ons op het voorwaartse overdracht aspect van continu leren
en passen dit toe op het probleem van neuromorphic engineering in hoofdstuk
6 [He, 2018b; He et al., 2019a]. Analoge, niet-geklokte, spikeende neuromorphic
microchips bieden nieuwe perspectieven voor implanteerbare of draagbare biosen-
soren en bio-controllers, vanwege hun lage energieverbruik en warmteafvoer.
De uitdagingen vanuit rekenkundig oogpunt zijn echter formidabel. Wij geven
de hoofdlijnen van onze oplossingen om het reservoir computing paradigma
op dergelijke hardware te realiseren en pakken de gecombineerde problemen
van lage bit resolutie, apparaat mismatch, benaderende neuronmodellen en tijd-
schaal mismatch aan. De belangrijkste bijdrage is een berekeningsschema, Reser-
voir Transfer, dat ons in staat stelt de dynamische eigenschappen van een goed
presterend neuraal netwerk dat is geoptimaliseerd op een digitale computer, over
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te brengen op neuromorphic hardware die de bovengenoemde problematische
eigenschappen vertoont. Wij presenteren een casus van de implementatie van een
ECG-hartslagdetector om de voorgestelde methode te demonstreren.
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