
Foreword

Reservoir computing seems simple but is difficult, it feels new but it is old,
it opens horizons and is brutally limiting. I will do my best in this foreword
to leave the reader with many questions — to be answered, or maybe not,
in the many chapters of this richly filled book.

The basic principle of reservoir computing (RC) is simple. Given: a
training input signal utrain(t) paired with a desired target output signal
ytrain(t). Wanted: a filter (transducer) F which, when fed with input
utrain(t), generates an output signal ŷtrain(t) which comes close to the tar-
get ytrain(t). Approach: Step 1. Prepare a high-dimensional dynamical
system X(t), the reservoir, which can be driven by input utrain(t) and in
which many state variables xi(t) (where i = 1, . . . , N) can be observed and
recorded. Step 2. Drive this system with input utrain(t) and record the cor-
responding reservoir-internal response signals xtrain

i (t). Step 3. Find (train,
learn, estimate) a readout function F which maps every recorded state vector
(xtrain

1 (t), . . . , xtrain
N (t)) to an output ŷtrain(t) which approximates the training

targets ytrain(t). Finding such a readout F is often boils down to a simple
linear regression. Exploitation: feed new input signals u(t) to the reservoir,
observe the reservoir-internal state vectors x(t) = (x1(t), . . . , xN (t)), and
compute the output signal ŷ(t) = F (x(t)).

This basic scheme is very versatile. One can solve temporal input-output
tasks for timeseries prediction, dynamical pattern generation, classification
and segmentation, control, de-noising and channel equalization, rare event
monitoring, and many more. One can apply RC to obtain practical engineer-
ing solutions in signal processing and control and robotics and communica-
tion technologies and machine learning and AI; one can call upon RC models
as explanatory principle in theoretical neuroscience; and in mathematics one
can use RC as an entry point to identify and analyse a number of interesting
phenomena in high-dimensional dynamical systems. But most importantly,
one can in principle use any kind of nonlinear, high-dimensional dynamical
sytem for the reservoir X(t), regardless of whether it is an experimental
probe of a freshly engineered nanomaterial, a quantum dot preparation, a
replica of an octopus arm made from soft plastic and suspended in water, or
a digital simulation of a neural network — all to be found in the scintillating
collection of reservoirs that the reader will find in this book.

But... the closer one becomes involved with RC, the more difficult it
gets, and if one to embrace it in full contact, it gets almost impossibly
difficult. Reservoirs are high-dimensional, input-driven, nonlinear and often
stochastic dynamical systems. A full theory of reservoir dynamics would be
a full theory of everything that evolves in time. Only fragmentary insights
into the unbounded phenomenal richness in general dynamical systems are
currently available in mathematics, theoretical physics and biology or the
general complex systems sciences. Compared to what we could know about,
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observe in, and utilize from reservoir dynamics, we currently do know, see
and use — almost nothing. It is easy to program a recurrent neural network
with 100 neurons on a digital computer, declare it a reservoir, apply the
basic RC scheme on a simple modeling task, exclaim “it works!” and call
it good. This is how students worldwide get hooked on RC. But when
the data are noisy or incomplete or have outliers or are nonstationary or
have a wandering baseline or variable amplitude or are high-dimensional or
have multiple spatial or temporal scales, or when stability conditions have
to be guaranteed, or when the task demands continual online learning, or
when the input data consist of rare events spiking out of a zero baseline, or
when there are many possible options for input and output signal re-coding
(there always are), or when one’s computer allows only fast experimentation
with small reservoirs but one wants to extrapolate to large ones, or when
one wants to automate the readout training, — to cut this short: when
one gets pushed out of the comfort zone of the dozen or so ever-repeated
“benchmark” tasks that pervade the RC literature — then reservoirs turn
into feral beasts that take an enormous amount of patience and experience
to tame. The promise of RC: one need not train the reservoir, turns into a
problem: one can not train the reservoir. There is an unlimited variability
in task specifics and there is an infinity of dynamical behaviors in candidate
reservoir systems. In a haystack of possibilities one must find a reservoir
whose native dynamics matches the demands of the task at hand. After
two decades of RC research we only have the faintest inklings of how to
match reservoir dynamics with task dynamics. Many of my students choose
a reservoir computing theme for their graduating thesis. I dare say that,
when after much trial and error they ultimately arrive at the point where
“it works!”, they don’t understand why it works — and neither do I.

Many contemporary RC papers that I read or review introduce their
subject still with “Reservoir computing is a new approach to train neural
networks ...”. Well... RC may be called “new” compared to Newton’s and
Leibniz’s calculus, but by the standards of the fast-paced innovation cycles in
machine learning it is rather old. The basic RC principle has been discovered
and re-discovered many times, and I continue to become aware of earlier
and earlier “first” sightings. This is how it goes with most ideas that are
elementary and useful.

It is not customary to cite references in a foreword, but I take this as
an opportunity to give due credit to RC pathfinders. The earliest percep-
tion of the RC principle that I am aware is Kirby and Day [1990], a 1-page
conference abstract that was subsequently worked out by Kevin Kirby in
a paper where he gives what I consider the first concise and comprehen-
sive account of the RC principle [Kirby, 1991], with the readout from the
reservoir (which he called context reverberation subsystem) trained by the
perceptron learning algorithm. The problem of finding a “good” reservoir is
clearly identified, and a sentence in the Conclusion section reads like proph-
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esy: “This may encourage molecular electronic hardware implementations.”
Both papers remained entirely unnoticed (the single Google Scholar cite
that I saw when I queried this in 2017 was a self-citation). In the same
year 1991, Lambert Schomaker, in Chapter 7 of his PhD thesis [Schomaker,
1991] (separately published in Schomaker [1992]), described how a target
output signal can be obtained by learning a linear readout from a random
ensemble of spiking neural oscillators. I got to know about this work by
an unlikely chance: after I was appointed at the University of Groningen
in 2019, Lambert became my direct senior manager and he told me about
his PhD thesis in a casual conversation. I wonder how many other casual
conversations with other senior colleagues worldwide would bring up sim-
ilar surprises. Both Schomaker and Kirby refer back to earlier precursor
ideas in their texts — clues for further studies in scientific archaeology. The
next independent discovery of RC that I know about occurred in cognitive
neuroscience. Peter F. Dominey described a multi-module (human) brain
circuit for sequence generation which included a simplified model of pre-
frontal cortex as reservoir from which trainable readouts send information
to the caudate nucleus [Dominey, 1995]. Up to the present day, and in close
collaboration with other RC researchers, Dominey has been continuing to
work out elaborate neuro-cognitive architectures with an RC core both for
neuroscience modeling and for robotic / human-maching interaction appli-
cations. His chapter in this book gives a summary of a 25-year-long personal
research mission.

The current RC literature mostly localizes the origin of RC in the propo-
sitions of liquid state machines by Wolfgang Maass and my echo state net-
works [Maass et al., 2002, Jaeger, 2001]. Wolfgang and I got to know of each
other at the 2001 EU Advanced Course in Computational Neuroscience at
the International Center for Theoretical Physics in Trieste, Italy, August
2001, where to our mutual surprise we found our own ideas almost iden-
tically reflected in the respective other’s. We started to collaborate, soon
joined by Benjamin Schrauwen who coined the term “reservoir computing”
(or was it his brilliant PhD student David Verstraeten? the first published
paper where this term was used seems to be Verstraeten et al. [2005]). Ben-
jamin rapidly built up an enormously productive RC research group at the
University of Gent even before he was awarded his PhD degree. I think
several factors came together why reservoir computing took off only then.
First, the three of us teamed up instead of defending proprietary RC is-
lands. Second, for the first time the mathematical preconditions that make
reservoirs functional were clearly spelled out through the fading memory
and separation property in Wolfgang’s models and the echo state property
and an analysis of a reservoir’s memory capacity in my work. Mathematical
formulae gave authority to a wild-looking idea. Third, “it worked” really
well in many demo tasks that met the taste and demands of the time —
while training recurrent neural networks with other then-existing learning
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algorithms was difficult, unstable, and slow. The deep learning revolution
superseded RC only toward the end of the 2010’s when the intricacies of
gradient-descent training of recurrent neural networks finally became mas-
tered. Reservoir computing research receded into a niche for a few years.

But RC research re-awakened and sprouted out again from this niche
when RC principles were adopted first in the field of optical computing
(history outline in this book’s chapter by Dambre et al.) and swiftly also in
other domains of physical reservoir computing (surveyed in the chapter by
Dale et al.). Most chapters in this book are a testimonial to the refreshing
new thrust that RC has given to the wider fields of unconventional / in-
materio / natural / ... computing (I have a private list of about 15 different
namings that have been branded in the last four decades or so). Materials
scientists and non-digital device engineers from the most diverse makings
continue to discover RC for themselves. As long as RC continues to be
freshly discovered by colleagues in widening circles, there is still truth in
when they say, in the introductory passages of articles, that RC is “... a
new approach ...”.

Ah, before I forget: there is one little technical thing that I want to
point out to everyone who uses RC for the first time. So many neural-
network-based RC papers state in their methods section that the spectral
radius (largest absolute eigenvalue) of the network weight matrix should
be less than unity to ensure the echo state property, a necessary condition
to make RC work. This is a myth. A spectral radius SR < 1 is neither
sufficient nor necessary for the echo state property [Yildiz et al., 2012], and
a value much larger than 1 often gives the best performance. Please don’t
perpetuate this myth in your work! And while I am at it: another myth is
that reservoirs work best when they are tuned to operate “at the edge of
chaos”, or “close to criticality”. First, it’s a misnomer, because the edge in
question here is the edge of the echo state property, not the edge of chaos. If
a reservoir slides across this edge, it doesn’t necessarily (even not typically)
enter a chaotic regime. Second, reservoirs are input-driven systems, and
mathematicians still haven’t entirely agreed how to define chaos in input-
driven systems. Finally, reservoirs “close to criticality” work well only for
a certain class of learning tasks — the sort of tasks which are invariably
re-iterated in articles on this subject — but reservoirs far on the stable side
of that edge work much better for many other tasks. Cramer et al. [2020]
point a spotlight on this affair. I really can’t understand why this myth
remains recited so often, given the massive counter-evidence from so many
practical applications where carefully optimized reservoirs come out sitting
safe and far away from this edge.

RC has the elegance of simplicity, which may be explanation enough
why it inspires researchers in many fields. Of course there are more sub-
stantial reasons why RC keeps blossoming, for instance because it connects
the neuro- with the computing sciences in stronger than purely metaphorical

4



ways; or that it opens new doors for theoretical analyses of high-dimensional
dynamical systems; or that materials scientists today really don’t have many
alternatives to make their unconventional substrates “compute”.

But one should be aware that the powers of RC as a stand-alone carrier
of “learning” or “computing” are decisively limited. Biological brains may
be using RC in some places and some ways — it is unlikely that they don’t
because evolution will find and keep any trick that works — but brains use
many other dynamical mechanisms and structuring principles and informa-
tion encoding procedures as well, and I don’t think we have an idea yet
even of how many. From my perspective of machine learning, AI and the-
ory of computing, the strongest weakness (what a nice oxymoron) of pure
RC is its inherent blindness to hierarchical multiscale compositionality of
data structures, processes and architectures. Here I understand composi-
tionality in a strong sense which includes bidirectional interaction between
higher modules or layers and their sub-modules or lower layers. An exam-
ple are planning architectures for autonomous agents where higher planning
modules generate longer-term plans that “call” lower sub-plan modules in a
top-down direction, and stay informed about execution progress in a bottom-
up direction of communication from the sub-modules. Another example are
the Boltzmann machine or Friston’s free-energy models of neural processing
where higher layers send statistical biases to lower layers, and are informed
about conditional feature distributions from below. In computer science, the
object-oriented programming paradigm is the very manifestation of bidirec-
tionally effective compositionality. The top-down actions can be interpreted
in a variety of ways, for instance as attention control, predictive context
settings, or read/write signals in working memory systems. Such top-down
modulations are essential for full-fledged cognitive information processing:
but, such bidirectionally effective hierarchical cognitive architectures cannot
be realized by RC alone. Additional structures and algorithms are needed to
coordinate intermodule communication (as in my attempt in Jaeger [2007]
to design a hierarchical RC learning architecture that can discover temporal
features on several timescales); or additional teacher signals for the individ-
ual modules must be created (as in Pascanu and Jaeger [2011] where we
trained a kind of parser for visual text input that had a nested grammatical
structure); or additional control mechanisms must be installed to modulate
the reservoir dynamics “from above” (like conceptors [Jaeger, 2017]). It is
one of the strongest strengths of today’s deep learning networks that such
multi-directionally organized architectures, like for instance neural Turing
machines, can be trained by “end-to-end” gradient descent, where the req-
uisite local training signals are automatically generated. — This said, I
emphasize that RC can positively be applied with much benefit in certain
multiscale learning tasks using uni-directionally coupled stacks of reservoirs
where lower, typically faster reservoirs connect upwards to higher, typically
slower reservoirs. Gallicchio and Micheli (in this volume) survey such archi-
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tectures, which they call deep RC systems.
RC research keeps advancing in many directions. I want to conclude

with my personal favourite challenges for the next evolutionary steps in RC
research:

• Coordinate RC modules in complex learning and information process-
ing systems with the aid of additional mechanisms — this theme is
also highlighted in the Conclusion of Dambre’s et al. chapter in this
book.

• In physical RC, find ways to realize the readout and its training di-
rectly in the non-digital material substrate, instead of delegating it to
a digital host computer.

• Leverage the infinite dimensionality of spatially extended nonlinear ex-
citable media, extending the readout combination of a finite number
of reservoir signals to an infinite-dimensional integration, convolution
or field transformation. In physical RC one might envision spatially
continuous two-layer substrates where the bottom layer acts as reser-
voir and the top layer would function as a continuous version of what
today are the readout weight matrices.

• Find effective ways to cope with the unpleasant properties of physi-
cal reservoirs, such as device mismatch, parameter drift, temperature
sensitivity, low numerical precision and stochasticity, and partial ob-
servability. Physical reservoirs may only become practically useful
when appropriate auto-calibration or homeostatic regulatory mecha-
nisms are realized in combination with numerically robust and swiftly
self-adapting readout processes.

• Rigorously analyze which abstract dynamical characteristics of input
and output data and task specifications should be reflected in which
characteristics of reservoir dynamics. Currently available insights are
mostly distilled from experimental studies of timescale profiles or fre-
quency spectra in input data and provide no comprehensive guides for
optimising reservoir designs.

Many chapters in this collection include historical summaries of major
RC research strands, and all tell enticing stories about what today’s achieve-
ments are and are not. This book lets us see where we stand and invites
us to imagine where we can go further. Being a veteran of the field, I feel
enormously grateful for the massive labor of editors and authors to plant
this landmark after thirty years of a voyage that will continue to feel fresh
and young.
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