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Abstract

An iterative neural architecture based on repeated application of the Denoising
Autoencoder is introduced. The architecture is placed in the family of other
approaches involving networks of simple units and iteration at the exploitation
stage. It is shown that repeated feeding of a pattern to a Denoising Autoencoder
often yields non-trivial sensible improvements of the pattern. This statement is
supported by a classification experiment, in which the data transformed by our
architecture is shown to be more linearly separable than the original samples.
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1 Introduction

Deep feed-forward neural networks (DNN) have been attracting active attention
of the machine learning research community since the advent of greedy layer-wise
pretraining [Hinton et al., 2006]. The early approaches relied on such pretraining
with different unsupervised methods such as the Restricted Boltzmann Machine
(RBM) [Bengio et al., 2007] and various regularized autoencoders [Vincent et al.,
2008,Rifai et al., 2011], followed optionally by a supervised finetuning. The later
works showed that they can be trained from careful random initializations as
well [Glorot and Bengio, 2010,Krizhevsky et al., 2012]. The usage of GPU’s for
training these architectures pushed the size limits [Ciresan et al., 2010,Krizhevsky
et al., 2012] and advanced regularization techniques such as dropout [Hinton et al.,
2012b] and fast dropout [Wang and Manning, 2013] were invented to combat
overfitting. Consequently many state-of-the-art results in pattern recognition in
different domains belong to deep feed-forward architectures [Krizhevsky et al.,
2012,Hinton et al., 2012a].

At the same time researchers considered neural architectures with more complex
information flow, involving some sort of feed-back and iterative processing. Clas-
sical, multidimensional [Graves et al., 2007] and deep [Pascanu et al., 2013] Recur-
rent Neural Networks (RNN) involve such a kind of processing, however incorpo-
rating inputs into the network state at each particular step is still done in a purely
feed-forward fashion. A hierarchical composition of random RNN’s with top-down
control for denoising and classifying temporal patterns is described in [Jaeger,
2014]. Other examples include the Deep Boltzmann Machine (DBM) [Salakhut-
dinov and Hinton, 2009], where the intractable posterior over the hidden values is
replaced by mean-field approximation optimized iteratively, Generative Stochas-
tic Networks (GSN) [Bengio and Thibodeau-Laufer, 2013] that perform MCMC
sampling with both bottom-up and top-down projections alternated with a noise
insertion.

In this study we contribute to research of iterative neural architectures by consid-
ering a simple example: repeated application of a Denoising Autoencoder (DAE)
[Vincent et al., 2008]. An autoencoder is a single hidden layer neural network that
is trained to reproduce its input. The DAE is trained to reconstruct the input
despite corruption performed intentionally before feeding the input to the net-
work. It was originally invented as a better procedure for layer-wise pretraining of
the DNN’s, producing more sensible features than the usual autoencoders. Later
investigations showed other interesting properties of the DAE’s. If one iterates
a DAE feeding its output with the addition of noise to its input, the resulting
sequence of the outputs forms an MCMC sampler for the underlying data distri-
bution [Bengio et al., 2013]. The walkback modification for the training objective,
pushing samples from several first steps to the starting point, helped to improve
the quality of the samples. In the case of weak Gaussian noise the optimization
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problem that the DAE strives to solve is equivalent to learning the score, i.e. the
derivative of the data log-likelihood [Alain and Bengio, 2013]. Thus, the repeated
feeding of the output to the input without adding any noise can be perceived as
approximate gradient ascent in the direction of greater likelihood and the fixed
points of such dynamics might be the likelihood’s local maxima.

Driven by the theoretical results described in the last paragraph and a general
intuition that DAE “improves” the input we investigate the dynamics of DAE’s
repeated application on the MNIST data set of handwritten digits [LeCun et al.,
1998]. We analyze empirically what the fixed points of such dynamics are and
show that often they do look like improved input samples. We hypothesize that
these fixed points should be easier to classify and verify this hypothesis with a
linear classifier and a simple single hidden layer neural network. We employ the
walkback technique to fight unpleasant artifacts emerging during dynamics. The
combination of strong corruption and several walkback steps allowed us to obtain
fixed points that are more linearly separable than the original samples.

The report is structured as follows. Section 2 introduces autoencoders, Section 3
describes related work. In Section 4 our preliminary investigations that eventually
led to us to the exploration of the DAE’s dynamics are presented. Section 4
describes in detail the considered model and the dataset. Section 5 presents both
qualitative and quantitative results. Finally in the last section we summarize our
experience, make conclusions and present ideas for future research.

2 Autoencoders

The processing of an autoencoder (also called autoassociative network, Diabolo
network) in its most generic form is described by the following equations:

h = f(W1x+ b1) (1)

o = g(W2h+ b2) (2)

where x ∈ Rd, h ∈ Rn, o ∈ Rd stand for the input, the hidden units activations
and the output correspondingly; the matrices W1, W2 and the vectors b1, b2 are
parameters; f and g are functions picked from domain-specific considerations. The
functions f and g are usually nonlinear and are hence often called nonlinearities.
Popular examples for nonlinearities include the sigmoid σ(x) = 1/(1 − e−x), hy-
perbolic tangent, the rectifier rect(x) = max{0, x}. We will also use the symbol r
to refer to the whole reconstruction function o = r(x). The autoencoder is trained
to reconstruct its input, that is the training objective is:

LAE(r) = Ex [Err(x, r(x))] (3)

where the Err function specifies the punishment for bad reconstruction. Common
choices for the Err function include the mean square error (MSE) ||h − o||22 and
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the cross-entropy loss (CE)
�
i
−xi log oi − (1 − xi) log(1 − oi) for the cases when

both outputs and inputs are guaranteed to be from the [0, 1] interval. A frequent
architectural choice is to tie the weights, that is force W2 = W T

1 . In practice the
mean in Equation 3 is replaced by the average on the training set and optimized
numerically, typically by the stochastic gradient descent (SGD).

Autoencoders are often associated with dimensionality reduction, that is when the
number of hidden units n is considerably less than the size d of the input an autoen-
coder is forced to learn a compact representation of the data in a lower-dimensional
space. A related wide-spread understanding is that of a feature extractor when
the activations of hidden units h are later used in a machine learning pipeline as
features. One might want to have more features than dimensions in the original
data, however setting a desirable n does not help in such a situation because then
the autoencoder can learn the identity map. Regularized autoencoders such as
the Denoising Autoencoder [Vincent et al., 2008] and the Contractive Autoen-
coder [Rifai et al., 2011] were invented to allow arbitrary number of features. The
general idea in all cases is to put some additional constraint in the learning pro-
cess so that the autoencoder has to extract meaningful features to accomplish its
reconstruction task.

In the case of DAE it is done by randomly corrupting the input during the opti-
mization process. Mathematically it changes the optimization objective to

LDAE(r) = Ex̃ [Err(x, r(x̃))] (4)

where the random variable x̃ corresponds to x after the noise corruption. In case
of images at the input popular choices of corruption include additive Gaussian
noise and so called salt-and-pepper noise, when random pixels are blackened or
whitened.

The regularized autoencoders as a feature extraction method compete in one
league with proper generative models of the data such as the RBM and Sparse
Coding [Olshausen et al., 1996] that strive to capture the data distribution at the
training phase. A question whether regularized autoencoders implicitly learn the
distribution as well is explored in [Alain and Bengio, 2013]. It is first shown that
in the case of small additive Gaussian noise with variance σ2 and MSE recon-
struction error the objective (4) of the DAE training has the following asymptotic
expansion:

LDAE(r) =

�
E
�
||x− r(x)||22

�
+ σ2E

�
||∂r
∂x

||2F
��

+ o(σ2) (5)

where r denotes the whole reconstruction mapping. Then they prove that mini-
mization of the objective (5) yields the following solution:

r∗σ2(x) = x+ σ2∂log p(x)

∂x
+ o(σ2) (6)
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where p(x) is the unknown data density. Rewriting it as

r∗σ2(x)− x ≈ σ2∂log p(x)

∂x
(7)

we see that under the assumptions needed for (5) going from some pattern x
toward r∗σ2(x) is equivalent to a step in the direction of the data log-likelihood
gradient. This result served as a motivation for this study. However it is not
directly applicable in our case, since we use noise with the variance comparable to
the variance of data.

In [Bengio et al., 2013] a simple MCMC sampler from the underlying data distri-
bution based on a DAE is presented. First a DAE is trained as described above.
Then a closed loop is formed by feeding the output to the input. The iteration
starts with a sample from the training set which is first corrupted in the way used
during the training and then pushed through the DAE, the result is again cor-
rupted and pushed through the DAE and so on. The described algorithm works
(see the original work for theoretical foundation), but produces rather spurious
samples. To improve the quality of samples the walkback modification of the DAE
training objective is proposed. It consists of adding the reconstruction errors after
the first k steps together to make a new objective (see Figure 1)

Lwalkback(r) = Ex̃





k�
i=1

Err(x, ri(x̃))

k




(8)

where the upper index i in ri denotes the step number. Hence the DAE is forced
to move to the starting point during the following steps of its dynamics. We note,
that the walkback training is essentially training of a recurrent network.

In this work we iterate the DAE almost like it was done in [Bengio et al., 2013], ex-
cept the corruption at the exploitation stage. Formally it means that the following
updates are repeated until convergence:

hi = f(W1x
i−1 + b1)

xi = g(W2h
i + b2)

(9)

where x0 = x. Figure 1 illustrates the described process.

3 Related Work

Methods technically close to ours can be found in [Seung, 1997]. In that work a
recurrent network is trained to restore an original handwritten digit pattern after
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Figure 1: Iterating DAE. x is the original input, hi are values of hidden layer, xi are
reconstructed inputs at the iteration i. x∗ symbolizes the fixed point output. The
arcs illustrate the structure of the objective for the walkback training procedure
for the case k = 3 (see Equation 8).

a corruption in form of zeroing a random square. The global structure of the
recurrent network is equivalent to what we use, i.e. each step consists of encoding
and decoding. The motivation however differs — the author wanted to show
that the dynamical system represented by the recurrent network has approximate
continuous attractors, that is regions in which the drift towards the real fixed
point attractors is negligibly slow. He supported this claim by an observation that
“the linearized dynamics has many eigenvalues close to unity”. However in our
simulations in most of the cases the dynamics converged reasonably fast (usually
after several hundred iterations) to a clear fixed point. There are differences in
technical details as well: we use fully-connected networks whereas in [Seung, 1997]
the neurons had limited square receptive fields, the training methods are different
and finally only two iterations of dynamics were considered in that study against
hundreds in our work.

Iteration to convergence at the inference stage is used in the DBM [Salakhutdinov
and Hinton, 2009]. The DBM is a generalization of the RBM. The RBM is an
undirected graphical model consisting of two densely-connected layers of units that
are usually called the visible and the hidden layers. As there are no connections
between the units of the same layer, the hidden units are conditionally independent
given the value of the visible ones. This remarkable property makes inference
tractable when the model is learnt. In the DBM multiple layers of hidden units
are allowed and exact inference is not tractable any more. Approximate inference is
used instead: a mean-field approximation of the posterior is optimized iteratively.
For the case of two hidden layers and binary units the following update equations
are used:1

h1
1 = σ(2W1x+ b1)

hi
1 = σ(W1x+W T

2 h
i−1
2 + b1) i > 1

hi
2 = σ(W2h

i−1
1 b2) i > 1

(10)

where W1, W2, b1, b2 are parameters, for details see [Salakhutdinov and Hinton,

1The coefficient 2 in the formula for h1
1 is a trick to avoid random initialization of h2, see the

cited work for more information.
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2009]2. These equations share some similarity with those used by us (see Equa-
tion 9). The respective computation graph has a remarkable structure displayed
schematically in Figure 2. Comparing this figure with the Figure 1 one can see two
major differences from our approach (excluding the training procedure of course).
First, in this work we considered only one hidden layer, the case of two and more
layers is in our plans for future research. Second and more important is that the
original input is “mixed” into the dynamics at each iteration, whereas our network
is left to “think” about the given example on its own.

An attempt to repeat the information flow from Figure 2 in supervised learning tra-
ditions is described in the Master thesis [Savard, 2011]. There the phenomenon of
the middle layer being recalculated from the upper and the bottom layer was called
relaxation and the network was allowed to make a fixed a number of relaxation
steps (several values up to 8 were tried), with zero relaxation steps corresponding
to a classical DNN. The weights in the network were pretrained layer-wise with
the DAE criterion, then the supervised finetuning was optionally done. No benefit
from the relaxation in terms of classification accuracy on MNIST was observed,
except in the case when noise was added at exploitation stage and no finetun-
ing was done. Notable differences between the considered study and our work
include all the already mentioned while discussing the DBM. In addition here we
iterate the DAE to convergence as opposed to fixed number of steps, the values
from the bottom layer instead of the top layer are used for classification. These
differences arise from rather different motivations: in this work we focus more
on qualitative exploration than on competition with well-established supervised
learning methods.

The last study we mention in this section gives an example how recurrent networks
can be organized in a hierarchical architecture with top-down feedback [Jaeger,
2014] using filters of neural activity called conceptors. A relevant property of con-
ceptors is that it is possible to form their weighted combinations. A toy task is
considered in that work: four temporal patterns corrupted with additive Gaussian
noise form the possible input space and the problem is to make the right classifica-
tion decision and output the denoised pattern. The system has to operate online,
that is it has to present its current opinion at every step. The proposed solution
was a hierarchy of three recurrent neural networks. Each network maintains its
current vision of the input signal represented by a conceptor. It transmits the
signal filtered with the conceptor it owns to the next layer or to the system output
if it is the top-most layer. The top-most layer forms its conceptor from the four
corresponding to possible input patterns. The four conceptors are learned before
by a supervised procedure. Other layers use weighted combinations of their own
conceptors, obtained via autoconception, and those formed at the layer above.
Thereby the highest layer that actually makes classification controls the lower
layers that do the filtering basing on its current classification hypothesis. This

2In the cited work the biases b1 and b2 are omitted.
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Figure 2: Left: the structure of a DBM with visible units x and with two hidden
layers h1 and h2. Right: schematically displayed computations graph of the ap-
proximate mean-field inference of the DBM’s hidden units. The upper index in
hi
1,2 stand for the iteration number. The arrows illustrate dependencies, that is

for example h2
1 is calculated from h1

2 and x.

principle was borrowed in one of our first attempts described in the next section.
We refer the reader to the original work for details.

4 Preliminary Investigations

In this section we describe the path that led us from the desire to investigate
iterative neural architectures to iterating the DAE.

In our first attempt we tried to reconstruct the hierarchical architecture from
[Jaeger, 2014] in the context of static patterns. We considered a standard neural
network classifier:

p(y|h) = softmax(W2h+ b2)

softmax((v1, . . . , v|Y |)
T ) =

�
ev1

Z
, . . . ,

ev|Y |

Z

�T

, Z =
|Y |�

i=1

evi

h = σ(W1x+ b1)

(11)

where Y is the set of all labels; x ∈ Rd, h ∈ Rn, y ∈ Y are the input vector,
the hidden layer activations and the label respectively; the matrices W1 and W2

and the vectors b1 and b2 are parameters; σ is the sigmoid nonlinearity. This
classifier is in fact a function f that maps the input to the label probabilities, that
is p = f(x). Our idea was to repeat the following procedure:

xi = a(xi−1, pi−1) i > 1
pi = f(xi)

(12)

where x0 = x and p0 = p and a is the input adjusting procedure that takes the cur-
rent input xi−1 and estimated label probabilities pi−1. The adjusting procedure a
was supposed to “denoise” xi−1 using the knowledge from pi−1. For instance if only
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two classes are plausible for xi−1 according to pi−1, the procedure a was expected
to remove all the traits (if any) pertaining to other classes from xi−1 thereby pos-
sibly changing the classification decision. In the experiments the procedure was
based on applying a weighted combination of conceptors to xi−1.

The main problem that we encountered was a total incompatibility of conceptor
style filtering and the MNIST data set we used (described in Section 5). The
function a was just blurring its input. We found the reason then: it can be shown
that a conceptor is a solution for a certain DAE problem (see 5), specifically
the one with the Gaussian data and noise distributions. The class-wise Gaussian
distribution assumption is entirely false for the handwritten digits. It would be
interesting to try the scheme from Equation 12 with proper DAE’s.

In our second attempt we tried to organize a gradient descent based iterative
procedure at the exploitation stage. We trained an autoencoder on the MNIST
training set and considered the reconstruction error C(x) = ||x − r(x)||2 which
we called confusion. We minimized C as a function of x with gradient descent
starting from the classifier input x, the result of minimization was then fed to the
neural net described by Equation 11. The intuition was that by projecting the
input x to the training set on which the misclassification rate had been zero one
might circumvent the cause of overfitting: insufficient number of training samples.

Unexpectedly, zero confusion was very easy to achieve with a slight distortion of
the image. It turns out that the neural networks are very nonlinear and a small
but deliberately chosen shift in the input may strongly change the output [Szegedy
et al., 2014]. We suppose that this is because the response of a neural network
only makes sense on a very thin manifold it was trained on, and even very close
to this manifold one can obtain arbitrary responses.

5 Experiment Details

The general scheme of the experiments we conducted was the following: first a
DAE autoencoder was trained, then a subset of available samples was repeatedly
fed into the DAE as described in Equation (9). The details are explained below.

5.1 Data

In this work we use the well-known MNIST data set of handwritten digits [LeCun
et al., 1998]. The choice is motivated by its simplicity and wide availability of
published results. The data set consists of 70000 samples (60000 in training set
and 10000 in test set), each of which is a 28x28 grayscale picture containing a
centered handwritten digit. The intensities were divided by 255 to fit in the [0, 1]
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interval. We used 50000 random samples from the training set for training and
the remaining 10000 samples as a validation set.3

5.2 Architectural Choices

For all the autoencoders we used f = σ and g = σ, i.e. in the hidden and
output layers we used the sigmoid nonlinearity. The number of hidden units was
500, which was the largest we could afford using the available hardware. We
did not tie weights in most of the experiments, exceptions will be mentioned
explicitly. The corruption method was additive Gaussian noise with a varying
standard deviation σ. We used three different levels of corruption: σ = 0.3 called
“low”, σ = 0.5 called “middle” and σ = 0.7 called “high” (sometimes we will also
write “weak”, “middle” and “strong” corruption). The optimization objective
was MSE (optionally with walkback), so that the conditions necessary to learn
the density gradient were formally met, at least with the exception of σ being
very small.

5.3 Training Method

The training method in all cases was the SGD with a minibatch size b ∈ {20, 50},
a starting learning rate ρ = 0.1 and an annealing rate α ∈ {0.99, 0.999}. The
minibatches were traversed in a circular order with each full loop called an epoch.
At the end of each epoch the learning rate was multiplied with α. The autoen-
coders were trained for N ∈ {100, 250, 500} epochs. k ∈ {1, 2, 3, 4, 5} walkback
steps were used, with k = 1 corresponding to the usual way of training DAE’s.

Not all the combinations of hyperparameters listed above were tried, namely the
following three series of experiments were conducted:

1. No walkback. For each corruption level we tried the following values for
the hyperparameters: b ∈ {20, 50}, α ∈ {0.99, 0.999}, N ∈ {250, 500}. All
the combinations were considered.

2. 2-3 steps of walkback. For each noise level we tried b = 20, N ∈ {100, 250},
α = 0.9, as these were the settings that gave the best classification results
without walkback.

3. 4-5 steps of walkback. Only tried for the high corruption level. The
hyperparameters were b = 20, N ∈ {100, 250}, α ∈ {0.99, 0.999}.

All the experiments were repeated 5 times with different random seeds. The
sources of randomness were the initialization, which was done by the method

3In fact we did not need a validation set in our experiments as the reconstruction on both
validation and test sets decreased steadily, no early stopping was required.
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described in [Glorot and Bengio, 2010] to facilitate good propagation of gradients,
and the random corruption.

5.4 Iteration

When we had a trained DAE and a set of samples to be iteratively transformed we
had to decide on the stopping criterion. To check that the sequence of intermediate
outputs xi converged to a fixed point we tracked the sequence of distances di =
||xi − xi0 ||2, where i0 is a fixed iteration number. If di stabilized for large enough
i at the precision limit of 32-bit floating point operations we made an implication
that the sequence xi converges to xi0 .

We used a different stopping criterion to iterate large sets of samples. From con-
siderations of efficiency and simplicity we wanted to process the samples together
and stop iteration at the same step for all of them. In preliminary experiments
besides di we also tracked visually the distance covered at each step of dynamics
li = ||xi − xi−1||. We observed that li was very likely to decrease exponentially
after having passed a small enough threshold. That motivated us to use the fol-
lowing approximate criterion: ||xi−xi−1||2 < 10−4. We stopped the iteration after
it held for more than 75% percents of the samples; this was done separately for
the training, validation and testing sets. The fixed point sets thereby obtained
will be later referred to as the transformed training, validation and testing sets
respectively.

5.5 Evaluation

In order to quantitatively measure the quality of the obtained fixed points we
trained a logistic regression classifier (see [Murphy, 2012]) on the transformed
training set, which was then evaluated on the training and testing sets to give
the respective accuracies acctrain and acctest, i.e. ratios of correct predictions
(sometimes also reported in percents). We also tracked the walkback training
objective (8) estimated on the training and testing sets, giving the valuesMSEWB

train

and MSEWB
test (if superscript is omitted it means the usual MSE reconstruction

error is reported), and the numbers of explosions, EXtrain and EXtest (see the
subsection 6.1 for the explanation what an explosion is).
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Figure 3: Reconstruction for different corruption levels; the first, second and third
rows correspond to the low, middle and high levels. First column: corrupted
images, the intensities below -1 and above 1 are suppressed to -1 and 1 respectively.
Columns 2-4: original, reconstructed and pushed through the DAE with no noise
addition samples. Columns 5-7: same as columns 2-4 but with a special color
scheme. The color scheme is highly sensitive for intensities below 0.05 and above
0.95.

6 Results

6.1 No Walkback

Figure 3 illustrates the functioning of three DAE’s trained with different corruption
levels. We used a special color scheme to show that after training with stronger
corruption a DAE tends to give less contrast responses. For example the original
pure black inner pixels of the digit 8 after pushing it through the DAE trained
with σ = 0.7 obtained intensities considerably different from zero, whereas the
white pixels of its contour faded. It was not clearly visible in the gray scale.

Figure 4 displays the evolution of the “8” from Figure 3 and 5 other samples. All
the four distinct observed outcomes of iteration are shown, namely:

• a pattern with a particular trait loses this trait and becomes a smoothed but
very easy to recognize typical representative of its class. For instance a gap
in the top of the “0” disappears, same for the curvy tail of the “3”. This is
the desirable outcome.

• a misclassification happened during dynamics and the pattern leaves its orig-
inal class and ends as a very clear sample of some other class, e.g. see how
the “8” from Figure 3 collapses to one.

• a pattern converges to a something unrecognizable but consisting mostly of
black and white pixels as it happened with the “6” for the low corruption
level. We will use the nickname ”stain” to refer to fixed points like this one.
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Figure 4: Intermediate steps in DAE’s dynamics. The rows 1 and 4, 2 and 5,
3 and 6 correspond to the low, middle, high corruption levels during training
respectively. The columns 1-4 display the image after 0, 1, 25 and 500 iterations,
the same for the columns 5-8 and 9-12. The “8” from the rows 1-3 is the one from
Figure 3. The other 5 samples were chosen randomly with the constraints that
Euclidean distance between the sample and the resulting fixed point must be at
least 5 for the three considered models and that they all must represent different
classes.

• the final outcome is a gray stain with no white pixels as happened with “4”
for the middle corruption level. We call such an outcome “an explosion”.

A very remarkable fact, that asks for a nice theoretical explanation, is that for a
single DAE all the fully converged explosions were exactly the same and had no
pixels of high intensity. For instance the explosion from Figure 4 has maximum
intensity 0.149. The explosions had made a significant part of outcomes ranging
from 2% to 30% before we used the walkback trick. The stains were more frequent
for the low corruption level. Another observation is that in general the stronger
the corruption during the training was the more gray pixels the fixed points were
likely to have. For instance the DAE’s used to obtain Figure 4 given the testing
set produced fixed points that contained 71.4, 68.4, 65.8 percents of black pixels
(intensity less than 0.01) and 10.4, 8.9, 6.3 percent of white pixels (intensity more
than 0.95) respectively in the order of increasing corruption level. The reference
values of these statistics for the original samples were 80.7 and 8.1 respectively.
Finally we note an interesting structure of the fixed points for the high corruption
level: a white “skeleton” is surrounded by gray “flesh” much like in an X-ray
image.

Figure 5 displays quantitative results: classification accuracies and the frequencies
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Figure 5: Classification accuracies and explosion frequencies, no walkback. In the
first row: x-axis is MSEtest , y-axis is acctest. In the second row: same for the
x-axis, y-axis is the number of explosions in the transformed testing set. The
columns from left to right: the low, middle and high corruption levels at the
training phase. The blue points are results of single experiments reported for all
hyperparameter values, the red points are averages taken over groups of size 5
with similar parameters (see the subsection 5.3).

of explosions for different corruption levels and hyperparameter values. While
in the case of the weak corruption better optimization of the training objective
yields better accuracy as expected, it is not that clear in the other two cases.
Moreover for the strong corruption the opposite is true: the reconstruction error
as anticorrelated with the accuracy. For the middle corruption level the picture
is more complicated. We also note that the number of explosions grows together
with the corruption level. For the middle and high corruption levels it also grows
steadily as the reconstruction error decreases reaching very high values of 20-30
percents. It seems that networks trained very well on very noisy examples fail to
cope with patterns of the “X-ray” type that were not seen during training causing
these to explode.

6.2 Walkback

Table 1 displays the quantitative results with the walkback modification. One can
see that walkback significantly improved classification accuracies and reduced the
frequency of explosions. Its effect was especially strong for the high corruption
level. Specifically, when we increased k from 2 to 3 the accuracy gain for the
high corruption level was 1.8% versus 1.0% and 0.8% for the middle and low
respectively. The further increase of k was done only for strong corruption and
was beneficial as well. Our best result was 93.2% accuracy which is a 1% gain
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k σ acctest EXtest

1 0.3 0.823 368.8
0.5 0.859 585.6
0.7 0.822 887.8

2 0.3 0.858 240.4
0.5 0.899 206.2
0.7 0.893 360.4

3 0.3 0.866 173.2
0.5 0.909 101.4
0.7 0.915 147.6

(a) k ∈ {1, 2, 3}

k N α acctrain acctest MSEWB
train MSEWB

test EXtrain EXtest

4 100 0.990 0.925 0.925 12.636 12.849 241.6 51.4
0.999 0.925 0.922 13.324 13.561 221.0 51.2

250 0.990 0.931 0.930 11.948 12.173 333.4 72.2
0.999 0.927 0.925 12.939 13.249 296.8 61.4

5 100 0.990 0.931 0.928 12.881 13.158 95.8 26.8
0.999 0.927 0.924 13.823 14.158 84.4 22.0

250 0.990 0.935 0.932 12.032 12.321 155.4 40.8
0.999 0.936 0.932 13.364 13.712 102.6 25.4

(b) σ = 0.7, k ∈ 4, 5

Table 1: Results with walkback. The notation introduced in Section 5 is used. All
the reported values were averaged over five trials.

over usual logistic regression with no regularization.

An interesting observation is that the faster annealing with the rate α = 0.99
allowed to optimize the DAE significantly better (up to ≈ 10% difference in
MSEWB

train) with a questionable benefit for classification accuracy and with more
explosions in the transformed training and testing sets. This phenomenon was
especially pronounced for k = 5 and N = 250, when the accuracies are similar for
both annealing rates and the number of explosions is much lower for α = 0.99. On
the other hand for both annealing rates in Table 1b we see better correlation of
the training objective and classification accuracy as more epochs of training are
always helpful. We suppose that different training schedules for the DAE’s yielded
qualitatively different solutions, but additional investigations are needed.

Finally we note that the performance on the training set is only slightly better
than on the testing set, thus overfitting was not an issue.

6.3 The Winner

Here we explore one of the two best performing models, specifically the one with
σ = 0.999. Figure 6 shows 12 examples of good and 12 examples of misclassified
fixed points. One can see that for relatively easy input samples the DAE actually
does some regularization during dynamics, for instance the curved “4” (row 1,
column 2) was straightened, for the both “2” (row 1, column 6; row 1, column 12)
nice tails were drawn. Another observation is that the most common reason for
misclassification of a transformed sample was its de-facto belonging to an other
class, see the “3” (row 3, column 1) turning into a very typical eight.

We tried as well to train a neural network classifier on the transformed samples.
We only managed to gain additional 0.3% of accuracy, which is not surprising
given the evidence from Figure 6.
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Figure 6: The transformations done by the best DAE. The top row are the original
samples chosen randomly with two requirements: a) their transformed versions are
correctly classified b) the Euclidean distance is at least 5 between the original and
the transformed sample. The second row contains corresponding fixed points. The
fourth row are randomly chosen misclassified transformed samples and the third
row are the respective originals.

Figure 7: The convergence process of the samples from Figure 6 Left: first 20 step
lengths. Middle: first 100 step lengths. Right: Euclidean distance to the 500th
steps. Here by step length we mean the Euclidean distance ||xi−1 − xi||2 between
two consecutive points of a trajectory.

Figure 7 illustrates the dynamics of samples from Figure 6. A typical pattern was
that after 50-200 steps a digit got trapped in a basis of attraction of a fixed point
attractor and then the distance to the fixed point started decreasing exponentially,
which corresponds to straight lines on our log-scale plots. This exponential conver-
gence occurred with different speed but was very stable up to the level guaranteed
by 32-bit floating point calculations we relied on.

6.4 Other Observations

We tried to tie encoding and decoding weights in DAE’s as well, but the results
were not better. However inspecting the weight matrices W1 and W T

2 visually we
saw that they tend to be very similar. We did not use the walkback trick in the
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experiment with tied weights, that might be the key for success that we missed.

7 Discussion

In this work using the Denoising Autoencoder model we built a system capable
of introducing non-trivial adjustments to simple patterns such as handwritten
digits. This was done in a purely unsupervised way with no domain specific insight
used. Our system seems to have learnt a lot about handwriting and handwritten
digits in particular judging by the way it transforms its input (see Figure 7).
Digits transformed by the system were on average easier to deal with for a linear
classifier. However the joint performance of the pipeline “DAE iteration + logistic
regression” lags a lot behind the ≈ 1% accuracy that current domain-agnostic
supervised methods show on the MNIST dataset [Hinton et al., 2012b].

We believe that the key to the intriguing properties of our system is the fact that it
is iterative, in particular there is top-down interaction allowing a transient period
of uncertainty (see the middle picture in Figure 7) followed by a decision and rapid
convergence to the fixed point. It is not obvious how to train such systems. Here
we teach the DAE how to make a single step in the desirable direction. A single
step might be a small and rather easy to learn adjustment, but many small steps
can constitute complex transformations.

The main question of “teaching how to make a step” approach is where to take
lots of examples of good steps from. In this work we started with pairs “corrupted
image - original image” and had of a lot of cases of divergence (see Figure 5). We
propose the following (not mutually exclusive) explanations for it:

• using samples corrupted with heavy Gaussian noise as input created a bias
in the learned models and they could not deal with black-and-white images
after such training,

• intermediate samples of the walkback process (that is x1, x2, . . . , xk−1) form
a large additional training set crucial to learn a good step function,

• the walkback method is a form of regularization of dynamics as it includes
propagation of error through time and forces the system to think k steps
ahead.

It is an interesting problem for future research to understand the relative weights
of these causes. In particular one might restrict the propagation of gradient to
only one iteration in depth and eliminate the third explanation, use the distance
between the starting sample and sample after k iterations to exclude the second
one.

In general usage of strong additive Gaussian noise guarantees that the corrupted
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samples will lie outside the manifold of non-zero probability. That being said the
main thing we actually taught the network to do is to project a sample to this
manifold, not to make small fine improvements as desired. It would be nice to have
a corruption process that produces samples corrupted slightly but distinctly and
in a sensible way. For handwritten digits examples might include a random stroke
addition, partial occlusion, moderate scaling and rotation. In fact such domain-
specific corruptions are often used to train a supervised classifier (e.g. in [Ciresan
et al., 2010]). The following two possible research directions suggest themselves
at this point:

• using domain-specific corruptions one can try to train a smarter adjusting
system, such that a relatively simple supervised algorithm requiring few
labeled exampled suffices to classify the transformed samples

• one can search for a method to learn how to corrupt as well, trying to build
a domain-agnostic unsupervised preprocessing scheme

Both these research ideas address one of the most important challenges in machine
learning: abundance of unlabeled data and shortage of labeled.

Finally, it would be interesting to repeat our experiment on some other data, with
a different architecture, e.g. a deep autoencoder or the DBM inspired scheme
from [Savard, 2011], or with the salt-and-pepper corruption method.
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