
Biological Cybernetics manuscript No.
(will be inserted by the editor)

Frequency Modulation of Large Oscillatory Neural Networks

Francis wyffels · Jiwen Li · Tim Waegeman · Benjamin Schrauwen ·

Herbert Jaeger

Received: date / Accepted: date

Abstract Dynamical systems which generate periodic
signals are of interest as models of biological central
pattern generators (CPGs) and in a number of robotic
applications. A basic functionality that is required in
both biological modelling and robotics is frequency mod-
ulation. This leads to the question of whether there are
generic mechanisms to control the frequency of neural
oscillators. Here we describe why this objective is of
a different nature, and more difficult to achieve, than
modulating other oscillation characteristics (like am-
plitude, offset, signal shape). We propose a generic way
to solve this task which makes use of a simple linear
controller. It rests on the insight that there is a bidirec-
tional dependency between the frequency of an oscilla-
tion, and geometric properties of the neural oscillator’s
phase portrait. By controlling the geometry of the neu-
ral state orbits, it is possible to control the frequency on
the condition that the state-space can be shaped such
that it can be pushed easily to any frequency.

Keywords Reservoir Computing · Pattern Genera-
tors · Frequency Modulation

1 Introduction

Across the animal kingdom, many biological functions
involve the neural generation of periodic motor pat-

F. wyffels · T. Waegeman · B. Schrauwen
Ghent University, Electronics and Information Systems De-
partment, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
Tel.: +32 9 264 95 26
Fax: +32 9 264 35 94
E-mail: Francis.wyffels@UGent.be

J. Li · H. Jaeger
Jacobs University Bremen gGmbH, Campus Ring, 28759 Bre-
men, Germany

terns. Classical examples include processes of ingestion,
digestion, breathing, heartbeat, eye motion, reproduc-
tion, grooming and locomotion. The generation of the
requisite periodic motion signals is commonly attributed
to central pattern generators (CPGs, Grillner (1985),
reviews: Ijspeert (2008); Büschges et al (2011)). In the
classical understanding of this concept, a CPG is a
small, genetically archaic, neural circuit, typically lo-
cated in the brainstem or spinal cord, which is often ca-
pable of autonomous oscillations even in the absence of
neural input. Models of CPGs range in abstraction from
detailed reconstructions of neural circuits to simplified
ordinary differential equations (ODEs) which capture
essentials of the observable dynamics. All of these mod-
els can be considered small in the sense that they em-
ploy low-dimensional state spaces and/or a small num-
ber of neurons (say, order of 10 or less).

However, there are indications that biological CPGs
are embedded in, or closely interact with, larger cir-
cuits than what has standardly been realised in models.
For instance, recent studies in a leech model (Briggman
and Kristan Jr. (2006), see Briggman and Kristan Jr.
(2008) for a review), show that crawling and swimming
are effected by two CPGs of which most neurons over-
lap, forming a comprehensive, multi-functional circuit,
which can operate in at least two different regimes at
very different timescales. Büschges et al (2011) sup-
ply further evidence for a more complex and larger-
scale picture, afforded by the advent of genetic ma-
nipulation techniques. Furthermore, humans (and pos-
sibly other animals) are capable of voluntary action
with periodic components which obviously involve cor-
tical contributions, e.g., in sports, music or dance. Re-
gardless of whether cortical signals are themselves peri-
odic, or whether they interact with “lower” CPGs, the

!"#$%&'()*+

!"#$%&'()(&*+&,+-."+/,&0/.12$)#3*4&56789:)(;<+,=*(>&
!"#$%&'()(&*+&,#(-&"#.%(/&0(1()(.$(2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2 Francis wyffels et al.

complete dynamics involves neural populations of sizes
much larger than in “classical” CPGs.

In robot engineering, tuneable periodic patterns have
to be generated for a variety of motor behaviours. The
field has been inspired by biological CPG research and
has adopted concepts and terminology. Collaborations
between roboticists and biologists aim at testing bio-
logical theory in robot models (e.g., stick insect walking
(Cruse et al, 1995; Dean et al, 1999) or salamander loco-
motion (Ijspeert et al, 2007)) or, vice versa, at making
biological solutions fertile for engineering (e.g., for hu-
manoid (Nakanishi et al, 2004) or quadruped (Fukuoka
et al, 2003) locomotion).

Like their counterparts in biological modelling, CPG
models employed in robots have almost always been re-
alised as ODEs or as small-sized neural oscillators. Typ-
ically, these models are autonomous dynamical systems
and embed at least one limit cycle attractor. In order to
add modulation capabilities, such systems have a small
number of tuneable parameters. This enables the trans-
parent modulation of dynamical characteristics such as
amplitude, offset, phase lags and frequency, but also less
trivial modulations such as independently adjusting the
swing and stance phase (survey of design strategies in
Buchli et al (2006)). Alternatively, by driving such a
small dynamical system with a forcing term, the output
can be shaped such that it follows a desired trajectory
(see Ijspeert et al (2013) for a review).

Like in biological research, also in robotics there is
a good reason to consider larger-scale dynamical sys-
tems for pattern generation – say, in the order of hun-
dreds of dimensions or neurons. The reason is that one
wishes to endow the pattern generators with a rich and
learnable repertoire of a variability that extends far
beyond the customary modulation of amplitude, off-
set and frequency. Such additional degrees of flexibil-
ity include waveform, relative phase angles (in multidi-
mensional output systems), input and control gains, ob-
stacle avoidance, phasing-in and phasing-out, starting
and stopping, coordinated interaction with other be-
haviours, adaptation to different environments and tar-
get objects, high-dimensional sensor input, user com-
mand interfacing, and more. While for each of these
qualities specific solutions have been proposed for small-
sized CPGs, these have not been combined into inte-
grated systems. It seems likely that pattern generation
modules which can offer such flexibility would need to
be larger than the customary CPGs. Furthermore, us-
ing neural networks seems to be a plausible route to-
ward realising learnability of such functionalities.

In other work we and partners in the European
AMARSi project (see acknowledgments) have taken first
steps toward training large neural networks for robotic

CPGs (Reinhart and Steil, 2008; wyffels and Schrauwen,
2009; Wrede et al, 2010; Rolf et al, 2010a,b; Reinhart
and Steil, 2011;Waegeman and Schrauwen, 2011;Waege-
man et al, 2012b). Specifically, we are using recurrent
neural networks (RNNs) of the echo state networks (ESN)
type, a particular flavour of what has become known
as the reservoir computing (RC) paradigm. This ap-
proach led to encouraging progress in robust training
and modulation of waveforms (wyffels and Schrauwen,
2009; Waegeman et al, 2012b), in merging the pat-
tern generation with the end-effector control (Waege-
man et al, 2012c), in bidirectional forward-inverse kine-
matic transformations (Reinhart and Steil, 2008), in
fast learning of human-demonstrated motions (Wrede
et al, 2010), in endowing a single RNN with the capacity
to handle different tool objects (Rolf et al, 2010b), us-
ing a RNN for feedback control by online learning an in-
verse model (Waegeman et al, 2012a), or learning rhyth-
mical patterns with tensegrity structures (Caluwaerts
et al, 2013a). However, attempts have essentially failed
so far to extend generic learning and control mecha-
nisms, which work well for amplitude and offset modu-
lation, to frequency modulation (Li and Jaeger, 2011).
We will argue below in Section 4 that frequency mod-
ulation is a task which is intrinsically different from
modulating other characteristics of a neuro-dynamical
system.

The biological perspective adds another angle to
this riddle. Humans can generate voluntary action at
varying speeds, both periodic/rhythmic (e.g., walking,
singing) and non-periodic (e.g., reaching). Some of these
can possibly be explained by specific speed modulation
mechanisms of basal CPGs, but the human ability to
reproduce arbitrary teacher motions ad hoc at different
speeds suggests the existence of generic speed regula-
tion mechanisms for some cortical processes which com-
prises large neural populations. But, individual neurons
cannot be simply sped up or slowed down by changing
a time constant like it is possible with ODEs. Alterna-
tively, the oscillation period of small-sized ODEs can
be modulated by an external input (Curtu et al, 2008;
Daun et al, 2009; Zhang and Lewis, 2013). However, it
is not clear how this scales up to large populations of
interacting neurons.

In this article we propose a generic basis for neu-
ral processing speed adjustments of large oscillatory
RNNs which does not hinge on time-constant chang-
ing mechanisms. The key observation is that when a
(large or small) RNN is driven by a periodic signal
which passes through a frequency sweep, the geome-
try of the phase portrait co-varies with the driving fre-
quency (Section 4). This connection can be exploited
in reverse direction: if, in a suitable training setup, the

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Frequency Modulation of Large Oscillatory Neural Networks 3

RNN has been trained as an oscillator, its frequency in
signal generation mode can be modulated by controlling
geometric properties of the phase portrait (Section 3).
Indeed, adjusting a scalable bias suffices. We unfold
this scenario within the reservoir computing framework,
whose basics are briefly outlined in Section 2. A po-
tential obstacle to frequency control is that disruptive
bifurcations might occur during attempts to regulate
the frequency. This danger can be kept at bay by a
special kind of network regularisation which we call
equilibration and explain in Section 5. We demonstrate
the robustness of the method by showing that it al-
ways worked across all instances of a large sample of
randomly varied RNNs, provided that the equilibration
was successful (Section 6). In the concluding Section 7
we discuss in more depth the main contributions and
results of this work.

2 Designing an Echo State Network pattern

generator

In setting up and training our systems, we follow the
principles of reservoir computing (RC) (Verstraeten et al,
2007). More specifically, we use a flavour of RC known
as echo state networks (ESNs) (Jaeger, 2001). We first
recall the basic usage of this method for training neural
pattern generators.

2.1 ESN pattern generator design

An ESN setup for generating a desired one-dimensional
periodic sequence ydesired is governed by the discrete-
time state update equations

x[k + 1] = (1− λ)x[k] +

λ tanh (Wresx[k] +Wfby[k] +Wbias) , (1)

y[k + 1] = W
ᵀ

outx[k + 1], (2)

where x is the N -dimensional internal network state, y
the (here: one-dimensional) output signal, Wres is the
N×N internal weight matrix, Wfb is the N×1 output
feedback weight vector,Wbias is a bias vector,W

ᵀ

out are
the output weights, and λ functions as a leaking rate.
We adhere to the terminology of the field and call the
recurrent internal layer governed by Wres the reservoir

and x the reservoir state. This setup is illustrated in
Fig. 1.

When creating such an ESN, the reservoir weights
Wres are usually sampled from a standard normal dis-
tribution and then scaled to tune the dynamics of the
ESN. For this, the spectral radius ρ, which is defined
as the largest absolute eigenvalue of Wres, is used and
often ρ = 1 is taken as a reference point (Lukoševičius,

!!"

!#$%

!!"#

$%&'%&(

!"#"!)$*!

$%&'%&(+"",-./01

-*.#

!"&'(

"
)#

)$
)!

)%

)&

Fig. 1 Schematic overview of a reservoir system for robustly
generating periodic patterns, i.e., an ESN pattern generator.
Only the readout weights (dashed connections) are trained.

2012). Similarly, Wfb and Wbias are typically sampled
from a standard normal distribution with variances scaled
to o and β respectively. It is known that with small
reservoir weights (and thus a small spectral radius), the
system, when run with zero input, will possess dynam-
ics characterised by a single global stable fixed point
(which is zero if the bias Wbias is zero). When the
weights are scaled up, at some point this globally stable
fixed point dynamics undergoes a bifurcation. Gener-
ally, the weights are scaled up to a point just before this
bifurcation (see Verstraeten et al (2007); Lukoševičius
and Jaeger (2009); Sussillo and Abbott (2009); Yildiz
et al (2012); Caluwaerts et al (2013b) for analysis and
discussion of the impact of ρ on the system dynamics).
Table 1 gives an overview of the system’s parameters
and their typical range.

Apart from the weights, the timescale on which the
system operates plays an important role. This can be
effectively tuned by choosing the sample rate for the in-
put and output signals of the system (Schrauwen et al,
2007). Alternatively, as applied in this work, the timescale
can be set by tuning the leaking rate λ (Jaeger, 2001).

In reservoir computing, the only parameters that
are traditionally modified/calculated in training are the
output weights Wᵀ

out. All other weights remain at their
random, globally scaled, creation-time values.

Table 1 Typical parameters for ESN pattern generators.

Parameter Description Value
N number of neurons 50 to 2000
ρ spectral radius 0.5 to 2.0
β bias weight variance 0 to 1
o output feedback scale 0 to 10
λ leak-rate 0 to 1

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4 Francis wyffels et al.

2.2 Training the readout weights using FORCE
learning

The optimisation criterion for trainingWout is the squared
error between the actual output y[k] and a desired
output ydesired[k], averaged over time. Computing the
weights Wout can be done with a variety of computa-
tional schemes, online or offline, each of which imple-
ments a linear regression of the reservoir states x[k] on
the targets ydesired[k]. In order to ensure stability of
the reservoir-output feedback loop dynamics, the stan-
dard approach is to regularise the output weights. For
offline training, state noise injection (Jaeger, 2002) and
ridge regression (wyffels et al, 2008) are commonly used.
When training the readout weights Wout online, Sus-
sillo and Abbott (2009) introduced a weight adaptation
algorithm called FORCE learning, which we find works
well for training ESNs with output feedback, which is
why we use it here.

FORCE learning differs from standard (offline) ap-
proaches to reservoir training in three ways. First, it
is an online learning method, where the output weights
are adapted at each training time step. Second, the net-
work weights are initialised before training such that
the spectral radius of the overall weight matrix is signif-
icantly larger than 1. As a result, the reservoir exhibits
spontaneous activity. Third, the actual self-generated
output – and not the correct teacher signal – is fed
back into the ESN pattern generator during training.

For training the output weightsWout, FORCE learn-
ing prescribes to use learning algorithms that rapidly
reduce (and keep small) the magnitude of the difference
between the actual and desired output (Sussillo and
Abbott, 2009). For this, the well-known recursive least
squares (RLS) online learning algorithm is adopted.
With RLS, the reservoir states x[k + 1] are updated
using Equation 1, while at every time step the readout
weightsWout[k+1] and the output y[k+1] are adjusted
according to the following equations:

e[k + 1] = W
ᵀ

out[k]x[k + 1]− ydesired[k + 1] (3)

P[k + 1] = P[k]−
P[k]x[k + 1]xᵀ[k + 1]P[k]

1 + xᵀ[k + 1]P[k]x[k + 1]
(4)

Wout[k + 1] = Wout[k]− e[k + 1]P[k + 1]x[k + 1] (5)

y[k + 1] = Wᵀ

out[k + 1]x[k + 1]. (6)

Here e[k + 1] is the difference between the actual
output y[k + 1] and the desired output ydesired at time
step k + 1. P (N × N) is an estimation of the inverse
of the correlation matrix of the network states x and is
initialised at P[0] = α−1I, where I is the identity ma-
trix, with α typically small (set at 0.1 in this work).

The readout weights Wout[k] at time step k are ini-
tialised to Wout[0] = 0. After K time steps, when
training is finished, the readout weights are kept fixed
(Wout = Wout[K]) and the reservoir system can be
used for recursively generating patterns by using equa-
tions 1 and 2. Previous work on FORCE learning (Sus-
sillo and Abbott, 2009) and its applications (Waegeman
et al, 2012a) have shown that e[k+1] (see equation 3),
and, consequently also the readout weightsWout[k+1],
converges.

Using the above procedure, we can train a reservoir
system with any rhythmic signal such that it generates
this periodic pattern and thus becomes an ESN pattern
generator.

3 Modulating an ESN pattern generator

The objective of this work is to realise frequency mod-
ulation of ESN pattern generators. One way to do this
is by directly training the ESN pattern generator such
that its output changes under the influence of an addi-
tional input signal (see for example Jaeger (2002); Sus-
sillo and Abbott (2009)). However, the problem with
these input driven systems is that their modulation
range is defined by a well chosen training set of input-
output combinations during the training phase. Any
unseen input might lead to an undesired shape mod-
ulation during the modulation phase due to the open
loop nature of controlling the output.

To overcome this problem, Li and Jaeger (2011) pro-
posed a method to control a number of characteristics
of an oscillating ESN pattern generator by means of an
external, trainable control loop. While this worked well
for modulating amplitude and shift, attempts to regu-
late frequency essentially failed. This indicated that fre-
quency modulation of CPG output may have a different
nature compared to those of other characteristics.

In this work, the objective of this controller (Fig. 2)
is to make the network-generated oscillation track a
desired frequency, of which the measured and desired
period lengths at time step k are denoted by T [k] and
T̂ [k], respectively. Therefore, the controller needs access
to measurements of period length T [k]. For the purpose
of our demonstrations a coarse, simple observer is suffi-
cient. We counted the number of simulation time steps
between two successive maxima of the the network out-
put signal, where a maximum at time k was defined by
the condition (y[k − 1] < y[k]) ∧ (y[k] > y[k + 1]). No-
tice that these measurements result in integer readings
which are constant for at least the duration of a period.

The target value T̂ [k] is likewise integer-valued. Its
interpolation should be changing on a timescale that is

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Frequency Modulation of Large Oscillatory Neural Networks 5

!"#$%&$%
'()!*+%!,

(

T

T̂

ε

ε cP Wc

!-"

!!.+

!%$#

/
!"01#

"
2#

2$
2!

2%

2&

Fig. 2 Schematic overview of the control architecture. For
explanation see text.

at least one order of magnitude slower than the timescale
of the individual oscillations. Comparing the measured
period signal with the target gives a (normalised) error

ε =
T̂ [k + 1]− T [k + 1]

T [k + 1]
. (7)

The control input to the reservoir is simply a bias
vector Wc (N × 1) which is scaled with a constant pro-
portional gain cP (a scalar that has to be tuned) and the
error ε (scalar), leading to a controlled network update
equation of the form

x[k + 1] = (1− λ) x[k]

+λ tanh
(

Wres x[k] +Wfb y[k]

+Wbias + ε cP Wc

)

. (8)

This method obviously hinges on finding a suitable
control bias Wc. In (Li and Jaeger, 2011) we used a
perturbation-based learning approach to train Wc, and
in (Jaeger, 2010) a technique based on a correlational
analysis. In this work, we employ a third, simple and
intuitive method which assumes that, as sketched in
Fig. 3, the location of the oscillations in state space
vary monotonically with frequency. We constitute Wc,
as follows:

– Drive the reservoir using equation 1 with an exter-
nal oscillating signal of length K with decreasing
frequency. The driving is effected by writing the tar-
get oscillation into the output neuron y (“teacher
forcing”). Collect the driven neuron states x[k].

!"#$

%&!'

%()*+),-.

/01

/02

Fig. 3 Sketch of the 2-dimensional projection of the state-
space of a linearly tuneable ESN pattern generator. The pro-
posed control architecture hinges on a smooth monotonic
variation of the oscillation signal in state space.

– Smoothen this raw network signal by taking a mov-
ing average, to obtain xavg[k]. In this work we used a
time window of 2T0 with T0 the initial period length.

– Calculate the control weights:Wc = xavg[K]−xavg[2T0].

As mentioned before, achieving frequency modula-
tion by using this simple control scheme can be very
hard. The question that remains is: How can we shape

the state-space of the ESN pattern generator such that

it looks like the one sketched in Fig. 3?

4 Frequency expressed as geometrical

characteristics of the reservoir

The difficulties of achieving frequency modulation with
the described control framework indicate that frequency
modulation of the CPG’s output may be of different na-
ture compared to those of other characteristics.

This difference can be illuminated in two ways. Most
non-frequency related properties of an output signal
generated from a CPG can be modulated by post-processing
the output with suitable filters. All of these filters do
not interfere with the core CPG dynamics. Such a de-
coupling of modulation from generation is not possi-
ble when frequency is at stake. Another view on the
same conundrum is obtained when one considers phase
portraits of ODE-based CPGs which are modulated by
varying control parameters (Buchli et al, 2006). When
the modulation target is not frequency, the phase por-
traits invariably alter their geometry; when conversely
frequency is changed (by varying the ODE’s time con-
stant), the phase portrait remains the same.

Previous work on small-sized ODEs (Curtu et al,
2008; Daun et al, 2009; Zhang and Lewis, 2013) suggest

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6 Francis wyffels et al.

0 500 1000 1500 2000 2500 3000 3500
!2

!1

0

1

2
Driving signal

Time step

y

0.4 0.6 0.8 1
!0.8

!0.6

!0.4

!0.2

0

0.2
High frequency

pc1

p
c
2

0.4 0.6 0.8 1
!0.8

!0.6

!0.4

!0.2

0

0.2

pc1

p
c
2

Moderately high frequency

0.4 0.6 0.8 1
!0.8

!0.6

!0.4

!0.2

0

0.2

pc1

p
c
2

Low frequency

Fig. 4 Driving an ESN pattern generator by a oscillation
with gradually decreasing frequency (top plot) does not cause
the dynamics to simply slow down. Instead, as can be ob-
served in the bottom plots, the geometrical/metric proper-
ties of the phase portraits change. From left to right one can
observe that the geometry of the phase portrait is changing
while the frequency of the teacher signal is decreased. For the
three phase portraits we used Principal Component Analysis
(PCA) (Jolliffe, 2005) to obtain a 2-dimensional projection of
the reservoir states.

that the oscillation period of half-center oscillators can
be controlled by external inputs, a mechanism which
does not rely on changing the time constant. To un-
derstand the nature of frequency modulation of a large

non-linear dynamical system such as the discussed ESN
pattern generator, we first investigate the dynamics of
ESN pattern generator under external driven input.

Specifically, we inject a gradually changing oscilla-
tion (y[k] = sin(0.075s[k]k), with s[k] a time dependent
scaling factor which linearly decreases from 2 to 1, see
top panel in Fig. 4) through the feedback weights Wfb

of an ESN pattern generator to drive the reservoir, and
record the reservoir states. Then we visualise the phase
portraits of this system by computing the 1st and 2nd
largest principal component (PC) of the trajectory, and
plotting the projections of reservoir states on the 1st PC
versus that of the 2nd PC (bottom panels in Fig. 4).
From the bottom panels of this figure one can see clearly
that the phase portraits of the reservoir change in shape
and offset across this driving input frequency-sweeping
oscillation, and do so quite substantially. Details of the
experimental setup are documented in Section 6.

So it appears that when a reservoir network is pas-

sively driven by an external signal with varying fre-

quency characteristics, its excited dynamics responds
with a variation not only of its speed but also of its geo-
metrical characteristics. In the remainder of this article
we investigate whether this causation can be reversed:
is it possible to modulate (only) the geometrical char-
acteristics of the internal dynamics of a reservoir, have
this reservoir actively generate an output signal, and
obtain a purely frequency variation in the latter? In

other words: Can we train an ESN pattern generator

such that, in state space, the oscillating signal changes

in a smooth monotonic way, i.e., its 2-dimensional pro-

jection looks similar to the sketch in Fig. 3.

The answer, as we will see, is yes. Indeed, in the case
study that we are going to present, it is enough to add
a bias of varying scale to the network dynamics in order
to obtain a geometry change that induces a frequency
sweep in the output. However, implementing a robust
geometry-to-frequency causation is not without diffi-
culties. The main challenge that we encountered was to
avoid bifurcations along the scaling route of the addi-
tional bias input. The key to success turned out to be
a reservoir pre-training which we termed equilibration

in earlier work (Jaeger, 2010; Li and Jaeger, 2011). In
the next section we recapitulate the basic ideas of this
technique.

5 Equilibration

The mechanism behind equilibration – namely, “inter-
nalizing” a driven dynamics into a reservoir – has been
independently (re-)introduced under different names and
for a variety of purposes (self-prediction Mayer and
Browne (2004), equilibration Jaeger (2010), reservoir
regularisation Reinhart and Steil (2012), self-sensing

networks Sussillo and Abbott (2012), innate training

Laje and Buonomano (2013)). It appears to be an RNN
adaptation principle that is fundamental, versatile and
simple. In the following subsections we explain the con-
cept of equilibration by a simple example, after which
we discuss the equilibration of ESN pattern generators.

5.1 Synthetic example of equilibration

To illustrate the concept of equilibration it is helpful
to consider a simple synthetic example (repeated from
Li and Jaeger (2011)). At the top of Fig. 5 the phase
portrait of a stable circular oscillation defined in cylin-
drical coordinates by ṙ = τ(−r+expx), θ̇ = 1, ẋ = −cx

is shown. Here r is a radius, θ an angle, and x a posi-
tion. This system has a globally attracting limit cycle at
x = 0, r = 1. If we would treat x as an input control pa-
rameter, we would be left with a 2-dimensional system
in r and θ whose dynamics is controlled by x. Feeding
x with different constant values would yield stable cir-
cular oscillations with radius equal to exp(x) (bottom
panel). There is another way to obtain exactly the same
bottom-panel phase portrait: use the 3-dimensional au-
tonomous system equation

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Frequency Modulation of Large Oscillatory Neural Networks 7

Fig. 5 Two phase portraits. Top panel: this system is gov-
erned by ṙ = τ(−r + expx), θ̇ = 1, ẋ = −cx. The por-
trait at the bottom can be interpreted in two ways: (i)
as a collection of phase portraits of a 2-dimensional sys-
tem ṙ = τ(−r + expx), θ̇ = 1 in variables r, θ, controlled
by an external input x, or (ii) as a 3-dimensional system
ṙ = τ(−r + expx), θ̇ = 1, ẋ = 0. The polar coordinates
θ, r are plotted to the y, z plane. For further comments see
text.

ṙ = τ(−r + expx), (9)

θ̇ = 1, (10)

ẋ = 0. (11)

Notice that the dynamics of this 3-dimensional au-
tonomous system is neutrally stable in the x direction,
while in the y, z directions it produces a stable oscilla-
tion whose amplitude depends on x.

The bottom-panel system exhibits what we call equi-
libration. Intuitively, it has internalised the x-input con-
trolled dynamics in which x essentially stands still at
different values and maintains a fixed circular oscilla-
tion. In this equilibrated system, each circle oscillation
(together with its x-value) is now an indifferently sta-
ble behaviour mode of the system. Furthermore, small
noise added to the system evolution will send the oscil-
lation amplitude (and x) on a slow random walk.

Now assume that the two systems shown in Fig. 5
were used as sine-wave generators, by extracting the y-
coordinate (y = r cos θ) as the output signal. The orig-
inal (un-equilibrated) system at the top will generate
a stable oscillation with a stable unit amplitude, i.e.,
from any initialisation this un-equilibrated system will
converge to the state where x = 0 and where the sys-
tem exhibits a stable oscillation with unit amplitude.
The equilibrated companion will likewise stably gener-
ate oscillations, but their amplitude will only be neu-
trally stable and would go through a random walk in
the presence of state noise. Now, if the objective were to
obtain an oscillator whose amplitude can be controlled

by an external controller, it seems intuitive that the
equilibrated system should be easier to control than
the un-equilibrated one. The equilibrated system al-
ready “knows how” to oscillate at different amplitudes.
In order to make it exhibit one of its “stored” oscilla-
tion pattern, the external controller only has to gently
steer the x-value to the appropriate value. Since the x-
dynamics is neutrally stable, this can be achieved with
minimal control energy (with zero magnitude in the adi-
abatic limit). The un-equilibrated system seems harder
to control: the native x-dynamics, which always tries
to push x toward 0, has to be overcome by a suitable
counter-action - for instance, by regulating x with a
proportional controller of high enough gain. This re-
quires that the system has to undergo a control input
of significant magnitude. While for the simple system
that we used here for illustration this would pose no
real obstacle, it is not trivial to steer the dynamics of
a very complex system (e.g., a high-dimensional RNN)
by large-magnitude control input.

The discussed example is about an oscillatory sys-
tem where the target characteristic, which we aim to
modulate, is amplitude. We used this example because
amplitude can be more readily visualised than frequency.
The topic of this article is however frequency control.
It should be clear that the same story could be told for
that case. The “raw” system would then be given, for
instance, by ṙ = τ(−r+1), θ̇ = exp(x), ẋ = −cx, while
the equilibrated system would again have ẋ = 0.

5.2 Equilibrating ESN pattern generators

Similar to the synthetic equilibrated example, we want
to build an equilibrated ESN pattern generator which
internally hosts a collection of oscillators of different fre-
quencies. By externally driving it to a particular differ-
ent condition, the pattern generator can spontaneously
produce the oscillating output with a particular fixed
frequency. To construct such an equilibrated ESN sys-
tem, we use the FORCE learning procedure (Section 2)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8 Francis wyffels et al.

to build an ESN pattern generator of 1, 000 neurons and
train the system’s readout weights Wout with a spe-
cially designed target signal, namely, an oscillation with
a gradually changing frequency: ydesired[k] = sin(0.075s[k]k)
with s[k] a time dependent scaling factor which linearly
increases from 1 to 3 and k from 1 to 10, 000. Fig. 6 de-
picts this target signal.

An intuitive explanation for this training scheme is
that the network is trained to oscillate in different fre-
quencies. Consequently, when the training is successful
the system will be able to oscillate in different frequen-
cies by itself. In other words, the network should con-
tain a collection of oscillators of different frequencies.
If such a network can be made to oscillate at any fre-
quency in the training range, with frequency neutrally
stable (similar to amplitude in the synthetic example of
Section 5.1), this would demonstrate that we have an
instantiation of equilibration.

However, to our knowledge, with the current train-
ing methods for large RNNs, only an approximately
equilibrated system can be realised. Its hallmark would
be that when it is initialised to a particular frequency
by external driving, after releasing it from the driving
signal its frequency will slowly migrate toward a pre-
ferred frequency. In terms of our synthetic example (see
Section 5.1): the system from Eqns. 9 – 11 would be ap-
proximately equilibrated if Eqn. 11 would for instance
read ẋ = −εx for some small ε (or any other slow re-
laxation dynamics for x).

In our experiments we set the approximately equi-
librated ESN pattern generator to six different initial
oscillation conditions by driving the reservoir through
feedback weights Wfb with external oscillations of dif-
ferent but fixed frequency (period lengths between 28
and 87, e.g., the highest and lowest frequency used in
the training sequence). Then we let the ESN pattern
generator freely run by itself which results into the so-
called cueing plots (see for example Fig. 7). Indeed,
we then observe that the equilibration-trained reser-
voir slowly converges to a fixed frequency independent
of the initial condition we chose. The bottom plot in
Fig. 7 shows the output of an approximately equili-
brated ESN pattern generator starting from high fre-
quency initial oscillation condition. In contrast, the top
plot in Fig. 7 shows the behaviour of the same network
that was trained on a single frequency. Note again that
the details (parameters) of the experimental setup are
documented in Section 6.

It is interesting to compare the reservoir trajectories
of an ESN pattern generator under different conditions,
namely, (i) driven by external input (Section 4), (ii)
trained with an equilibration training method (trained
with a gradually changing frequency), and (iii) trained

0 500 1000 1500 2000 2500 3000 3500 4000

!1

!0.5

0

0.5

1

 Non equilibrated system

y

9000 9500 10000

0 500 1000 1500 2000 2500 3000 3500 4000

!1

!0.5

0

0.5

1

 Equilibrated system

Time step

y

9000 9500 10000

Fig. 7 The behaviour of a non-equilibrated (top) and an ap-
proximately equilibrated (bottom) ESN pattern generator.
Both systems were primed by driving them through their
output feedback with a high-frequency oscillation. After step
1, 250, each system was unclamped and let run freely. The
non-equilibrated system changes abruptly into its preferred
frequency, while the approximately equilibrated system ex-
hibits a slow drift of frequency toward its preferred frequency.

with the basic learning method (Section 2, trained with
on one frequency). Fig. 8 provides a PC-projected phase
portrait view on the differences between these condi-
tions. When the approximately equilibrated setup is
cued with a high-frequency driving signal and then re-
leased, its circling trajectory moves “monotonically”
and slowly toward the preferred (slower) frequency. This
behaviour is very similar to the setup while the reser-
voir was driven by an external (gradually) frequency
changing oscillation. The non-equilibrated setup, when
started from the same fast oscillation, displays a tra-
jectory which quickly moves from the initial cycle to
the final one, but on the way changes direction (moves
first upwards, then downwards in the vertical plotting
dimension). If the aim is to control frequency, it seems
plausible that a smooth monotonic change of geomet-
rical location leads to easier control mechanisms than
non-monotonic changes of geometrical localisation of
trajectories. All of this would deserve a more in-depth
study, but for the present purpose we are contented
with these intuitive impressions.

Here we have effected (approximate) equilibration
by only training the readout weights of the ESN. In
some of our earlier work (Jaeger, 2010; Li and Jaeger,
2011), approximately equilibration of an ESN pattern
generator was achieved through recomputing all the
system weights (Wres, Wout, Wfb and Wbias). A sys-
tematic investigation of training methods for equilibra-
tion remains for future work.

6 Simulation results

We first exhibit a typical example of a working fre-
quency control (Section 6.1) and then report findings

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Frequency Modulation of Large Oscillatory Neural Networks 9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

!1

!0.5

0

0.5

1

Time step

y

Fig. 6 The signal used for equilibration training: ydesired[k] = sin(0.075s[k]k), with s[k] a time dependent scaling factor
which linearly increases from 1 to 3.

0.4 0.6 0.8 1
!0.8

!0.6

!0.4

!0.2

0

0.2
Driven system

pc1

p
c
2

0.4 0.6 0.8 1
!0.8

!0.6

!0.4

!0.2

0

0.2
Equilibrated system

pc1

p
c
2

0.4 0.6 0.8 1
!0.8

!0.6

!0.4

!0.2

0

0.2
Non equilibrated system

pc1

p
c
2

Fig. 8 Comparison of the state evolution (projections of
the first and second principal components of the reservoir’s
states) of a driven (left), approximately equilibrated (middle)
and a non-equilibrated (right) network. For explanation see
text.

3000 4000 5000 6000 7000 8000 9000
!2

!1

0

1

2

y

Generated output

3000 4000 5000 6000 7000 8000 9000
20

40

60

80

100

Time step

T

Measured period length

Desired

Generated

Fig. 9 Output of a frequency adjustable system (top). The
desired frequency (light gray, bottom) goes through a slow
dip and is tracked reasonably well (black curve, bottom).

from a survey of trials with a large number of randomly
created reservoir systems (Section 6.2).

6.1 A typical example

Here, we use the reservoir system that was used through-
out this paper as an example to illustrate its frequency
modulating capabilities. To recapitulate, this reservoir
system has size N = 1, 000, a leak-rate set at 0.1 and
weightsWres,Wfb andWbias respectively sampled from
normal distributions N (0, 1), N (0, 1.5) and N (0, 0.5).
The scaling factors were obtained by manual tuning.

3000 4000 5000 6000 7000 8000 9000
!2

!1

0

1

2

y

Generated output

3000 4000 5000 6000 7000 8000 9000
40

60

80

100

Time step

T

Measured period length

Desired

Generated

Fig. 10 Output of a frequency adjustable system (top). The
control target follows a random walk (bottom, target: light
grey, measured frequency: black).

After creation of the weight matrices,Wres was rescaled
such that the spectral radius ρ was set at 1.8. The read-
out weights Wout were trained for equilibration with
a 10, 000 step oscillation ydesired[k] = sin(0.075s[k]k)
whose frequency was linearly sped up by a factor of 3
by ramping s[k] from 1 to 3 (see Fig. 6 for an illustra-
tion). For this, we followed the procedure outlined in
Section 2. After this preparation, we verified that the
equilibration was successful by visually inspecting its
cueing plots. In these plots the frequency must change
gradually (i.e., like the one in the bottom plot in Fig. 7).

After having obtained an approximately equilibrated
reservoir, we computed the control bias Wc and acti-
vated the control loop, as described in section 3. The
proportional control gain cP was determined by coarse
hand-tuning. For this cP = 1 was considered as a start-
ing point after which cP was decreased or increased in
order to achieve a more accurate tracking or larger con-
trol range, respectively. Figs. 9 and 10 demonstrate that
frequency could be controlled in a range of a factor 3.

6.2 From equilibration to modulatability

The equilibration procedure does not always result in
a system which behaves as “smoothly” as shown in
Figs. 7 (bottom) and 8 (middle). We found two con-
ditions which impede subsequent controllability. First,

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10 Francis wyffels et al.

it occurs that the equilibration-trained system escapes
into aperiodic (presumably chaotic) or fixed-point dy-
namics. These systems are not able to maintain a fixed
frequency oscillation and consequently are not suitable.
Second, even if the equilibration-trained system exhibits
periodic behaviour and has only a single preferred fre-
quency, convergence toward this frequency from other
cueing frequencies may be too strong (e.g., Figs 7 (top)
and 8 (right)). For these systems, the equilibration worked
out to an insufficient degree. Consequently, these sys-
tems can not be frequency-controlled by using a simple
linear controller.

We carried out a two-stage screening, starting from
a population of 20, 000 randomly created reservoirs.
From these, we first discarded the ones that showed
aperiodic or fixed-point behaviour, and in a second step
the ones that showed an insufficient degree of equili-
bration. The ones that were left over were tested for
controllability.

Specifically, the 20, 000 raw reservoirs, similar to
subsection 6.1, all had 1, 000 neurons and a leak-rate
of 0.15. The spectral radius ρ, feedback scaling o and
bias β scaling was set at 1.8, 1.5 and 0.5 respectively.
Each of these reservoirs was then equilibration-trained
as described in subsection 5.2. Each system thus pre-
pared was then cued with six oscillations whose periods
spanned the training range of 28 to 87 steps. After cue-
ing for 1, 250 steps, the system was let run freely until
10, 000 time steps were passed. We assumed that con-
vergence to any preferred dynamic mode would occur
within this runtime.

For each pattern generator we first checked whether
all of its six free runs converged to a fixed frequency os-
cillation. Therefore, we removed all systems which free
run let to a fixed point or aperiodic behaviour.

Next, we checked whether the equilibration had worked
out in the desired fashion, ideally looking like the bot-
tom plot in Fig. 7.

In order to automatically glean systems which have
the desired “smooth and slow” transient from a cued
period length toward the preferred one, we employed
the following heuristic. From among the six cueing runs
we used the one that started from the highest (period
28) and the lowest (period 87) frequency. From the gen-
erated time series, we obtained the evolution of period
lengths T1, ..., Ti, ..., TK (e.g., Fig. 11) with TK the last
measured period length from the free run. The sequence
T1, ..., Ti, ..., TK was then smoothed by a moving aver-
age filter. From the smoothed sequence, we calculated
heuristic measures Ξ, Ψ , Υ for speed of convergence,

0 10 20 30 40 50 60 70 80 90 100
0

50

100

T

Approximately equilibrated

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

T

Non equilibrated

0 10 20 30 40 50 60 70 80 90 100
20

40

60

Number of periods

T

Non equilibrated

Fig. 11 Three examples of period length transient dynamics
from a (cued) short period to a (preferred) longer period.
Plots show progression of period length against number of
periods. Only the example in the top plot exhibits the desired
quasi-linear ramping-up.

curvature and monotonicity, respectively:

Ξ = max|Ti+1 − Ti| for ∀i = 1...K − 1 (12)

Ψ = max|(Ti+1 − Ti)− (Ti − Ti−1)| (13)

for ∀i = 2...K − 1

Υ =
K−1
∑

i=2

|sgn(Ti+1 − Ti)− sgn(Ti − Ti−1)| (14)

We considered a period sequence T1, ..., Ti, ..., TK as
proof of a successful equilibration if it was monotonic
(in the sense that Υ = 0), not too steep (Ξ < 2.0) and
not too curved (Ψ < 0.2).

Out of the 20, 000 systems, 1, 573 remained after our
selection procedure. All 1, 573 systems were found fre-
quency adjustable which was determined by the mean
absolute error (MAE) between the desired period lengths
and the observed period lengths. The same target as in
Fig. 9 was used and the threshold for acceptance was set
at MAE = 4.0. In roughly half of the cases the default
initial proportional gain cP, which was obtained after
rough manual tuning in the example from Section 6.1,
was sufficient to meet the objective. In the other cases,
manual tuning of cP was necessary.

These empirical results show that frequency mod-
ulation can be realised in high dimensional non-linear
pattern generators provided that they are successfully
(approximately) equilibrated.

7 Discussion

In this contribution we argued that

– biological and robotic pattern generators need to be
adjustable in many ways, and

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Frequency Modulation of Large Oscillatory Neural Networks 11

– modulation of speed differs fundamentally frommod-
ulation of other, “geometric” characteristics, and

– richly trainable and adjustable pattern generators
are likely to require neural networks of substantial
size, –

– which leads to the question of generic mechanisms
for frequency control of neural pattern generators.

Here we considered the special case of oscillatory
networks, and demonstrated that their frequency can
be made controllable by

– training the network in a way that it is forced to
adapt its weights to accommodate to a range of fre-
quencies (“equilibration”),

– which, if is successful, results in a monotonic inter-
dependence between temporal and spatial proper-
ties of the network dynamics,

– which in turn can be exploited for controlling time
by spatial state shifts through a bias term in a pro-
portional control loop.

Our study is a proof of principle, with many de-
sign decisions made ad hoc. Variations and extensions
offer themselves in many ways, e.g., improved control
schemes (for example, PID controllers instead of simple
P controllers, or making the bias weightsWc frequency-
dependent), more sophisticated observers for frequency,
other equilibration methods (for instance, training all
reservoir weights instead of training only the output
weights, as done in Jaeger (2010)), investigating other
signal shapes, etc. Furthermore, in our groups we also
investigate altogether different learning architectures
for making frequency adjustable ESN pattern gener-
ators. For instance, in (Jaeger, 2007) a multifrequency
generator is directly trained as an open-loop control
system. Thus, the present study does not claim to offer
the solution for constructing large frequency adjustable
oscillatory neural networks. We nonetheless consider
the following as relevant contributions:

– pointing out the importance and difficulty of the
neural speed control problem in the first place,

– clarifying the existence and functional role of equili-
bration of dynamics for making selected character-
istics robustly controllable, and

– demonstrating that a temporal – spatial interdepen-
dency of trajectories can be shaped and exploited
for control.

Biological evolution is likely to adopt whatever works
well. Biological research has identified frequency control
mechanisms in small CPG model systems which rely
on specific, idiosyncratic mechanisms. Roboticists sim-
ply adapt the speed of ODE based pattern generators

by changing the time constants. The work presented in
this article does not aim at replacing or refuting any of
these insights or techniques. However, in higher corti-
cal processing domains in biological systems, or in flex-
ibly trainable RNN-based robotic control modules, we
perceive an arena where generic neural speed control
schemes such as the one illustrated in this work might
become important.

Acknowledgements The authors would like to thank the
anonymous reviewers for their constructive comments that
helped improving this manuscript. The research leading to
the results presented here has received funding from the Eu-
ropean Community’s Seventh Framework Programme (EU
FP7) under grant agreement n.248311 Adaptive Modular Ar-
chitecture for Rich Motor Skills (AMARSi).

References

Briggman K, Kristan Jr W (2006) Imaging dedi-
cated and multifunctional neural circuits generat-
ing distinct behaviors. The Journal of Neuroscience
26:10,925–10,933

Briggman K, Kristan Jr W (2008) Multifuctional
pattern-generating circuits. Annual Review of Neu-
roscience 31:271–294

Buchli J, Righetti L, Ijspeert A (2006) Engineering en-
trainment and adaptation in limit cycle systems. Bi-
ological Cybernetics 95:645–664

Büschges A, Scholz H, El Manira A (2011) New moves
in motor control. Current Biology 21:R513–R524

Caluwaerts K, D’Haene M, Verstraeten D, Schrauwen B
(2013a) Locomotion without a brain: Physical reser-
voir computing in tensegrity structures. Artificial Life
19:35–66

Caluwaerts K, wyffels F, Dieleman S, Schrauwen B
(2013b) The spectral radius remains a valid indica-
tor of the echo state property for large reservoirs. In:
Proceedings of the International Joint Conference on
Neural Networks

Cruse H, Brunn D, Bartling C, Dean J, Dreifert M,
Kindermann T, Schmitz J (1995) Walking: A com-
plex behavior controlled by simple networks. Adap-
tive Behavior 3(4):385–418

Curtu R, Shpiro A, Rubin N, Rinzel J (2008) Mecha-
nisms for frequency control in neuronal competition
models. SIAM Journal on Applied Dynamical Sys-
tems 7:609–649

Daun S, Rubin J, Rybak I (2009) Control of oscillation
periods and phase durations in half-center central
pattern generators: a comparative mechanistic anal-
ysis. Journal of Computational Neuroscience 27:3–36

Dean J, Kindermann T, Schmitz J, Schumm M, Cruse
H (1999) Control of walking in the stick insect: From

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

12 Francis wyffels et al.

behavior and physiology to modeling. Autonomous
Robots 7:271–288

Fukuoka Y, Kimura H, Cohen A (2003) Adaptive dy-
namic walking of a quadruped robot on irregular ter-
rain based on biological concepts. The International
Journal of Robotics Research 22:187–202

Grillner S (1985) Neurobiological bases of rhythmic mo-
tor acts in vertebrates. Science 228:143–149

Ijspeert A (2008) Central pattern generators for loco-
motion control in animals and robots: a review. Neu-
ral Networks 21:642–653

Ijspeert A, Crespi A, Ryczko D, Cabelguen JM
(2007) From swimming to walking with a salaman-
der robot driven by a spinal cord model. Science
315(5817):1416–1420

Ijspeert A, Nanaishi J, Hoffmann H, Pastor P, Schaal
S (2013) Dynamical movement primitives: Learning
attractor models for motor behaviors. Neural Com-
putation 25:328–373

Jaeger H (2001) The “echo state” approach to analysing
and training recurrent neural networks. Gmd report
148, German National Research Center for Informa-
tion Technology

Jaeger H (2002) A tutorial on training recurrent neural
networks, covering bppt, rtrl, ekf and the ”echo state
network” approach. Gmd report 159, International
University Bremen

Jaeger H (2007) Echo state network. In: Scholarpedia,
vol 2, p 2330, URL http://www.scholarpedia.org/

article/Echo_State_Network

Jaeger H (2010) Reservoir self-control for achieving in-
variance against slow input distortions. Technical re-
port 23, Jacobs University Bremen

Jolliffe I (2005) Principal Component Analysis. Ency-
clopedia of Statistics in Behavioral Science.

Laje R, Buonomano DV (2013) Robust timing and mo-
tor patterns by taming chaos in recurrent neural net-
works. Nature Neuroscience 16(7):925–933

Li J, Jaeger H (2011) Minimal energy control of an ESN
pattern generator. Technical report 26, Jacobs Uni-
versity Bremen, School of Engineering and Science

Lukoševičius M (2012) A practical guide to applying
echo state networks. Neural Networks: Tricks of the
Trade, Reloaded 7700:659–686

Lukoševičius M, Jaeger H (2009) Reservoir comput-
ing approaches to recurrent neural network training.
Computer Science Review 3:127–149

Mayer NM, Browne M (2004) Echo state networks and
self-prediction. In: Biologically Inspired Approaches
to Advanced Information Technology, LNCS, vol
3141, Springer Verlag Berlin / Heidelberg, pp 40–48

Nakanishi J, Morimoto J, Endo G, Chenga G, Schaal
S, Kawato M (2004) Learning from demonstration

and adaptation of biped locomotion. Robotics and
Autonomous Systems 47:79–91

Reinhart R, Steil J (2011) A constrained regularization
approach for input-driven recurrent neural networks.
Differential Equations and Dynamical Systems 19(1–
2):27–46

Reinhart R, Steil J (2012) Regularization and stability
in reservoir networks with output feedback. Neuro-
computing 90:96–105

Reinhart R, Steil JJ (2008) Recurrent neural associa-
tive learning of forward and inverse kinematics for
movement generation of the redundant pa-10 robot.
In: Proceedings of the ECSIS Symposium on Learn-
ing and Adaptive Behaviors for Robotic Systems, pp
35–40

Rolf M, Steil JJ, Gienger M (2010a) Goal babbling
permits direct learning of inverse kinematics. IEEE
Transactions on Autonomous Mental Development
2(3):216–229

Rolf M, Steil JJ, Gienger M (2010b) Learning flexible
full body kinematics for humanoid tool use. In: Pro-
ceedings of the International Symposium on Learning
and Adaptive Behavior in Robotic Systems

Schrauwen B, Defour J, Verstraeten D, Van Camp-
enhout J (2007) The introduction of time-scales in
reservoir computing, applied to isolated digits recog-
nition. In: Proceedings of the International Confer-
ence on Artificial Neural Networks

Sussillo D, Abbott L (2012) Transferring learning from
external to internal weights in echo-state networks
with sparse connectivity. PLoS ONE 7(5):e37,372

Sussillo D, Abbott LF (2009) Generating coherent pat-
terns of activity from chaotic neural networks. Neu-
ron 63:544–557

Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D
(2007) An experimental unification of reservoir com-
puting methods. Neural Networks 20:391–403

Waegeman T, Schrauwen B (2011) Towards learning in-
verse kinematics with a neural network based track-
ing controller. In: Lecture Notes in Computer Sci-
ence, vol 7064, pp 441–448

Waegeman T, wyffels F, Schrauwen B (2012a) Feed-
back control by online learning an inverse models.
IEEE Transactions on Neural Networks and Learn-
ing Systems 23:1637–1648

Waegeman T, wyffels F, Schrauwen B (2012b) A re-
current neural network based discrete and rhythmic
pattern generator. In: Proceedings of the European
Symposium on Artificial Neural Networks

Waegeman T, wyffels F, Schrauwen B (2012c) Towards
a neural hierarchy of time scales for motor control.
In: Lecture Notes in Computer Science, vol 7426, pp
146–155

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Frequency Modulation of Large Oscillatory Neural Networks 13

Wrede S, Johannfunke M, Nordmann A, Rüther S,
Weirich A, Steil J (2010) Interactive learning of in-
verse kinematics with nullspace constraints using re-
current neural networks. In: Proceedings of the 20th
Workshop on Computational Intelligence

wyffels F, Schrauwen B (2009) Design of a central pat-
tern generator using reservoir computing for learning
human motion. In: Proceedings of the ECSIS Sympo-
sium on Advanced Technologies for Enhanced Qual-
ity of Life, pp 118–122

wyffels F, Schrauwen B, Stroobandt D (2008) Stable
output feedback in reservoir computing using ridge
regression. In: Proceedings of the International Con-
ference on Analog Neural Networks

Yildiz I, Jaeger H, Kiebel S (2012) Re-visiting the echo
state property. Neural Networks 35:1–9

Zhang C, Lewis T (2013) Phase response properties
of half-center oscillators. Journal of Computational
Neuroscience 35:55–74

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

