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THE DYNAMICS OF RANDOM DIFFERENCE EQUATIONS IS
REMODELED BY CLOSED RELATIONS∗

G. MANJUNATH† AND H. JAEGER†

Abstract. We provide substantial simplifications in the understanding of qualitative dynamics
of random difference equations (RDEs) by constructing closed relations using their typical instanti-
ations. We consider the RDE given by xn+1 = g(ξn(ω), xn), where g : U × X → X is a uniformly
continuous map, {ξn} is a U -valued stationary input, and X a compact metric space. We represent
each nonautonomous difference equation (NDE) {gn,ω(·) := g(ξn(ω), ·) : n ∈ Z} obtained by any
realization of the input by some closed relation and prove a number of useful results. For all typical
realizations of the input process, we show (1) any solution of the NDE can be obtained as an orbit
(trajectory) of the corresponding closed relation; (2) every attractor A (an autonomous subset of X)
of the closed relation contains a positively invariant uniform attractor and a pullback attractor of
the NDE; (3) every (entire) solution of the NDE converges to an A in (2) or else stays in its dual
repeller; (4) the closed relations are all identical whenever the input process is ergodic. Uniformity
is a highly relevant condition for a nonautonomous attractor to be of practical relevance. Statement
(3) yields a “Conley-like” decomposition theorem in terms of autonomous subsets alone and leads to
a remarkable simplification in understanding the asymptotic dynamics of each such NDE.

Key words. random difference equation, stochastic difference equation, Conley decomposition
theorem, nonautonomous dynamical systems, uniform attractors, iterated relations

AMS subject classifications. 37H99, 39A50, 37C70, 37B55, 37B25

DOI. 10.1137/120868815

1. Introduction. The existence of various types of attractors of dynamical sys-
tems which are subject to stochastic influence has been under investigation for the
last two decades. Such studies falls into two broad categories, the first concerning
the existence of a global attractor (e.g., [2, 6]) and the second concerning the local
subattractor structure within a global attractor or that of a compact invariant set
[17, 12, 7]. In this paper we engage in the latter task of a local analysis. [17, 12, 7]
make an analysis for random flows. For random semiflows in continuous time, the
problem was addressed in [13].

We carry out a local subattractor analysis of a subclass of random dynamical
systems comprising discrete-time continuous systems, with the stochastic influence
originating from a stationary source. Such systems arise naturally in many applica-
tions in the form of random difference equations (RDEs). However, the notion of a
random dynamical system encompasses some more general situations, notably that of
a nonstationary stochastic influence like Brownian motion (see [2]). For RDEs, our
main concern is not to arrive at a Morse decomposition, i.e., the description of the
structure of the attractor as a finite number of compact invariant sets and connect-
ing orbits between them. Instead we replace typical instantiations of the RDE by a
closed relation. This eventually provides us with an alternative and simpler picture
of the asymptotic behavior of solutions using autonomous subsets of the state space
(via a Conley kind of decomposition theorem), and also allows us to establish the
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existence of (nonautonomous) uniform local attractors. Uniformity of attractors is
a strong condition ([4]; also see [3, 10]) which poses challenges to their analysis; a
weaker notion of attractivity known as forward attractive per se does not provide
convergence of solutions to an attractor component at any point of time, and hence
in a practical situation where the attractor component is itself to be determined, this
lack of convergence is a drawback. This problem is overcome with another weaker
notion of pullback attractivity, but it per se does not capture the asymptotic behav-
ior of solutions in the positive direction, and since pullback attractors need not be
forward attractors and vice versa (see [10, Chap. 3]), the stronger notion of uniform
attractors is a condition of significant practical relevance which makes its study worth
some effort. Uniform attractors also point to a concept of the attractive strength of
the attractor not deteriorating with time either in the forward or positive direction
and have not been studied before for RDEs. Also, unlike some previous results such
as in [17], which seem to be restricted to state spaces with normed topologies, we
consider arbitrary compact metric spaces. This, for instance, permits us to consider
state spaces with nonempty interior and homeomorphic to compact subsets of Rd

(d ≤ ∞) under the product topology.
More specifically, we consider the RDE of the form

(1) xn+1 = g(ξn(ω), xn),

where g : U ×X → X is a uniformly continuous map, U is a complete metric space,
{ξn}n∈Z is a stationary process defined on (Ω,F , P ) and taking values in U , and X
is a compact metric space. The space X is chosen to be compact for two reasons
here: first, our study is about local attractors, hence X could be treated as a global
attractor or as a compact invariant set of an unbounded system; and second, there
are many real world systems which warrant X to be compact. It is a practice to
also call ξn the perturbation or noise. We prefer to call ξn in this paper the input
to the RDE because this is more natural for the applications that the authors have
encountered (see [14]). RDEs of the above nature arise in various situations, for
instance, in financial market models, epidemic models, population biology, neural
network models, discretization of stochastic dynamical systems, control theory, and
many more. Also infinite-dimensional RDEs which arise when a difference equation
with an unbounded random delay, that were previously analyzed only for their global
behavior [8] due to the normed topology, can be considered here for local analysis
since X is an arbitrary compact metric space.

Clearly, in (1), for each ω ∈ Ω, the sequence {ξn(ω)} generates a set of maps
{gn,ω(·) := g(ξn(ω), ·)} such that each gn,ω : X → X is continuous. For each ω in (1),
we construct a closed relation [1, 15] on X which is a closed subset of X ×X . Like a
map, a closed relation can be iterated to give rise to a dynamical system. We use the
theory of iterating such relations to establish a number of results.

A fundamental theorem in dynamical systems (for flows and maps) is the Conley
decomposition theorem [5] which provides for the decomposition of a flow or a map
on a compact metric space into a part that exhibits a particular type of recurrence
(called the chain-recurrent set) and a part in which the dynamics are essentially one-
way (called the gradient part). Roughly speaking, a point is chain recurrent if it can
return to itself by following the flow or iterates for an arbitrarily long time, given the
liberty of making arbitrarily small jumps, or errors, along the way. We refer to the
original definition of chain recurrence in [1, 16], but keeping in mind our objectives,
it suffices for us to recall the resemblance between the chain-recurrent set and what
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are called the connecting orbits via the Conley decomposition theorem. The nature
of this deep result remains alike for flows, maps, and also for closed relations [16].

We recall all relevant results concerning the dynamics of closed relations in sec-
tion 2.2. Given an attractor A of a closed relation F on a compact space X , then
the associated set of all “connecting orbits” with A is defined by Basin(A)−A. The
terminology of a connecting orbit arises from the fact that for any x ∈ Basin(A)−A,
and an orbit of F passing through x, the ω-limit set of the orbit is contained in A
while its α-limit set is contained in the dual repeller of A. In the special case, where
A and its dual repeller A∗ are both singletons, the curious reader may note that a
connecting orbit between them is popularly known as a heteroclinic orbit. Denot-
ing the chain-recurrent set of the closed relation F by CR(F ), we recall the Conley
decomposition theorem for closed relations.

Theorem 1.1 (Conley decomposition theorem (see [16])). Let F be a closed
relation on a compact space X. Then the chain-recurrent set is equal to the union of
the set of all connecting orbits associated with all of its attractors, i.e.,

(2) X − CR(F ) =
⋃

C∈A(F )

Basin(C)− C,

where A(F ) is the set of all attractors of F .
Since the behavior of a connecting orbit is one-way, by the decomposition theorem,

it follows that the dynamics on the chain-recurrent say is also one-way. In contrast,
the chain-recurrent set not only captures all the asymptotic behaviors of all orbits, but
the dynamics within in it includes all types of nontrivial, nonmonotonic behaviors.
Thus, the chain-recurrent set and its complement give a dynamical decomposition.
Also, further, since an attractor A is invariant under F , as a simple consequence
(see Proposition 2.3) of this decomposition, it follows that if an attractor A is not
entirely contained in CR(F ), then there exists a subattractor A0 � A. Thus the
identification of the chain-recurrent set specifies whether an attractor contains smaller
subattractor(s).

In this paper, we interpret the Conley decomposition of the closed relations con-
structed for each {gn,ω} to delineate the asymptotics of the solutions of the NDEs.
What differentiates our work from the previous results (see [12, 13]) is that the attrac-
tors of the closed relations and their basins being subsets of the state space alone suffice
for this delineation, and not the traditionally employed nonautonomous subsets, i.e.,
subsets of Z × X . Our main results are stated via Theorem 4.1 and Theorem 5.1
which are proved post construction of the closed relation for the nonautonomous dif-
ference equations (NDEs) {gn,ω}. Here, to rigorously and quickly summarize these
two theorems without going into the details of such a construction, we state a theorem
without the explicit construction of the closed relations, but rather with an existential
statement.

Theorem 1.2. Let g : U ×X → X define an RDE in (1), with g also being a
uniformly continuous map. Then for each ω belonging to a set of probability 1, there
exists a closed relation F̂ (ω) defined on a subspace X̂(ω) of X which satisfies the
following:

(i) every entire-solution of {gn,ω} is an orbit of F̂ (ω) (see Definitions 2.2 and
2.9);

(ii) every nonempty attractor of F̂ (ω) contains a (componentwise nonempty) local
+invariant uniform attractor and a (componentwise nonempty) local pullback
attractor (see Definition 2.4);
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(iii) if C(ω) is an attractor of F̂ (ω), and {ϑn} is an entire solution of {gn,ω},
then {ϑn} lies entirely either in C(ω) or C∗(ω) or else, the ω-limit set and
and α-limit set of {ϑn} lie in C(ω) and C∗(ω), respectively, where C∗(ω) is
the dual repeller of C(ω);

(iv) if C(ω) is not contained entirely in CR(F̂ (ω)), then there exists at least one

nonempty subattractor C0(ω) � C(ω) of F̂ (ω);

(v) if {ξn} is ergodic, then the closed relations F̂ (ω) on X̂(ω) that satisfy (i)–(iv)
are all identical for all ω belonging to a set having probability 1.

Statement (i) in Theorem 1.2 is significant since an entire solution of the NDEs
obtained by a typical input realization can be related to the dynamical entities of the
closed relation. Next, concerning statement (iii), if {ϑn} intersects Basin(C(ω)) −
C(ω), then it is a connecting orbit (of the concerned closed relation) between C(ω)

and C∗(ω). Further, if C(ω) does not lie entirely inside CR(F̂ (ω)), then statement (ii)
can be applied to the subattractor C0 in (iv) to obtain finer (see proof of Theorem 4.1)
local nonautonomous attractors contained in C0(ω). Also, by applying (iii), we get
to know where the limit sets of the entire solution lie with respect to C0(ω). This
gives a comprehensive picture of the inner structure of the dynamics inside C(ω) and
further smaller dynamical entities can be found within any subattractor which does
not lie within CR(F̂ (ω)). Our main contribution on nonautonomous attractors is on
the existence of uniform attractors made in (ii). Statement (v) of Theorem 1.2, tells
us that in the ergodic case, there is a deterministic autonomous subset which is the
chain-recurrent set of the closed relation obtained by all typical NDEs that captures
all the asymptotic behavior of the entire RDE with probability 1.

During the review of this paper, an anonymous referee posed the question as to
whether the closed relation that can be obtained by the set-valued mapping g(U, ·) :
X → 2X is in any way related to a closed relation that may satisfy (i)–(iv) of The-
orem 1.2. Since the idea behind the construction of the closed relation that satisfies
Theorem 1.2 is made only in the later sections of this paper, and could be surrounded
by other technicalities, we clarify here that the set-valued mapping g(U, ·) (or the
closed relation it could generate) would in general fail to shed light on the dynamics
of the RDE or, more particularly, the dynamics of an NDE {gn,ω} obtained from a
typical realization of {ξn}. During the course of this clarification, we also provide
some intuition on the construction of the closed relation whose existence was stated
in Theorem 1.2.

The set-valued map g(U, ·) generates a closed relation defined on the entire space
X , and when g(u, ·) for some u ∈ U is found to be dissipative, i.e., g(u,X) is a
proper subset of X , the generated closed relation could fail to capture the dissipative
dynamics involving the map g(u, ·). The closed relation which ignores such dissipative
dynamics of an NDE may not shed any light on the attractor dynamics of the NDE.
We first illustrate this fact with a simple academic example. Consider the map g(u, x)
on the state space X = [0, 1] and U = {0, 1} defined by the two piecewise linear self-
maps g(0, ·) and g(1, ·) on [0, 1] as shown in Figure 1(a). To define an RDE, let {ξn}
be a U -valued independently and identically distributed process such that all typical
realizations of {ξn} contain both the elements 0 and 1 occurring infinitely often. The
set-valued map g(U, ·) generates a closed relation which is the union of the graphs of
the functions g(0, ·) and g(1, ·) (see Figure 1(a)). Further, the only attractor of this
closed relation (for definitions, see section 2.2) is the space [0, 1] itself. That said about
this set-valued map, let us analyze the dynamics of an NDE {gn,ω} obtained from a
typical realization {ξn(ω)}. In all future dynamics following the time instants at which
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(a) Closed relation defined on [0, 1] via piece-
wise linear functions g(0, ·) and g(1, ·) (shown
in thick lines).

(b) Closed relation defined on the base-
domain [0, 0.2]∪ [0.8, 1]: Graphs of g(0, ·) and
g(1, ·) restricted to the base-domain yield to-
gether the base-relation.

Fig. 1. Example to illustrate the utility of the base domain.

a 1 is followed by a 0 in a realization {ξn(ω)}, the dynamics of the NDE {gn,ω}, is
contained in the set [0, 0.2] ∪ [0.8, 1] since g(1, [0, 1]) = g(1, [0, 0.2]) = g(1, [0.8, 1]) =
[0.8, 1] and g(0, [0.8, 1]) = [0, 0.2]. In fact, once the dynamics is confined to the set
[0, 0.2]∪ [0.8, 1], an appearance of 0 as the input will constrain the entire solutions of
any such NDE evaluated at the next time step to be contained in [0, 0.2], while an
appearance of 1, will set the entire solutions in the following time step to be contained
in [0.8, 1]. The union of subintervals [0, 0.2]∪ [0.8, 1] turns out to be what we call the
base domain of the NDE (Definition 2.5). In general, when U is not necessarily finite,
a rather special sequence of subsets {Xn ⊂ X} of an NDE can be described such that
the set of all entire solutions of the NDE evaluated at a time n0 is identical to the
set Xn0 (see Lemma 2.2); the set of accumulation points of such a sequence {Xn} (in
an appropriate topology) is called the base domain (Definition 2.5) of the NDE. It
turns out that the base domain is a certain maximal invariant subset of X which is
found to contain all the asymptotic dynamics of the corresponding NDE (see (ii) of
Proposition 2.2).

Returning to the example in Figure 1(a), the union of the graphs of the functions
g(1, ·) and g(0, ·) when restricted to the base domain [0, 0.2] ∪ [0.8, 1], is called the
base relation of a typical NDE {gn,ω} (see Figure 1(b)). In general, when U is not
necessarily finite, the base relation on the base domain is obtained as the set of
accumulation points of relations (in an appropriate topology) which are graphs of
{gn,ω} restricted to the base domain (Definition 2.6) of the NDE. The base relation is
then found to capture the asymptotic dynamics of the corresponding NDE (see (iii)
of Proposition 2.2). The point to be taken from this example is that the set-valued
map g(U, ·) provides no insight into the dynamics since its only attractor is the entire
space, while all the base relation’s attractors will be contained in the base domain.

We point out that the definition of base domain or base relation is not confined
to academic examples. Suppose that in an RDE g : U × X → X , the family of
maps {g(u, ·) : u ∈ U} is uniformly dissipative in the sense that there is a proper
subset Y of X independent of u ∈ U so that g(u,X) ⊂ Y for every u ∈ U . In
such a case, the definition of a base domain is very relevant as the base domain
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would be no larger than Y . One such scenario familiar to the authors is a widely
used machine learning application where a recurrent neural network comes with a
hyperbolic tangent (tanh) nonlinearity (e.g., [14]) that defines an RDE: to illustrate
our point, we consider only a one-dimensional network, i.e., g(u, x) = tanh(au + bx)
defined on U × [−1, 1] → [−1,+1], where U is any compact subset of the real line and
a, b are real numbers. Regardless of the U -valued stochastic process chosen, owing
to the compactness of U , and to the fact that tanh([−1, 1]) is a proper subset of
[−1, 1], the family {g(u, ·) : u ∈ U} can be found to be uniformly dissipative. As an
observation from this example, we remark that for dissipation to occur, {g(u, ·) : u ∈
U} need not have to be a family of contraction maps, since the constant b can be
made larger than 1 to yield a family of locally expanding maps.

The remainder of the paper is organized as follows. Sections 2 and 3 prepare
the necessary background and results to state our main results. The main theoretical
results, Theorems 4.1 and 5.1 are proved in sections 4 and 5, respectively. Finally, in
section 6 we indicate where some of our results stand amongst others in the literature
and also as to how they can be made use of.

2. Background and preliminaries: Formalizing the nonrandom case.
Given any metric space (X, d), and any nonempty subset A, we denote Bη(A) :=
{y ∈ X : d(x,A) < η} as an η-neighborhood of A. For nonempty sets A,B ⊂ X we
let dist(A,B) := sup{d(x,B) : x ∈ A} be the Hausdorff semidistance of A and B. In
addition if any one of A and B is empty, we adopt the convention that dist(A,B) = 0.
Subsets of Rd are endowed with the subspace topology induced from the standard
topology of Rd. Throughout the paper we use the notion of ω-limit of sets, i.e., the
set of accumulation points of a sequence as time tends to infinity. Let {Cn} be an (in-
finite or bi-infinite) sequence of subsets of a compact metric space X . We refer to the

subset equivalently defined by lim supn→∞ Cn :=
⋂

n

⋃
k≥n Ck or lim supn→∞ Cn :=

{x ∈ X : ∃ xnk
∈ Cnk

such that limk→∞ xnk
= x} or lim infn→∞ d(x,Cn) = 0

as the lim sup of the sequence {Cn}. To make obvious that lim supn→∞ Cn is re-
lated to the notion of the ω-limit of the sequence Cn, one can show for any k ∈ Z,⋃

n≥k Cn =
⋃

n≥k Cn ∪ lim supn→∞ Cn.

The following elementary result is used repeatedly.
Lemma 2.1. Let (X, d) be a complete metric space. Suppose {Ci}(i∈Z or N) is a

sequence such that Ci ⊂ X, and C := lim supn→∞ Cn, then limn→∞ dist(Cn, C) = 0.
Also, if Ci+1 ⊂ Ci for all i, then C =

⋂
n Cn.

The equation xn+1 = gn(xn), where for each n ∈ T and T = Z, gn : X → X
is continuous with X being a (nonvoid) metric space is called an NDE. Alternate
designations of an NDE in this paper are “{gn : X → X},” or just “{gn} on X”
with other assumptions implicit. We recall a standard convenient formulation of
nonautonomous systems.

Definition 2.1. Let T2
≥ := {(n,m) : n,m ∈ T and n ≥ m}, where T is subset of

R. A process φ on a state space X is a continuous mapping φ : T2
≥ ×X → X which

satisfies the evolution properties:
(i) φ(m,m, x) = x for all m ∈ T and x ∈ X;
(ii) φ(n,m, x) = φ(n, k, φ(k,m, x)) for all m, k, n ∈ T with m ≤ k ≤ n and

x ∈ X.
Since we consider discrete-time dynamics, always T = Z, but we retain the nota-

tion T to symbolize time. It is readily observed that an NDE {gn} on X generates
a process φ on X by setting: φ(m,m, x) := x and φ(n,m, x) := gn−1 ◦ · · · ◦ gm(x).
To verify that φ is a process we need to verify continuity. The notion of continuity
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in the first two variables of φ becomes trivial. Also, the composition of finitely many
continuous mappings makes the map xm �→ φ(n,m, xm) continuous, and hence φ is
continuous.

Also, in the other direction, when T = Z, for every process φ on X , there exists an
NDE {gn} on X defined by gn(x) := φ(n+1, n, x). Henceforth, we use the terminology
of a “process” while referring to an NDE and vice versa for convenience. Moreover all
definitions made for a “process” have a natural extension to an NDE and vice versa.

A sequence of sets bearing a time index n ∈ T are called nonautonomous sets.
The following nonautonomous sets will be frequently used.

Definition 2.2. Let φ be a process on a space X.
(i) An entire solution of a process φ is a sequence ϑ = {ϑn}n∈Z such that ϑm ∈ X

for all m and φ(n,m, ϑm) = ϑn for all m ≤ n.
(ii) A nonautonomous set A = {An : An ⊂ X}n∈Z is said to be φ-invariant if

φ(n+ 1, n, An) = An+1 for all n.
(iii) A nonautonomous set A = {An : An ⊂ X}n∈Z is said to be φ positively

invariant or φ +invariant if φ(n+ 1, n, An) ⊂ An+1 for all n.
Clearly, an entire solution is a φ-invariant set, and a φ-invariant set is a φ +in-

variant set. Next, we develop some new terminology with the aim of specifying the
attractive domains of the attractors when the maps in the NDE are not necessarily
surjective.

For a given NDE, suppose if gn0 is not surjective for some n0, then {ϑn0+1 :
{ϑn} is an entire solution } is a proper subset of X . Since the system states or the
states of all possible entire solutions at a particular time instant may be a proper
subset of X , it is useful to consider a subset Xn of X at each n which contains all
possible states reachable at n. To do that we define the following subsets of X . Let
i < n. Denote

(3) Xn,i := gn−1 ◦ · · · gi+1 ◦ gi(X).

The setXn,i being the image of a finite composition of continuous maps is compact
whenever X is compact. Also Xn,i is nonempty. Further, Xn,i ⊃ Xn,i−1. Hence⋂

i<n Xn,i is a nested intersection of closed nonempty subsets, and whenever X is
compact, the intersection is nonempty.

Proposition 2.1. Given an NDE {gn : X → X}, where X is compact, define
Xn :=

⋂
i<n Xn,i. Then gn(Xn) = Xn+1 for all n ∈ T.

Proof. Let A1, A2, . . . , be a collection of nonempty subsets of X such that Ai+1 ⊂
Ai and g be a continuous function on X . Then from elementary arguments we can
prove

(4) g(A) =

∞⋂
i=1

g(Ai), where A :=

∞⋂
i=1

Ai.

We recall that by its definition, Xn is a nested intersection, and deduce

Xn =
⋂
i<n

Xn,i,

gn(Xn)
(4)
= gn ◦ gn−1(X) ∩ gn ◦ gn−1 ◦ gn−2(X) ∩ · · ·
= Xn+1,n−1 ∩Xn+1,n−2 ∩ · · ·
= Xn+1,n ∩Xn+1,n−1 ∩Xn+1,n−2 ∩ · · · (since Xn+1,n ⊃ Xn+1,n−1)

= Xn+1.
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Based on Proposition 2.1 we define a nonautonomous set as a natural association for
an NDE or for a process. We make these definition in a more general form.

Definition 2.3. An association of an NDE {gn : X → X} is a sequence of
subsets {Xn}, such that each Xn is nonempty, closed, and gn(Xn) = Xn+1 for all
n ∈ T. In particular, an association {Xn} is said to be natural if Xn :=

⋂
i<n Xn,i.

An association for a process φ on X is a sequence of subsets {Xn}, such that
Xn is nonempty and closed, and φ(n,m,Xm) = Xn for all n ≥ m. The association
Xn =

⋂
m<n φ(n,m,X) is called the natural association of φ.

Clearly, if each gn of an NDE is surjective on each X , then the natural association
{Xn} will be such that Xn ≡ X for all n.

A helpful consequence of defining a natural association is that it forms a tight
envelope around the entire solutions of the process (see (iii) of Lemma 2.2). The proof
of (ii) in Lemma 2.2 is known (e.g., [10]).

Lemma 2.2. Given a process φ on a compact space X, let {Xn} be its natural
association. Then, (i) for all n ≥ m, φ(n,m,Xm) = Xn; (ii) a sequence A = {Ak} is
φ-invariant if and only if for every pair k ∈ T, x ∈ Ak there exists an entire solution
{ϑn} such that ϑk = x and ϑk ∈ Ak for all k ∈ T; (iii) an association {Yn} is the
natural association of φ, i.e., Yn = Xn for all n if and only if every entire solution
{ϑn} is such that ϑk ∈ Yk for all k ∈ T.

Proof. (i) By equating Xn,i = φ(n, i,X) in Proposition 2.1, (i) follows.
(ii) (from [10]) (=⇒) Let k0 ∈ T and choose x ∈ Ak0 . For k ≥ k0, define the

sequence ϑk := φ(k, k0, x). Then by φ-invariance, ϑk ∈ Ak for any k > k0. On the
other hand, Ak0 = φ(k0, k, Ak) for k ≤ k0 and so there exists a sequence xk ∈ Ak

with x = φ(k0, k, xk) and xk = φ(k, k − 1, xk−1) for all k ≤ k0. Then define ϑk := xk

for k ≤ k0. This completes the definition of the entire solution ϑk.
(⇐=) Suppose for any k ∈ T and x ∈ Ak, there is an entire solution {ϑn}

satisfying ϑk ∈ Ak for all k ∈ T. This implies φ(k + j, k, x) ⊂ Ak+j for all j ≥ 0.
Hence we have φ(k+ j, k, Ak) ⊂ Ak+j . The other inclusion follows from the fact that
φ(k, k − j, ϑk−j) = x for all j ≥ 0.

(iii) (=⇒) {Xn} is φ invariant from (i). From (ii), if there is an x ∈ Xk, then
there is an entire solution {ϑn} such that x = ϑk. (⇐=) Let {ϑi} be an entire
solution. Now consider some ϑn. By definition there exists xk ∈ X such that
φ(n, k, xk) = ϑn for all k < n. Clearly, φ(n, k, xk) ∈ φ(n, k,X) for all k < n.
This implies ϑn ∈ ⋂k<n φ(n, k,X) = Xn. Since n was chosen arbitrarily, ϑi ∈ Xi

for all i.
Given a process φ and an association {Xn}, we adopt the following notation: for

every A ⊂ Xi, we denote

B(i)
η (A) := Bη(A) ∩ Xi := {x ∈ Xi : d(x,A) < η}.

Visibly, the set B
(i)
η (A) is dependent on the association for the process. We formally

state our definition of various types of local attractors for a process. We incorporate
the association into the attractor definition so that the domain of attraction is the
solutions of the NDE.

Definition 2.4. Let φ be a process on a space X, with an association {Xn} and
A = {An} be a φ +invariant set such that each An is compact and ⊂ Xn. If for some
η > 0, any of the following conditions

lim
j→∞

dist(φ(n, n− j, B(n−j)
η (An−j)), An) = 0 for all n,(5)

lim
j→∞

dist(φ(n + j, n,B(n)
η (An)), An+j) = 0 for all n,(6)
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lim
j→∞

sup
n

dist(φ(n, n− j, B(n−j)
η (An−j)), An) = 0,(7)

lim
j→∞

sup
n

dist(φ(n + j, n,B(n)
η (An)), An+j) = 0,(8)

holds, then in that order, A is, respectively, called a local +invariant pullback attractor,
local +invariant forward attractor, local +invariant uniform pullback attractor, and
local +invariant uniform forward attractor with respect to the association {Xn}. A
local +invariant uniform pullback attractor when it is simultaneously a local +invari-
ant uniform forward attractor, is simply called a local +invariant uniform attractor.
If in addition A is φ-invariant then they are also local invariant attractors of their
types.

Trivially, any association {Xn} itself is both a φ-invariant local pullback and a
forward attractor w.r.t. {Xn}. In contrast to our definition of φ-invariant local attrac-
tors above, the local attractor in the literature such as in [10] is made independent of
any of the associations for φ. In this literature, a φ-invariant local attractor of any
of the type viz., pullback, forward, uniform pullback, and uniform forward is gotten

by replacing B
(∗)
η (�) with Bη(�), where Bη(�) is an η-neighborhood of � in X in the

identities (5) to (8). As a technicality, the reader may note that the definition of local
attractors permits them to be a sequence of empty sets, i.e., each An is empty in A.
There can be cases of +invariant attractors where each An can be empty for some
n < n0 and nonempty for all n ≥ n0, whereas in the case of φ-invariant attractors
either all An are empty or nonempty.

The remainder of this section is presented in two subsections. In the first subsec-
tion, we associate a closed relation with each process. In the following subsection, we
recall the results on iterations of closed relations.

2.1. Closed relation for a process. A closed relation on a space X is a closed
subset of X × X . In this subsection, we associate a closed relation with each given
process or an NDE and its association.

Motivation. Consider the map g(u, x) := 4ux(1 − x) on [0, 1], u ∈ R. The
function 4x(1−x) (the full logistic map) has {0} as a fixed point. Any input sequence
un generates an NDE gn(·) = g(un, ·). If it happens that un0 = 0 for some n0, then
for any association {Xn} of the NDE, Xn = {0} for all n > n0. Thus the forward
asymptotic dynamics of such an NDE becomes insensitive to any nonzero input un

for n > n0. To characterize this asymptotic behavior more generally, one can say
that the asymptotic behavior of the NDE is contained in the ω-limit of {Xn}, i.e.,
the lim sup of {Xn} which happens to be {0}. In general, given an NDE {gn} and an
association {Xn}, its forward asymptotic dynamics is tied to the ω-limit set or the
lim sup of {Xn}. We give a name to this set.

Definition 2.5. Given an NDE {gn} on X and an association {Xn}, the subset

of X given by X̂ = lim supn→∞ Xn =
⋂

n

⋃
k>n Xk is called the base domain of the

NDE w.r.t. {Xn}.
Given an association {Xn}, it is not clear whether an Xn0 is contained in its base

domain. We will find later in section 4 that the most natural condition we would be
encountering is that each Xn is contained in X̂. As a simple example illustrating the
definition of base domain, consider the map g(u, x) = u

√|x|, where u ∈ U = {−1,+1}
and x ∈ [−1,+1]. Clearly, a sequence {un} ⊂ U gives rise to an NDE. For instance,
for the sequence un := (−1)n, the natural association is Xn = [0, 1], when n is an odd

integer and Xn = [−1, 0] when n is even. The base domain X̂ is the set [−1, 1], which
is the union of Xn’s. We observe later in the paper that the typical case is when each
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component of the association is contained in the base domain for any NDE derived
from an RDE (Lemma 4.4).

To explain the role of the individual maps in the description of the (forward
asymptotic) dynamics we define the following.

Definition 2.6. Given an NDE {gn} on X, and an association {Xn}, we define
Fn as an individual relation on Xn by

Fn :=

{
(x, gn(x)) : x ∈ Xn

}
.

Further we define the base relation F̂ on its base domain X̂ by

(9) F̂ := lim sup
n→∞

Fn := lim sup
n→∞

{
(x, gn(x)) : x ∈ Xn

}
.

Clearly, by definition, F̂ is a closed relation on X̂. The process-based version of
the above definitions is given below.

Definition 2.7. Given a process φ and an association {Xn}, (i) the subset of X
given by X̂ := lim supn→∞ Xn is called its base domain; (ii) the individual relations of

φ on Xn are Fn := {(x, φ(n+1, n, x)) : x ∈ Xn}; (iii) its base relation F̂ is the relation

on its base domain X̂ defined by F̂ = lim supn→∞ Fn := lim supn→∞{(x, φ(n +
1, n, x)) : x ∈ Xn}.

Proposition 2.2. Given a process φ on a compact X, an association {Xn} with

base domain X̂, and base relation F̂ , the following assertions hold: (i) X̂ and F̂ are
nonempty subsets of X and X ×X, respectively; (ii) given any neighborhood V ⊂ X

of X̂, every entire solution {ϑi ∈ Xi} is eventually contained in V , i.e., ∃ N such that

for all n ≥ N , ϑn ∈ V ; (iii) given any neighborhood H ⊂ X ×X of F̂ , and any entire
solution {ϑi ∈ Xi}, ∃ N such that for all n ≥ N , (vn, vn+1) ∈ H; (iv) if x ∈ Xn, then
Fn(x) is nonempty.

Proof. (i), (ii), and (iii) follow from the definition of lim sup of sets and noting
that X and X ×X are compact spaces. Statement (iv) follows from the definition of
Fn.

Having defined base relations from a process or NDEs, we study the dynamics of
such closed relations. One can define invariant sets, attractors, etc., as in the case of
maps. This is the content of the following subsection.

2.2. Asymptotic dynamics of closed relations. Researchers belonging to
different disciplines have contributed to the theory of iteration of maps for more than
a century. A far-reaching generalization of maps that has been considered is to iterate
relations. Closed relations on a compact space are set-valued dynamical systems
which are upper semicontinuous [1]. All the basics of topological dynamics (including
definitions of limit sets and attractors) of closed relations are well developed in Akin’s
book [1]. McGehee [15] and McGehee and Wiandt [16] provide a lucid development
of the same basic theory with different proofs. We recall some definitions from this
literature which will be useful to us.

We know that a relation F on a set X is a subset of X×X . The image of a point
under a relation F is defined as F (x) := {y : (x, y) ∈ F}. More generally, if S ⊂ X ,

F (S) := {y : (x, y) ∈ F, where x ∈ S}.
Recall that a map is a relation F with the additional property that, for every x ∈ X ,
there exists a unique y ∈ X satisfying (x, y) ∈ F . Since in general, F (x) is not
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necessarily a singleton but a subset of X , a relation can be treated as a set-valued
map. We point out that viewing relations as set-valued maps would not help us, hence
we treat relations as relations.

To obtain dynamics from a map, we iterate the map by self-compositions. To
iterate relations we have to compose them too, and a customary generalization of the
definition of composition of maps is the following.

Definition 2.8. If F and G are relations on X, then the composition of F with
G is the relation

G ◦ F ≡
{
(x, z) ∈ X ×X : ∃ y such that (x, y) ∈ F and (y, z) ∈ G

}
.

The relation obtained by an n-fold composition of a relation F with itself is
denoted by Fn. For a map, an orbit is the succession of images of a point. For a
relation, a point may have none or many image points. An orbit for a relation is one
of the possible successions of images.

Definition 2.9. A sequence {pi}i∈I is said to be an orbit of F if (pi, pi+1) ∈ F
for all i ∈ I, where I is a finite or infinite interval of Z (i.e., {pi} could be either a left-
(in)finite or a right-(in)finite or a bi-(in)finite sequence with every tuple (pi, pi+1) ∈
F ).

The analog of the inverse of a map is obtained for a relation by defining its
transpose.

Definition 2.10. If F is a relation on X, then its transpose F ∗ is defined by
F ∗ := {(y, x) : (x, y) ∈ F}.

A closed relation on X is a closed subset of X ×X . Closed relations have useful
properties: (i) the composition of two closed relations is closed; (ii) the transpose of a
closed relation is closed. Henceforth we consider only closed relations. Next, we recall
definitions pertinent to the asymptotic dynamics of closed relations. In particular, the
attractor and attractor block definitions below are centrally relevant for later usage.

For a continuous map h : X → X , we know that a set A ⊂ X is invariant
under h if h(A) = A. When X is compact, we know that for any set S the set
ω(S;h) := lim supn→∞ hn(S) is invariant under h. However, if F is a relation on X
and for S ⊂ X , the set lim supn→∞ Fn(S) is in general not invariant (see [15]) and
the ω-limit of S under a relation is slightly more technical [15].

If F is a relation on X , then a set K ⊂ X is called a confining set if F (K) ⊂ K.
It is intuitive to imagine that the iterates of S under F eventually enter one or more
confining sets when X is compact. We collect all such confining sets:

K(S ; F ) =

{
K : K is a closed confining set satisfying Fn(S) ⊂ K for some n ≥ 0

}
.

The ω-limit set of a set S under the relation F is then defined to be

ω(S ; F ) =
⋂

K(S ; F ).

It is verified in [15] that if F is a closed relation on a compact space X and if S ⊂
X , then ω(S ; F ) is a closed invariant set. Further, for a closed relation on a
compact space X the ω-limit set thus defined always enjoys these properties (see
[15]): (i) lim supn→∞ Fn(S) ⊂ ω(S ; F ); (ii) S′ ⊂ S =⇒ ω(S′ ; F ) ⊂ ω(S ; F );
(iii) H ⊂ F =⇒ ω(S ; H) ⊂ ω(S ; H); (iv) ω(S ; F ) = ω(Fn(S) ; F ); (v) if S is
closed and F (S) = S, then ω(S ; F ) = S.
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We next recall the definition of attractors and repellers for relations. Closely
related to the definition of an attractor is the definition of its dual repeller.

Definition 2.11. A set A ⊂ X is called an attractor for a relation F on X if
there exists a neighborhood U of A such that ω(U ; F ) = A. A set R ⊂ X is called a
repeller of F if there exists a neighborhood U of R such that ω(U ; F ∗) = R.

Every attractor has an attracting region called the basin. The basin of A is defined
as {x ∈ X : ω(x ; F ) ⊂ A}. For a closed relation F on a compact X , the basin of
an attractor A is always open in X and contains A. The set A∗ := (Basin(A))c is
called the dual repeller of A. It is verified in [1, 15] that A∗ is indeed a repeller of
F and hence the terminology “dual repeller.” Further if the closed relation were to
be the graph of a continuous map, then the attractor definition of the closed relation
coincides with that of a map (see [15] for details).

Closely related to the definition of an attractor is that of an attractor block which
is repeatedly recalled in this paper.

Definition 2.12. A set B is called an attractor block for F if F (B) ⊂ Int(B).
It may be noted that by the definition of an attractor block, it follows that if B is

an attractor block of F , so is B. Also, ω(B ; F ) has a simplification in Theorem 2.1
below. Theorem 2.1 is rephrased from [15, Theorem 7.2 and Corollary 7.5].

Theorem 2.1 (see [15]). If F is a closed relation on a compact space X, then
every attractor block B contains an attractor A of F , which is given by

A =

∞⋂
k=1

F k(B) = ω(B ; F ).

Conversely, if A is any attractor of F , then every neighborhood of A in X contains an
attractor block B such that B is also a neighborhood of A in X, and ω(B ; F ) = A.

It follows from Theorem 2.1 that every closed relation on a compact space has at
least one attractor. This follows from the fact that F (X) ⊂ X = Int(X). Also, the
intersection of any two attractors is another attractor [1]. The following fundamental
result connects the limit sets of an orbit of F to an attractor A and its dual repeller.

Theorem 2.2 (see [15]). If A is an attractor and if {pi}i∈Z is an orbit for a closed
relation on a compact space X, then at least one of the following holds: (i) {pi} ⊂ A or
{pi} ⊂ A∗; (ii) ω({pi}) ⊂ A and α({pi}) ⊂ A∗, where ω({pi}) :=

⋂
n≥0 {pk : k ≥ n}

and α({pi}) :=
⋂

n≤0 {pk : k ≤ n}.
An attractor A decomposes X into a disjoint union, X = A∪A∗ ∪Basin(A)−A.

The set Basin(A) − A is called the set of connecting orbits associated with A. The
Conley decomposition theorem (see [16]) stated in Theorem 1.1 tells us that the chain-
recurrent set CR(F ) (for the original definition and motivation of the chain-recurrent
set see [1, 16]) is the union of all its connecting orbits.

Proposition 2.3. If an attractor A is not entirely contained in CR(F ), then
there exists a nonempty attractor A0 � A.

Proof. If A � CR(F ), then by the Conley decomposition theorem, there exists a
point x ∈ A such that x ∈ Basin(A0)−A0 for some attractor A0. Hence ω(x ; F ) ⊂
A0. Moreover, since x ∈ A, ω(x ; F ) ⊂ A. Hence A0 ∩ A �= ∅. Since the intersection
of two attractors is also another attractor, we can suppose that A0 ⊂ A.

3. Uniform attractors for an NDE via closed relations. The aim of this
section is to prove the existence of uniform attractors for an NDE as stated in
Lemma 3.1 which will be later used in section 4. The premises that appear in
Lemma 3.1 may seem to be artificial, but it will be seen in section 4 that these
are satisfied to prove the main results of this paper.
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Given a process φ on X and an association {Xn}, we know from Definition 2.7

that the base relation F̂ is a closed relation on the base domain X̂ . Of course, F̂
is also a closed relation on X since X̂ ⊂ X . But from now on, we treat F̂ as a
closed relation on X̂ only. We endow X̂ with the subspace topology induced from
the topology on X . Hence (X̂, d) is a metric space, where d was a metric defined

on X . With that understanding, when the relation F̂ is involved, the definition of
closure or interior is in reference to the topology on X̂. Hence Int(X̂) = X̂, and the

attractors and repellers of F̂ are closed subsets of the subspace X̂ . Considering this
subspace topology neither offers us any advantage in this paper in proving our results,
nor complicates the proofs, but only keeps some of the intermediate lemmas valid for
any association instead of a natural association alone.

Given a process φ on X , an association {Xn}, and its base relation F̂ , we call an

attractor of the base relation F̂ a base attractor. Similarly, we call a repeller of F̂ a
base repeller. In the following, we denote the (Pompeiu–Hausdorff) Hausdorff metric
on the subsets of X by dH(A,B), i.e., dH(A,B) := max(dist(A,B), dist(B,A)).

Lemma 3.1. Let φ be a process on X with the natural association {Xn}, its base
domain X̂, and base relation F̂ . Then, if

(a) the process φ has equicontinuity, i.e., if for ε > 0 there exists a δ > 0 indepen-
dent of x and y such that d(x, y) < δ =⇒ d(φ(n + 1, n, x), φ(n+ 1, n, y)) < ε
for all n, and

(b) Xn ⊂ X̂ and Fn ⊂ F̂ for all n (where Fn is as defined in Definition 2.7), and
(c) for each Xn, there exists a subsequence {Xjk} of {Xn} such that dH(Xjk , Xn)

→ 0 as k → ∞, and
(d) C is a nonempty attractor of F̂ , and
(e) An := φ(n, n− 1, C ∩Xn−1),

then the following hold:
(i) An ⊂ C and An is nonempty for all n;
(ii) {An} is a local +invariant uniform attractor w.r.t. the association {Xn},

i.e., it is simultaneously both a local +invariant uniform pullback attractor
and local +invariant uniform forward attractor;

(iii) given any entire solution {ϑn} then at least one of these holds: (iiia) {ϑn} ⊂
C; (iiib) the ω-limit set of {ϑn} ⊂ C and the α-limit set of {ϑn} ⊂ C∗; (iiic)
{ϑn} ⊂ C∗, where C∗ is the dual repeller of C. In particular, if (iiia) or (iiib)
holds, limn→∞ dist(ϑn, An) = 0;

(iv) there exists a local pullback attractor {En} w.r.t. {Xn} such that En ⊂ An

for all n, and En is nonempty for all n.
The following lemmas prepare for the proof of Lemma 3.1.
Lemma 3.2. Let φ be a process on a compact space X with an association {Xn},

its base domain X̂, and base relation F̂ . Then (i) for every x ∈ X̂, F̂ (x) is nonempty;

(ii) F̂ is surjective, i.e., for every y ∈ X̂, there exists an x ∈ X̂ such that (x, y) ∈ F̂ ;

(iii) there exists an attractor of F̂ which contains the ω-limit set of any orbit {pi}
of F̂ .

Proof. (i) Let x ∈ X̂ . Since X̂ = lim supn→∞ Xn, there exists xnk
∈ Xnk

such
that xnk

→ x as k → ∞. Now consider a sequence {ynk
: ynk

∈ Fnk
(xnk

)}, where Fn

is as defined in Definition 2.7. Clearly, (xnk
, ynk

) ∈ Fnk
. Since F̂ = lim supn→∞ Fn

and X ×X is a compact space, every accumulation point of {(xnk
, ynk

)} (as k → ∞)

is contained in F̂ and is of the form (x, ∗), where ∗ is an accumulation point of {ynk
}.

As ∗ ∈ F̂ (x), F̂ (x) is nonempty.
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(ii) Let y ∈ X̂. Then there exists ynk
∈ Xnk

such that ynk
→ y as k → ∞.

Now, if ynk
∈ Xnk

, there exists xnk
∈ Xnk−1, such that (xnk

, ynk
) ∈ Fnk−1. Since

F̂ = lim supn→∞ Fn and X × X is compact, we have (∗, y) ∈ F̂ , where ∗ is an

accumulation point of {xnk
}. Such a ∗ belongs to X̂ since F̂ is a relation on X̂.

(iii) Statement (iii) follows from the fact that X̂ is an attractor block and ω(X̂, F̂ ) =

X̂ since F̂ is surjective. By Theorem 2.1, X̂ is an attractor, and as a trivial conse-
quence contains the ω-limit set of every orbit of F̂ .

Lemma 3.3. Let φ be a process on X, {Xn} its natural association with its base

domain X̂ and base relation F̂ . Suppose that Xn ⊂ X̂ and Fn ⊂ F̂ for all n, where
Fn is as defined in Definition 2.7. Then every entire solution of φ is an orbit of F̂ .
In general, for any set E ⊂ Xn, φ(n+ j, n, E) ⊂ F̂ j−1(E) for all j > 1.

Proof. Let {ϑi} be an entire solution. By statement (iii) of Lemma 2.2 we know
that ϑi ∈ Xi for all i. Since ϑn+1 = φ(n+1, n, ϑn), by definition of Fn, Fn(ϑn) = ϑn+1.

Hence (ϑn, ϑn+1) ∈ Fn. Since Fn ⊂ F̂ , we have (ϑn, ϑn+1) ∈ F̂ . This implies that {ϑi}
is an orbit of F̂ . By a similar argument, if E ⊂ Xn, φ(n + 1, n, E) ⊂ Fn(E) ⊂ F̂ (E)

which implies φ(n+ j, n, E) ⊂ F̂ j−1(E) for all j > 1.

Lemma 3.4. Let φ be a process on X, and let {Xn} be its natural association, X̂

its base domain, and F̂ its base relation w.r.t. {Xn}. Let C be a nonempty attractor

of F̂ . Suppose that for each Xn, there exists a subsequence {Xjk} of {Xn} such that
dH(Xjk , Xn) → 0 as k → ∞. Then Xn ∩ C �= ∅ for all n.

Proof. Suppose for some n0 it holds that Xn0 ∩ C = ∅. Noting C ⊂ X̂, by the

definition of X̂, for each x ∈ C, there exists a sequence xnk
∈ Xnk

such that xnk
→ x

as k → ∞. Hence every neighborhood of x ∈ C has a nonempty intersection with
some Xn. In particular, let B be an attractor block such that ω(B ; F̂ ) = C. Since
B contains a neighborhood of C (by Theorem 2.1), Xn ∩ B �= ∅ for some n. Since

Xn+j ⊂ F̂ j(Xn) by Lemma 3.3, and by definition of an attractor block, Xn+j ∩B �= ∅
for all j ≥ 1. Suppose that Xn ∩ B �= ∅, Xn ∩ C = ∅, and dist(C,Xn ∩ B) = 2ε > 0.

Let B′ be another attractor block such that ω(B′ ; F̂ ) = C such that dist(C,B′) <
ε. This implies dist(Xn,B

′) > ε and hence dH(Xn,B
′) > ε. As a consequence of

Theorem 2.1, there exists an integer K such that for all k ≥ K, Xn+k ∩ B′ �= ∅.
This implies dH(Xn+k, Xn) > ε for all k ≥ K since we had dH(Xn,B

′) > ε. This
contradicts the assumption that there exists a subsequence {Xjk} of {Xn} such that
dH(Xjk , Xn) → 0 as k → ∞. Hence Xn ∩ C �= ∅ and thus by definition of C and
Lemma 3.3, Xn+j ∩ C �= ∅. Since ∃ {Xik} such that dH(Xik , Xn0) → 0 as k → ∞, it
follows that Xn0 ∩ C �= ∅.

Proof of Lemma 3.1. Throughout, for the sake of brevity, when we mention a
φ-invariant or a φ +invariant attractor, it is understood that it is so always w.r.t. to
the natural association {Xn}.

(i) Suppose C is a nonempty attractor of F̂ . From Lemma 3.3, for any n, φ(n, n−
1, C ∩ Xn−1) ⊂ C. Hence An ⊂ C for all n. Suppose An0 = {∅} for some n0. The
definition of An ⇒ C ∩ Xn0−1 = ∅. This contradicts Lemma 3.4. Hence each An is
nonempty.

(ii) We now show that An := φ(n, n− 1, C ∩Xn−1) is a +invariant uniform local
pullback attractor assuming that φ has equicontinuity.

By the definition of an attractor block, and from Theorem 2.1 we can choose an
attractor block B of F̂ with the following properties: ω(B; F̂ ) =

⋂∞
j=1 F̂

j(B) = C; B

is closed in X̂, and we can choose η > 0 such that B contains Bη(C) ∩ X̂. Define the
set Bn, a closed subset of B, by Bn := B ∩Xn.
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Since Bη(C) ⊂ B and An ⊂ C for all n (by Lemma 3.3), we have

(10) B(n)
η (An) ⊂ B ∩Xn = Bn for all n.

Next, noting that φ(n, n− 1, C) ⊂ C (from Lemma 3.3) and φ(n, n− 1, Xn−1) = Xn

we check that {An} is φ +invariant by

φ(n+ 1, n, An) = φ(n+ 1, n, φ(n, n− 1, C ∩Xn−1))

⊂ φ(n+ 1, n, C ∩Xn)

= An+1.

Next, we verify the uniform attractive property. Fix ε > 0. Since φ has equicontinuity,
there exists a δ > 0 such that

(11) dist(φ(n+ 1, n, B
(n)
δ (E)) , φ(n+ 1, n, E)) < ε

for every nonempty set E ⊂ Xn and for all n.
Let Cδ denote Bδ(C), i.e., Cδ := {x ∈ X̂ : d(x,C) < δ}. Since ω(B; F̂ ) =⋂∞

j=1 F̂
j(B) = C, there exists an integer J such that F̂ j(B) ⊂ Cδ for all j > J . Now

if j − 1 ≥ J , for any n,

φ(n− 1, n− j,Bn−j)
Lemma 3.3⊂ F̂ j−1(B) ⊂ Cδ.

Also since φ(n− 1, n− j,Bn−j) ⊂ Xn−1, we have φ(n− 1, n− j,Bn−j) ⊂ Cδ ∩Xn−1.
Using this, we get

φ(n, n− j,Bn−j) = φ(n, n− 1, φ(n− 1, n− j,Bn−j))

⊂ φ(n, n− 1, Cδ ∩Xn−1).(12)

To prove that {An} is a +invariant uniform local pullback attractor, it is sufficient

to show that for all j ≥ J , supn dist(φ(n, n − j, B
(n−j)
η (An−j)), An) ≤ ε. Let j ≥ J .

Then for any n,

dist(φ(n, n− j,Bn−j), An) ≤ dist(φ(n, n− 1, Cδ ∩Xn−1), An) (due to (12))(13)

= dist(φ(n, n− 1, Cδ ∩Xn−1), φ(n, n− 1, C ∩Xn−1))(14)

< ε (due to (11)).(15)

Since by (10), B
(n−j)
η (An−j) ⊂ Bn−j for all j ≥ J , it holds that

sup
n

dist(φ(n, n− j, B(n−j)
η (An−j), An)) ≤ ε.

The proof that {An} is a +invariant uniform local forward attractor is similar:
by replacing n by n+ j in (13), and repeating the steps (13)–(15) we get for all j ≥ J ,

sup
n

dist(φ(n+ j, n,B(n)
η (An)) , An+j) ≤ ε.

(iii) By Lemma 3.3, {ϑn} is an orbit of F̂ as well. Applying Theorem 2.2 we have
(iiia), (iiib), and (iiic) of Lemma 3.1. Suppose (iiia) or (iiib) holds. We shall show that
dist(ϑn, An) → 0 as n → ∞. If (iiia) or (iiib) holds, then for all n sufficiently large,
ϑn ⊂ Bn since Bn contains Bη(C)∩Xn. Replacing n by n+j in (13)–(15) we arrive at

lim
j→∞

dist(φ(n+ j, n,Bn), An+j) = 0

for any n. Since ϑn ⊂ Bn, it directly follows that limj→∞ dist(ϑn+j , An+j) = 0.
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(iv) Define

(16) En :=

∞⋂
j=1

φ(n, n− j,Bn−j),

where Bn−j is is as above in the proof of (ii). We now claim that {En} is a local
pullback attractor such that En ⊂ An.

We first show that {Bn} is a φ +invariant set: φ(n+1, n,Bn) ⊂ F̂ (Bn) ⊂ Int(B).
But we also have φ(n + 1, n,Bn) ⊂ Xn+1. Hence φ(n+ 1, n,Bn) ⊂ Int(B) ∩Xn+1 ⊂
B ∩Xn+1 = Bn+1.

Since {Bn} is φ +invariant, we have φ(n, n− j,Bn−j) ⊃ φ(n, n − j − 1,Bn−j−1).
Hence

⋂∞
j=1 φ(n, n − j,Bn−j) is a nested intersection of closed subsets. Since φ

is continuous, applying (4), we have φ(n + 1, n, En) = En+1. Hence {En+1} is
φ-invariant.

Next we show that En ⊂ An. First we observe En ⊂ C since

En =

∞⋂
j=1

φ(n, n− j,Bn−j)
Lemma 3.3⊂

∞⋂
j=1

F̂ j(B) = C.

Now, En = φ(n, n− 1, En−1) = φ(n, n− 1, C ∩En−1) ⊂ φ(n, n− 1, C ∩Xn−1) = An.
Thus En ⊂ An.

Since En is obtained as an intersection of φ(n, n − j,Bn−j) over all j ≥ 1, by
definition of dist we have

lim
j→∞

dist(φ(n, n− j,Bn−j), En) = 0.

Also, in (10), we had Bn−j ⊃ B
(n−j)
η (An−j), and thus Bn−j ⊃ B

(n−j)
η (En−j). Using

this we get

lim
j→∞

dist(φ(n, n− j, B(n−j)
η (En−j)), En) = 0.

This proves {En} is a local pullback attractor.
Since An ⊂ Bn, each Bn is also nonempty. Thus

⋂∞
j=1 φ(n, n−j,Bn−j) is a nested

intersection of nonempty closed subsets, and since X is compact, En is nonempty for
all n.

4. Dynamical decomposition: Stationary input. In this section, we state
the first of the two main results of the paper in Theorem 4.1—this is a reformula-
tion of the results (i)–(iv) of Theorem 1.2. Lemmas 3.1 and 4.4 guide the proof of
Theorem 4.1.

Theorem 4.1. Let U be a complete metric space and ξn : Ω → U a stationary
process defined on a probability space (Ω,F , P ). Also, let g : U × X → X be any
uniformly continuous map, where X is a compact metric space and let g define an
RDE as in (1). Consider the set of all NDE on X obtained by gn,ω(·) := g(ξn(ω), ·),
and their corresponding processes φω, where ω ∈ Ω. For the process of {gn,ω}, let

{Xn(ω)} be its natural association, X̂(ω) its base domain, F̂ (ω) its base relation, and

C(ω) any nonempty base attractor, i.e., an attractor of F̂ (ω). Then there exists a set
Ω0 of probability 1 such that for all ω ∈ Ω0,

(i) every entire solution of φω is an orbit of F̂ (ω);
(ii) An(ω) := φω(n, n−1, C(ω)∩Xn−1(ω)) is a local +invariant uniform attractor

of φω w.r.t. {Xn(ω)} such that An(ω) �= ∅ for all n;
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(iii) given any entire solution {ϑn} of {gn,ω} and the base attractor C(ω), then
one of these hold: (iiia) {ϑn} ⊂ C(ω); (iiib) the ω-limit set of {ϑn} ⊂ C(ω)
and the α-limit set of {ϑn} ⊂ C∗(ω); (iiic) {ϑn} ⊂ C∗(ω), where C∗(ω)
is the dual repeller of C(ω). In particular, whenever (iiia) or (iiib) holds,
limn→∞ dist(ϑn, An(ω)) = 0;

(iv) there also exists a local pullback attractor {En(ω)} w.r.t. {Xn(ω)} such that
∅ �= En(ω) ⊂ An(ω) for all n;

(v) if C(ω) is not contained entirely in CR(F̂ (ω)), the chain-recurrent set of

F̂ (ω), then there exists at least one nonempty subattractor C0(ω) � C(ω) of

F̂ (ω).
In proving Theorem 4.1 we also lean on methods from ergodic theory (e.g., [11,

19]). We recall some relevant definitions.
A metric dynamical system is a quadruplet (Ω,F , μ, T ), where (Ω,F , μ) is a

measure space and T : Ω → Ω is a measurable map. A metric dynamical is said to
be a measure preserving dynamical system (MPDS) if μ(T−1(A)) = μ(A) for all A
in F . An MPDS (Ω,F , μ, T ) is said to be ergodic if T−1(A) = A for any A ∈ F
implies μ(A) = 0 or μ(A) = 1. An attribute of an MPDS is the notion of qualitative
recurrence. A point x ∈ Ω is said to be recurrent if there exists a subsequence {nk}
of natural numbers such that T nk(x) → x as k → ∞. We recall Poincaré’s recurrence
theorem in a modern formulation (e.g., [9]) to essentially point out that the set of all
recurrent points has full measure when the space is complete and separable:

Theorem 4.2. Let (Ω,F , μ, T ) be an MPDS, where μ(Ω) < ∞. Let E ∈ F and
μ(E) > 0. Then almost all points of E return infinitely often to E under positive
iteration of T , i.e., there exists a set E′ ⊂ E such that μ(E′) = μ(E) and for all
x ∈ E there exist integers 0 < n1 < n2 < · · · such that T nk(x) ∈ E′ for all k. Also,
if Ω is a complete separable metric space with metric d, we have

μ

({
x ∈ E : lim inf

n→∞ d(T n(x), x) = 0
})

= μ(E).

Let (Ω,F , P ) be a probability space and S a separable complete metric space.
Let BS denote the Borel sigma-field of S. Let {θn} be an S-valued stationary process.
Consider (S∞,B∞), where S∞ is the Cartesian product of a bi-infinite countable
number of copies of S and B∞ the sigma-field generated by the product topology
on S∞. For each ω ∈ Ω, there exists a ū = (. . . , u−1, u0, u1, . . .) ∈ S∞ such that
uk = θk(ω). The process θ = {θn} and P induce a measure μ on (S∞,B∞) defined
by μ(A) := P (θ−1(A)) for all A ∈ B∞. Moreover, by definition of μ it follows that
μ{ū : ∃ ω ∈ Ω such that uk = θk(ω) for all k} = 1. It is well known (e.g., [11]) that
{θn} is stationary if and only if (S∞,B∞, μ, σ) is an MPDS where σ is the map that
sends a point ū := (. . . , un−1, un, un+1, . . .) in S∞ to σ(ū) = (. . . , un, un+1, un+2, . . .).
In words, the map σ takes a sequence and shifts every symbol in the sequence one
slot to the left. The map σ is known as the bilateral shift since σ is a bijection. Also,
{θn} is ergodic if and only if the MPDS (S∞,B∞, μ, σ) is ergodic (e.g., [11]).

In proving Theorem 4.1, we deal with stochastic processes which are set valued.
To help us do that we set up some notation. When X is a metric space, we de-
note HX and HX×X to be the collection of all nonempty closed subsets of X and
X ×X , respectively. It is well known that whenever X is complete (compact), HX is
also a complete (compact) metric space under the Hausdorff metric dH(A,B).
Also, we make use of the equivalence dH(A,B) = max(dist(A,B), dist(B,A)) =
inf{ε : A ⊂ Bε(B) and B ⊂ Bε(A)}.
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Consider S−∞ to denote the Cartesian product of the left-infinite countable num-
ber copies of S and which will be equipped with the product topology. Then the
following simple result in Lemma 4.1 is a standard result (e.g., [11]).

Lemma 4.1. Let {θn}n∈Z be an S-valued stationary process with an MPDS
(S∞,B∞, μ, σ). Then

(i) {θ−n} is also stationary, and if {θn} is ergodic, then so is {θ−n};
(ii) if R is some measurable space, and

Θi(ω) := Φ(. . . , ξi−2(ω), ξi−1(ω)),

where Φ : S−∞ → R is a measurable function, then {Θn} is an R-valued
stationary process. Further if {θn} is ergodic, then so is {Θn}.

Lemma 4.2. Given g : U × X, let Xn and φω be functions of the U -valued
stochastic process {ξn} as specified in Theorem 4.1. Assuming Borel-sigma algebras
defined on HX and HX×X obtained by the Hausdorff distance, there exist measur-
able functions λ : U−∞ → HX and Λ : U−∞ → HX×X such that for all n, Xn(ω) =
λ(. . . , ξn−2(ω), ξn−1(ω)) and Fn(ω) = Λ(. . . , ξn−2(ω), ξn−1(ω)), where Fn(ω) =
{(x, φω(n+ 1, n, x) : x ∈ Xn(ω)} is the relation on Xn(ω).

Proof. We will exhibit the existence of a measurable function λ : U−∞ → HX such
that Xn(ω) = λ(. . . , ξn−2(ω), ξn−1(ω)). The proof of the existence of a measurable
Λ : U−∞ → HX×X such that Fn = Λ(. . . , ξn−2(ω), ξn−1(ω)) is similar.

For the U -valued stationary process {ξn}, let its MPDS be denoted by (U∞,B∞, μ, σ).
Given any pair i, n ∈ Z such that n > i, we define hn,i : U

∞ → HX by

hn,i(ū) := gn−1 ◦ · · · ◦ gi+1 ◦ gi(X),

where ū = (. . . , u−1, u0, u1, . . .) ∈ U∞, gm : X → X is defined by gm := g(um, ·), the
map g : U ×X → X being as in Theorem 4.1.

Let dU denote some metric on U that gives rise to B. Then d′U := min(1, dU )

also generates B. Let d∞(ū, v̄) :=
∑∞

i=−∞
d′
U (ui,vi)

2|i|+1 be the metric on U∞. It may
be verified that d∞ generates the product topology on U∞. We now claim that
hn,i : U∞ → HX is a continuous map for each n and i. To show this let {ūk} be
any sequence such that ūk → ū as k → ∞. We will show that hn,i is continuous by
proving hn,i(ūk) → hn,i(ū) as k → ∞.

Let ūk = (. . . , uk
−1, u

k
0 , u

k
1 , . . .). Hence hn,i(ūk) = g

[k]
n−1 ◦ · · ·◦ g[k]k+1 ◦ g[k]i (X), where

g
[k]
m := g(uk

m, ·). Since g : U × X → X is continuous, it follows from the continuity
argument that given any ε there exists a δ > 0 such that

dU (um, uk
m) < δ for all n ≤ m ≤ i ⇒ d

(
gn−1 ◦ · · · ◦ gi(x) , g[k]n−1 ◦ · · · ◦ g[k]i (x)

)
< ε

⇒ hn,i(ūk)⊂Bε(hn,i(ū)) and hn,i(ū)⊂Bε(hn,i(ūk))(17)

⇒ dH(hn,i(ū), hn,i(ūk)) < ε.(18)

Since ūk → ū as k → ∞, we can find an integerK such that for all k ≥ K, d∞(ū, ūk) <
δ

2n−i holds. This implies dU (um, uk
m) < δ for all n ≤ m ≤ i. Hence for all k ≥ K from

(18), we have dH(hn,i(ū), hn,i(ūk)) < ε. Since ε was chosen arbitrarily, hn,i(ūk) →
hn,i(ū) as k → ∞. This implies that hn,i is continuous.

Define hn : U∞ → HX by

(19) hn(ū) :=

∞⋂
j=1

hn,n−j(ū).
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Since hn,n−j is continuous for any j ≥ 1, h−1
n,n−j(B) ∈ B∞ for any Borel subset B

contained in HX . This implies h−1
n (B) ∈ B∞ for any Borel subset B contained in HX .

This implies hn is measurable.
For each ω ∈ Ω, there exists a ūω such that uω

k = ξk(ω). Hence

Xn(ω)
by definition

=

∞⋂
j=1

φω(n, n− j,X)

=

∞⋂
j=1

g(ξn−1, ·) ◦ · · · ◦ g(ξn−j+1, ·) ◦ g(ξn−j , X)

=
∞⋂
j=1

hn,n−j(ū
ω)

= hn(ū
ω).

By the above deduction, it is also clear that hn(ū
ω) is actually a function of only

(. . . , ξn−2(ω), ξn−1(ω)) and does not depend on (ξn(ω), ξn+1(ω), . . .). Hence there
exists a function λ : U−∞ → HX such that λ(. . . , ξn−2(ω), ξn−1(ω)) = hn(ū

ω). Since
hn is measurable, so is λ.

Corollary 4.1. Let the random variables {Xn} and {Fn} be defined as in
Lemma 4.2. Then {Xn} and {Fn} are stationary (ergodic) if {ξn} is stationary (er-
godic).

Proof. Using the fact that a measurable function λ exists such that Xn(ω) =
λ(. . . , ξn−2(ω), ξn−1(ω)) and applying statement (ii) of Lemma 4.1, we get {Xn} is
stationary (ergodic) whenever {ξn} is stationary (ergodic). By similar arguments, if
{ξn} is stationary (ergodic), then {Fn} is stationary (ergodic).

Lemma 4.3. Let {θn} be a stationary process defined on (Ω,F , P ) taking values
in a separable complete metric space (S, dS). Then for any k ∈ Z, the following hold:

P

({
ω :

∞⋃
i=k

θi(ω) =

∞⋃
i=k+1

θi(ω)

})
= 1;(20)

P
({

ω : lim inf
n→∞ dS(θk(ω) , θk+n(ω)) = 0

})
= 1.(21)

Proof. Suppose that for some k and ω it holds that θk(ω) ⊂
⋂∞

i=k+1

⋃
n≥i θn(ω).

This implies θk(ω) ⊂
⋃∞

i=k+1 θi(ω) ⇒
⋃∞

i=k θi(ω) =
⋃∞

i=k+1 θi(ω).
Let (nj ↑) denote a strictly increasing subsequence of natural numbers; also for

shortness let the symbols “s.t.” stand for the phrase “such that.” Now, θk(ω) ⊂⋂∞
i=k+1

⋃
n≥i θn ⇔ there exists (nj ↑) such that limj→∞ d(θk(ω), θk+nj (ω)) = 0. So

to prove (20) it is enough to show

(22) P

({
ω : (nj(ω) ↑) s.t. lim

j→∞
d(θk(ω), θk+nj (ω)) = 0

})
= 1.

Let (S∞,B∞, μ, σ) be the MPDS corresponding to the process {θn}. If d′S :=

min(1, dS), then it may be verified that d∞(ū, v̄) :=
∑∞

i=−∞
d′
S(ui,vi)

2|i|+1 is a metric on
S∞ such that S∞ is a separable complete metric space (since S is separable complete).
To prevent cluttering of notation, denote E := S∞. By application of Poincaré’s
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recurrence theorem (Theorem 4.2), we have

(23) μ

({
ū ∈ E : lim inf

n→∞ d∞(σn(ū), ū) = 0
})

= μ(E) = 1.

This implies for almost all ū ∈ E w.r.t. μ, there exists a subsequence (nj(ū) ↑)
such that σnj (ū) is a Cauchy sequence and converges to ū. By the definition of
convergence in E, it follows that {uk+nj} is also a Cauchy sequence and converges to
uk. Hence,

(24) μ

(
{ū ∈ E : ∃ (nj(ū) ↑) s.t. lim

j→∞
dS(uk+nj , uk) = 0}

)
= μ(E) = 1.

Note that for almost all ū ∈ E w.r.t. μ, there exists a sequence {θn(ω)} such that
un = θn(ω) for all n. Also, since by definition μ(E) = P ((. . . , θ−1, θ0, θ1, . . .)

−1(E)),
(24) implies

(25) P

(
{ω : ∃(nj(ω) ↑) s.t. lim

j→∞
dS(θk+nj (ω), θk(ω)) = 0}

)
= 1.

This proves (22). Also, from (24), (21) follows.

Lemma 4.4. Let Xn(ω), X̂(ω), Fn(ω), and F̂ (ω) be as in Theorem 4.1. Then

(i) Xn(ω) ⊂ X̂(ω) for all n with probability 1;

(ii) Fn(ω) ⊂ F̂ (ω) for all n with probability 1.
Proof. We know {Xi} is a stationary process taking values in HX from Corol-

lary 4.1. The space HX is compact since X is compact and hence is complete and
separable. From Lemma 4.3, we have

P

⎛⎝⎧⎨⎩ω :

∞⋃
i=n

Xi(ω) =

∞⋃
i=j

Xi(ω)

⎫⎬⎭
⎞⎠ = 1

for any n, j ∈ Z. By definition of lim sup, we have
⋃

i≥j Xi(ω) =
⋃

i≥j Xi(ω) ∪
lim supj→∞ Xj(ω). Using this and lim supj→∞ Xj(ω) = X̂(ω) in the above expression,

P

⎛⎝⎧⎨⎩ω :

∞⋃
i=n

Xi(ω) =

∞⋃
i=j

Xi(ω) ∪ X̂(ω)

⎫⎬⎭
⎞⎠ = 1

for any n, j ∈ Z. Hence for any given n, and all j,

(26) P

⎛⎝⎧⎨⎩ω : Xn(ω) ⊂
∞⋃
i=j

Xi(ω) ∪ X̂(ω)

⎫⎬⎭
⎞⎠ = 1.

Now to arrive at (i) we use the fact that (26) holds for any j. Fix any ω where the set
inclusion in (26) holds. Suppose there exists an integer J such thatXn(ω) �= Xi(ω) for
all i ≥ J . By setting j = J in (26), if the set inclusion in (26) were to hold for any ω,

then one should have Xn(ω) ⊂ X̂(ω). Suppose if there exists no such J , then clearly
Xn(ω) repeats infinitely often in the sequence {Xi(ω)}i≥0. This then would imply

that Xn(ω) ⊂ X̂(ω). From these arguments (26) implies P ({ω : Xn(ω) ⊂ X̂(ω)}) = 1.
This proves (i). We know {Fn} is also a stationary process from Corollary 4.1. The
proof of (ii) follows from identical arguments made in the proof of (i).
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Proof of Theorem 4.1. Since g is uniformly continuous, and φω(n + 1, n, ·) =
g(ξn(ω), ·) it follows that the process φω has equicontinuity for all ω ∈ Ω. Further by

Lemma 4.4, Xn(ω) ⊂ X̂(ω) for all n and Fn(ω) ⊂ F̂ (ω) for all n with probability 1.
Lemmas 3.3 and 4.4 together imply statement (i) of Theorem 4.1 holds for all ω
belonging to a set of probability 1. From Lemma 4.4 and (21), we can also find subset
of Ω of probability 1 such that the process φω satisfies the hypotheses (a), (b), and
(c) of Lemma 3.1. The statements (ii), (iii), and (iv) of Theorem 4.1 follow from
applying Lemma 3.1 for each such process φω. Statement (v) follows from Proposi-
tion 2.3.

5. Deterministic base relation: Ergodic input. We consider (1) with {ξn}
as an ergodic process in this section, and prove in Theorem 5.1 the result that is
essentially in (v) of Theorem 1.2. The reader may note that it is just not enough to
show that the base relation is alone identical with probability 1 in Theorem 5.1, since
we had assumed that subspace topology on the base domain.

Theorem 5.1. Let U be a complete metric space and ξn : Ω → U a stationary
process defined on a probability space (Ω,F , P ). Also, let g : U ×X be any continuous
map, where X is a compact metric space and let g define an RDE as in (1). Consider
the set of all NDEs on X obtained by gn,ω(·) := g(ξn(ω), ·), where ω ∈ Ω. Now, if

(a) {Xn(ω)} is the natural association of {gn,ω(·)}, and
(b) ξn is an ergodic process,

then there exist a set X̃ ⊂ X and a relation F̃ ⊂ X̃ × X̃ such that for all ω belonging
to a set of probability 1,

(i) the base domain X̂(ω) = X̃, and

(ii) the base relation F̂ (ω) = F̃ .
Lemma 5.1 provides an alternative representation of the base domain and a base

repeller to that made in Definition 2.7.
Lemma 5.1. Let φ be a process on a compact space X, {Xn} its natural associ-

ation, X̂ its base domain, and F̂ its base relation. Define the function Yφ : Z → 2X

by

Yφ(k) := lim sup
j≥k, j→∞

φ(j, k,X)

and hφ : Z → 2X×X by

hφ(k) := lim sup
j≥k, j→∞

{(x, φ(j + 1, j, x)) : x ∈ Xj,k},

where Xj,k = φ(j, k,X). Then
(a) Yφ(k) ∈ HX and Yφ(k) ⊂ Yφ(k + 1) for all k, and

(27) X̂ =
⋂
n

Yφ(n);

(b) hφ(k) ∈ HX×X and hφ(k) ⊂ hφ(k + 1) for all k, and

(28) F̂ =
⋂
n

hφ(n).

Proof. (i) Fix any k. Clearly, from the definition of φ, the set φ(j, k,X) is
nonempty for all j ≥ k. Since X is compact Yφ(k) is nonempty for all k. By definition
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of lim sup of sets, Yφ(k) is closed in X . Also, φ(j, k+1, X) ⊃ φ(j, k,X) for all j ≥ k+1.
By taking lim sup, Yφ(k) ⊂ Yφ(k + 1).

We now prove (27). We show ⊂ in (27). Since {Xn} is an association, Xj =
φ(j, k,Xk) ⊂ φ(j, k,X) for any k ≤ j. Hence

lim sup
j≥k, j→∞

Xj ⊂ lim sup
j≥k, j→∞

φ(j, k,X).

Thus X̂ ⊂ Yφ(k) which proves ⊂ in (27).
We now show ⊃ in (27). It follows directly from the definition of lim sup that

for any two sequences of sets {Ej,1} and {Ej,2}, lim supj→∞ Ej,1 ∩ lim supj→∞ Ej,2 ⊃
lim supj→∞(Ej,1 ∩ Ej,2). This also holds for countable intersections, i.e.,

(29) lim sup
j→∞

Ej,1 ∩ lim sup
j→∞

Ej,2 ∩ · · · ⊃ lim sup
j→∞

(Ej,1 ∩ Ej,2 ∩ · · · ).

Applying this, we have⋂
k

Yφ(k) =
⋂
k

lim sup
j≥k, j→∞

φ(j, k,X)
(29)⊃ lim sup

j→∞

⋂
k≤j

φ(j, k,X)

= lim sup
j→∞

Xj .

(ii) The idea is the same as in the proof of (i). We provide the essential steps.
The fact that Xj,k is nonempty for all j ≥ k and that since X ×X is compact, the
lim sup in the definition of hφ(k) ensures hφ(k) is nonempty.

Since Xj,k ⊂ Xj,k+1 for all j ≥ k + 1, we have {(x, φ(j + 1, j, x)) : x ∈ Xj,k} ⊂
{(x, φ(j + 1, j, x)) : x ∈ Xj,k+1} for all j ≥ k + 1. Taking lim sup gives hφ(k) ⊂
hφ(k + 1). We now show ⊂ in (28). Recall that F̂ = lim supj→∞{(x, φω(j + 1, j, x)) :

x ∈ Xj}. Since Xj ⊂ Xj,k for any k ≤ j, we have F̂ ⊂ hφ(k) for all k. Hence ⊂ in
(28) holds.

We now show ⊃ in (28). Recalling the definition of ĥk(ω),⋂
k

hφ(k) =
⋂
k

lim sup
j≥k, j→∞

{(x, φ(j + 1, j, x)) : x ∈ Xj,k}

(29)⊃ lim sup
j→∞

⋂
k≤j

{(x, φ(j + 1, j, x)) : x ∈ Xj,k}

= lim sup
j→∞

{(x, φ(j + 1, j, x)) : x ∈ Xj}

= F̂ .

Lemma 5.2. Let Yφω(k) := lim supj≥k, j→∞ φω(j, k,X) and hφω(k) :=
lim supj≥k, j→∞{(x, φω(j + 1, j, x)) : x ∈ Xj,k(ω)}, where Xj,k(ω) = φω(j, k,X).

Then Yφ(k) : Ω → HX and hφ(k) : Ω → HX×X is measurable for each k.
Proof. The proof is similar to that of Lemma 4.2.
Lemma 5.3. If ξn in Theorem 5.1 is ergodic, then {Yφω(k)} and {hφω(k)} are

HX and HX×X valued ergodic processes.
Proof. The proof is similar to that of Corollary 4.1.
Lemma 5.4 (see [11]). If T : X → X is a measure-preserving transformation of

the probability space (X,B,m), then the following statements are equivalent:
(i) T is ergodic;
(ii) for every A ∈ B with m(A) > 0 we have m(

⋃
n=1 T

−n(A)) = 1.
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Lemma 5.5. Consider the random variables Yφ(k) and hφ(k) defined in Lemma 5.2.

Then there exist closed Borel subsets X̃ ⊂ X and F̃ ⊂ X ×X, such that Yφω (k) = X̃

and hφω (k) = F̃ for all ω belonging to a set of probability 1 and for all k.
Proof. From Lemma 5.3, Y = {Yφ(k)} is an ergodic process and hence a sta-

tionary process. Let the corresponding MPDS be (H∞
X ,B∞, PY , σ), with its different

constituents taking the same fixed semantics in the standard way of obtaining an
MPDS from a stationary process.

We now claim that there exists a Borel subset X̃ of HX such that Yφω (k) = X̃ for
all ω belonging to a set of probability 1 and for all k. Assume this were not true, i.e.,
assume that there exists no Borel subset X̃ of HX such that P ({ω : Yφω (k) = X̃∀k}) =
1. Then we can find a Borel subset A of HX such that 0 < P ({ω : Yφω (k) ⊂ A∀k}) < 1
and 0 < P ({ω : Yφω(k) ⊂ Ac ∀k}) < 1. Consider the cylinder set B ∈ B∞ defined by:

B := (· · · × HX ×A× HX × · · · )
with A in the k0th position. By definition PY (·) = P (Y −1(·)). Hence PY (B) =
P ({ω : Yφω (k0) ⊂ A}) and thus 0 < PY (B) < 1.

Let p̄ ∈ H∞
X be denoted by p̄ = (·, p−1, p0, p1, . . .). Define the subset E ⊂ H∞

X such
that E := {p̄ : ∃ no ω s.t. Yφω (k) = pk ∀k}. By the definition of PY in the MPDS,
PY (E) = 0.

Denote B′ := B ∩ Ec. Now, since 0 < PY (B) < 1 and PY (E) = 0, we have
0 < PY (B

′) < 1. By the definition of B′, for each p̄ ∈ B′, there exists ω ∈ Ω such
that pk = Yφω(k) for all k. But Yφω (k) ⊂ Yφω (k + 1) from Lemma 5.1 for any ω and
any k. Hence pk ⊂ pk+1 for all k. This implies that σ(p̄) ⊃ p̄, where σ is the left shift
map on H∞

X . In other words, σ−1(ū) ⊂ ū. Thus σ−1(B′) ⊂ B′. Since σ−1(B′) ⊂ B′,
we have

⋃∞
n=1 σ

−n(B′) ⊂ B′. Applying Lemma 5.4 we have PY (
⋃∞

n=1 σ
−n(B′)) = 1.

Since
⋃∞

n=1 σ
−n(B′) ⊂ B′, PY (B

′) = 1. This is a contradiction. Hence there exists a

Borel subset X̃ of HX such that P ({ω : Yφω (k) = X̃ ∀k}) = 1.

The proof that there exists a Borel subset F̃ of HX×X such that

P ({ω : hφω (k) = F̃ ∀k}) = 1

is similar.
Proof of Theorem 5.1. Let Yφω (k) = lim supj≥k, j→∞ φω(j, k,X) and hφω (k) =

lim supj≥k, j→∞{(x, φω(j + 1, j, x)) : x ∈ Xj,k(ω)}, where Xj,k(ω) = φω(j, k,X).
Applying Lemma 5.1 to each ω we have

(30) X̂(ω) =
⋂
k

Yφω(k) and F̂ (ω) =
⋂
k

hφω(k).

By Lemma 5.5, we obtain
⋂

k Yφω (k) = X̃ and
⋂

k hφω(k) = F̃ , where X̃ ∈ HX and

F̃ ∈ HX×X for all ω with probability 1. Using this in (30), we obtain (i) and (ii) of
Theorem 5.1.

6. Discussion. The highlight of this paper is in the identification of autonomous
subsets of the phase space in which were found various nonautonomous attractors of
an NDE generated by a typical ω of the RDE in (1). This was done via remodeling the
NDE via a closed relation. In particular, when {ξn} is ergodic, we obtain the typical
base relation as a remodel of the entire RDE since all typical realizations of {ξn} yield
an identical base relation (Theorem 5.1). In that case all the interesting dynamics of
the RDE would be contained in the chain-recurrent set of the typical base relation
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Table 1

A comparison of attractor concepts.

Crauel, Duc, and
Siegmund [7]

Liu [13] Our paper

Scope random flows semiflows in continu-
ous time

continuous random flows and
semiflows in discrete time with
stationary noise (input)

Convergence in probability almost surely almost surely
Pullback attrac-
tor’s nature

invariant +invariant both types, +invariant and in-
variant

Uniformity of at-
tractors

not known not known +invariant attractor is uniform

(due to (iv) of Theorem 1.2). Thus, effectively, there is a deterministic autonomous
subset which captures all the interesting dynamics of an RDE with an ergodic input.
Based on nonautonomous attractors, we undertake a conceptual comparison of the
attractors proven here with that available in the literature. The attractors defined in
our work add to the already available list of nonequivalent definitions [18] of random
attractors. Table 1 offers a quick comparison of only some core properties of known
local attractor concepts, but it ignores comparison between other fine properties. To
conclude, we hint on the potential usage of our closed relations approach. We restrict
ourselves to the case where the stochastic input in the RDE is from an ergodic source
and use the typical base relation for explanation. With an elementary application
of an ergodic theorem like the Birkhoff’s ergodic theorem, one can easily show that
{(ϑi, ϑi+1) : i ∈ N and {ϑn} is an entire solution of {gn,ω}}, the subset of X × X is
in fact the typical base relation for almost all realizations of ω. Thus, whenever an
experimental time series is the only information of an RDE model available, it is
possible to get, from an ensemble of a finite length time series, an estimate of the
typical base relation. Once the typical base relation is estimated, simple heuristic
algorithms on a computer can even be designed to find rough estimates of attractor
blocks (owing to their simple definition) of a relation provided the dimension of X is
within the reach of computing power. Keeping in mind that there exists an attractor
in every attractor block and every neighborhood of any attractor of a closed relation
contains an attractor block, a rough estimate of the attractor itself can be obtained
by attempting to find smaller attractor blocks. Since, from the typical base-relation
estimate, the estimate of the transpose of the base relation is easily obtained, the
base repellers of the typical base relation can also be estimated. These estimates of
attractors and repellers lead to a comprehensive picture of the dynamics owing to the
Conley decomposition theorem.

Acknowledgments. We are indebted to the authors of [10] for sharing a preprint
of their book. The authors would like to thank Peter Kloeden for reading a draft of
the manuscript and making many useful suggestions.
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