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Abstract

Echo State Networks (ESNs) is an approach to design and train recur-
rent neural networks in supervised learning tasks. An important objective
in many such tasks is to learn to exploit long-time dependencies in the pro-
cessed signals (“long short-term memory” performance). Here we expose
ESNs to a series of synthetic benchmark tasks that have been used in the
literature to study the learnability of long-range temporal dependencies.
This report provides all the detail necessary to replicate these experiments.
It is intended to serve as the technical companion to a journal submission
paper where the findings are analysed and compared to results obtained
elsewhere with other learning paradigms.

1 Introduction

Many tasks in signal processing, pattern recognition and control require dynamical
systems models whose output at some time is influenced by previous input. An
intrinsic property of recurrent neural networks (RNNs) is that they have memory.
The current network state is influenced by inputs which can date back consider-
able time. RNNs are thus a natural choice for modeling dynamical systems with
memory. However, it is not easy to achieve long memory spans when RNNs are
trained in a supervised fashion. There are currently three main approaches to
obtain this objective:
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e The Long short-term memory (LSTM) networks introduced by Hochreiter
and Schmidhuber [4] achieve long memory spans through the use of a spe-
cial kind of processing units whose activation decay can be controlled by
trainable gates. Training is usually done by gradient descent using the back-
propagation through time (BPTT) scheme [13].

e Echo State Networks (ESNs), introduced by Jaeger [5], can achieve long
memory spans by using large networks [6, 14, 2, 1] and/or by using versions
of leaky integrator neurons with long time constants [8, 15]. Training is done
in the reservoir computing paradigm [10, 9], i.e. only the weights of output
units are trained while the RNN itself is randomly created and not changed
by training.

e By very much refined second-order optimization methods, Martens and Sutskever
[11] have recently overcome the mathematical and algorithmic hurdles which
previously prevented heads-on, gradient-based optimization methods from
functioning in RNNs. Long memory spans are realized by generic sigmoid
unit networks which are “simply” trained on targets that incorporate long-
term memory effects.

In all of this work, the realized memory mechanisms are based on transient
(albeit slow) dynamics and decay with time. This should not be confounded
with other lines of research in RNN-based working memory mechanisms which are
based on the formation of attractors (e.g. [7, 12]). In this report I am exclusively
concerned with transient short-term memory.

In their original paper [4], Hochreiter and Schmidhuber designed a suite of
synthetic tasks which challenge several aspects of short-term memory in adjustable
and controllable ways. Most of these tasks have been repeated by Martens and
Sutskever in their article [11], albeit sometimes with minor modifications. Here
I give these tasks yet another go, using ESNs. The task versions employed by
Martens and Sutskever are used; where their paper does not supply enough detail
to reproduce the exact setup I asked the authors for clarifications.

The purpose of my investigation is not only to clarify what levels of perfor-
mance can be reached with ESNs, but also with what effort. It is a common ob-
servation in machine learning that given a task and a basic algorithmic approach,
the quality of the results depend very much on the experience and effort of the
engineer. Therefore I “simulated” three levels of effort/expertise, and carried out
learning experiments pretending to be operating within the options afforded by
the respective levels. Concretely, I simulated the following levels:

Blind: Out-of-the-box ESN learning, investing absolutely no insight into prob-
lem or data. Specifically, the input signals of a task are not individually
optimized.



Basic: Still out-of-the-box ESN learning, but being aware that different input
channels of the task have different functional roles and should be individually
optimized.

Smart: The structure of the RNN is optimized in a problem-specific way. This
requires experimentation and/or insight.

For each of the Hochreiter/Schmidhuber tasks that have been re-addressed by
Martens/Sutskever, this report provides (i) a detailed specification of the task, (ii)
a detailed description of how ESN training was configured to solve the respective
task, and (iii) a documentation of the results. In companionship with the original
Hochreiter /Schmidhuber and Martens/Sutskever papers, the material presented
here thus provides a basis for comparing essential aspects of the three approaches
that address training short-term memory in RNNs. This report however only
documents technical material. A comparative discussion is delegated to a separate
journal submission.

All experiments except the blind version of the “20-bit memory” task have
been carried out using Matlab (release R2008b for Macintosh) on a 2GHz Intel
Macintosh notebook computer with 2 GB RAM. The blind version of the “20-
bit memory” task, while just feasible on my notebook, led to time-consuming
paging, and was run on a more high-end 2.9 GHz PC with 8 GB RAM. The
Matlab code for all experiments is available at the author’s publications page
http://minds. jacobs-university.de/pubs.

The report is structured along the task suite in the same order as in [11]. After
a summary of the generic ESN training setup (Section 2), each task is documented
in a separate section.

2 Setting up ESNs for the Benchmark Tasks

First a note on terminology: task vs. experiment vs. trial vs. run. This report
documents ESN training and testing for a number of benchmark tasks, each of
which specifies a particular type of inputs and desired outputs. For each of these
tasks, I describe a learning experiment, which consists in a particular setup of an
ESN learner, repeated learning trials, and performance statistics across the trials.
Each trial in turn is specified by a fresh set of training and testing data and a fresh
random initialization of the ESN, which is then trained and tested on these data.
A run refers to a single presentation of an input sequence to the ESN, either in
training or testing.

I assume some familiarity with the principles of reservoir computing. For all
experiments reported here I use the same basic setup. The reservoir network
employs a version of leaky-integrator neurons and has the update equation

x(n+1) = (1 —a)x(n+ 1) + a tanh(W x(n) + W"u(n + 1)), (1)
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where x(n) € R¥ is the K-dimensional state vector at time n, « is the leaking
rate, W is the K x K matrix of reservoir connection weights, u(n) is the input at
time n, and for L-dimensional input W is the K x L sized input weight matrix.
The tanh nonlinearity is applied element-wise.

Since all tasks considered here process finite time series, time always starts at
n = 0, and the network state is initialized with a starting state x(0) which is the
same across all runs within one trial. In all experiments I used the all-zero state
for x(0).

The M-dimensional outputs are computed at times n > 0 by

y(n) = W x(n), (2)

where W°' is the M x K dimensional output weight matrix. Thus, the output
is a linear readout from the network state. According to the reservoir comput-
ing paradigm, only the readout weights are trained. The input weights and the
reservoir weights are created randomly and are not changed by training.

In each trial, the training data consist of N™" many input time series i, ..., 0 Ntrain
which have lengthes 7', ..., Tytrain. In most tasks the length is the same for all
input sequences. If that case, I refer to the unique sequence length as 7. Each
input series 11; is paired with a target output series y;. According to the nature of
the task, there are two variants:

e The task requires an output at every timestep. The length of a target output
series is then identical to the length of its associated input series. Since this
case occurs only with datasets where the inputs have a uniform length T,
the length T°" of the training output series is then uniformly 7°" = T

e The task requires an output only at the last timestep. The length of the
target series is then T°" = 1.

A trial unfolds in the following steps.

1. Data generation. A set of N input time series #i; and its associated target
outputs y; is synthesized, as well as a set of Nt many input-output pairings
for testing.

2. ESN generation. A reservoir weight matrix W and input weights W are
randomly created. In the “blind” and “basic” experiments, W is a sparse
matrix with on average 10 nonzero elements per row, at randomly chosen
positions. Its nonzero entries are first uniformly sampled from [—1, 1], then
the matrix is scaled to attain a spectral radius ¢ which is specific to an
experiment. In the “smart” condition, W is intelligently designed with the
goal to support “rich” dynamics. The input weights are always full matrices
which are created by first uniformly sampling entries from [—1,1]. Then
the columns of this raw input matrix are individually scaled with factors
o1, ...,0u specific to each experiment to obtain the final W™,



3. State and target harvesting. For each training input sequence u;, the reser-
voir is driven with it by using (1), which yields a state sequence (x;(1), ..., x;(T;))
(the initial state is not included). From these states, the 7°"* many ones that
are paired in time with target outputs are taken and appended to the right
as columns to a state collection matrix S. When all training input sequences
have been processed in this way, S has grown to size K x T°"t N*an ~ Similarly,

the associated target outputs of all runs are collected in a target collection
matrix T of size M x T°ut Ntrain,

4. Compute output weights. The output weights are now computed as the
linear regresssion weights of the targets on the states, by

Wout — ((ST)T TT)T, (3)

where -T denotes matrix transpose and - denotes the pseudo-inverse. In one
problem (the “blind” setup for the 20bit-memory task), very large reservoirs
became necessary. The pseudo-inverse algorithm then would exceed the
Matlab RAM capacity allocated on my notebook. In this case I resorted
to the numerically inferior, but more memory-economic regularized Wiener-
Hopf solution to compute the linear regression by

Wt = (SST +7°1)"' ST, (4)

The regularizer r was set as small as possible while still warranting numerical
stability.

5. Testing. The reservoir is then driven by the test sequences in a similar way

as it was during state harvesting. For each test run i, the outputs y;(n)
at the task-relevant output times were computed by (2). Depending on
the task, the relevant output times were either all times of the entire run,
or only the last timestep. The trained outputs y;(n) of the ith run were
then compared to the target outputs y;(n) by considering the absolute error
abs(yi(n) — yi(n)).
The benchmark tasks considered in this report come in two flavors. Some
of the tasks have real-valued output targets. For these tasks, the reference
paper [11] calls a run successful if the absolute error never exceeds 0.04 (for all
relevant times and output channels). Other tasks have binary output. Here
the success criterium for a run used in [11] is to call the run successful if,
per timestep, the maximal network output is obtained on the channel where
the target is 1. Out of programming laziness I adopted a slightly more
demanding criterium, by calling a run successful if the maximal absolute
error over all relevant times and output channels is smaller than 0.5.

Like the reference authors Martens and Sutskever I call a trial successful
when the failed runs make up for at most 1 percent.
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Per experiment, always hundred trials were carried out, each comprising 1000
runs on independently generated data (exception: the 5bit memory task, in which
there are only 32 possible different test sequences).

The setup of a trial is based on a number of global parameters:

1. the reservoir size K,
2. the spectral radius o,
3. the input weight scalings o4, ...,0,, and

4. the leaking rate a.

These parameters are identical across all trials of an experiment. They are
optimized by manual experimentation in explorative trials which I carried out
before settling on the final version of the experiments. My strategy here is to
use reduced-sized datasets and small reservoirs for this exploration. This leads
to fast processing times per trial (typcially less than 10 seconds), which enables
a high turnover rate. This manual exploration phase altogether typically took
less than half an hour per task (in the blind and basic conditions). The settings
of these globals are quite robust, without careful fine-tuning required for good
performance. An alternative is to employ automated search methods for this
optimization. The currently most high-end reservoir computing toolbox OGER
(“OrGanic Environment for Reservoir computing”, implemented in Python with
interfaces to many other neural toolboxes and Matlab, obtainable at organic.
elis.ugent.be/organic/engine) has a choice of sophisticated search methods
implemented. I personally prefer manual experimentation because for me it works
faster and yields insight into the dynamical characteristics of a task.

In the three “use-case type” conditions blind, basic, and smart 1 invested dif-
ferent degrees of effort in the optimization:

Blind: All input scalings were optimized together by a global scaling, that is,
input scalings were set to (oy,...,00) = o (1,...,1), and only the uniform
scaling o was optimized, along with K, o, and a. The optimization search
space is thus of dimension 4.

Basic: All parameters oy, ...,05, K, 0, @ were optimized, giving different inputs
the chance to impact on the reservoir by individual degrees. For high-
dimensional input this however quickly becomes infeasible both in manual
or automated search. Therefore, the inputs were grouped into subsets of
similar functional role, and the input scalings were optimized per group by
a group-uniform scaling. The basic condition poses higher requirements on
the user than the blind conditions in two ways. First, this grouping of inputs
requires an elementary insight into the nature of the task. Second, the num-
ber of optimization parameters increases, which makes the search for good
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values more demanding. In the experiments reported here, the inputs were
grouped in 2 or 3 groups depending on the task, leading to optimization
search spaces of dimensions 5 or 6.

Smart: Global parameters were treated as in the basic simulations. In addition,
the reservoir matrix W was structurally pre-configured with the aim to en-
dow it with a “rich” excitable dynamics.

3 The Addition Task

3.1 Task: Synopsis

In this task there are two input channels (L = 2). The first channel receives a
stream u;(n) of random reals sampled uniformly from [0, 1]. The second channel
receives zero input us(n) = 0 at all times except at two timesteps n; < ny when
ug(n1) = uz(ng) = 1. The objective is that at the end of a run (much later than
ny or ny), the network should output the normalized sum (u1(n1) +wui(n2))/2. An
additional difficulty is that the length of input sequences varies randomly.

3.2 Task: Detail

In the following let i[a, b] denote a random variable which uniformly samples from
the integers contained in the real interval [a, b].

Data. First a minimal length T for input sequences is fixed. To generate
an input sequence u; for training or testing, determine a random length T; =
i[To, 1.1 Ty] which may be up to 10% longer than 7y. Sample the two critical
input times n; = i[1,0.1 7], ny = i[0.17 4+ 1,0.5T]. Then generate a 2-dim input
series w; = (w(1),...,w(T;)), where u;(n) = [u1(n),us(n)] by filling the first
components u; with uniformly random reals from [0, 1], and setting all uy = 0
except at times ny, ny where it is set to 1. The single-channel target output at the
last timestep is y(7;) = (u1(n1) + u1(n2))/2.

Success criterium. A single run of a trained network is called successful if the
network output at time 7; does not absolutely differ from the target output by
more than 0.04. A trained network is called successful if the success rate of its
individual runs on random test sequences is at least 99%.

3.3 Experiment

This task turned out to be particularly easy, so I only ran the blind version. I chose
a minimal sequence length of Ty = 10,000. Each trial was based on N™" = 300
training sequences (the number of test sequences is always N** = 1000 throughout
all experiments documented in this report). Hundred trials were performed (again,
this is the same for all reported experiments).



Addition: parameters
| |
| | blind, T = 10,000 |

K 100

0 3

o 0.01
o 0.001
Ntrain 300

’ Addition: results

Mean CPU time (sec) 98
Mean abs output weight 1.6e+9
Mean abs train error 0.00016
Mean abs test error 0.00025
Max abs test error 0.0034
Nr failed trials 0

Table 1. Parameters and results of the addition task. For explanation see text.

The networks in this task were parametrized as shown in Table 3.3. A zero
starting vector x(0) was used. The manual optimization was done in a quick
fashion until zero error performance was achieved; further manual or automated
optimization would likely yet improve results. The results are summarized in Table
3.3.

The entries in Table 3.3 are to be understood as follows. Mean CPU time:
refers to the time used for steps 3 & 4 (cf. Section 2), i.e. state harvesting and
computing output weights by linear regression. Mean abs output weight: the mean
over all trials of the absolute values of the obtained output weights. Mean abs train
error: The mean over all runs and trials of the absolute output error of the trained
network, run on the training data. Mean abs test error: similar for the testing
errors. Maz abs test error: the maximum over all trials and runs of absolute test
output errors. Nr failed trials: how many learning trials failed according to the
trial success criterium “more than 1 percent of runs had absolute error greater
than 0.04”. In this experiment every single test run in every trial was successful
(because the Max abs test error was below 0.04).

Figure 1 shows the development of states in a typical run, and the maximal
(within a trial) absolute test errors encountered, plotted over all trials.

4 The Multiplication Task

4.1 Task

The multiplication task is defined entirely like the addition task, except that the
desired output at the last timestep is y(7;) = uj(ny) ui(n2). The success criterium
for runs and trials is the same as in the addition task.
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Figure 1: The addition task. Left: log2 of the maximum absolute test errors
obtained in the 100 trials, sorted. Right: traces of 8 reservoir units in a typical
run.

4.2 Experiments

Multiplication is “more nonlinear” than addition, and training became a bit more
challenging. I carried out four experiments, two under condition blind and two
under condition basic. In both conditions, one of the two experiments used a
minimal sequence length Ty = 200, which is the maximal length considered in
[11]. Given this sequence length, the reservoir size K was increased until very
good performance was achieved. Not surprisingly it turned out that the blind
condition led to a larger reservoir than the basic one. The other experiment under
the blind condition used T = 500, which turned out to require a reservoir size
of K = 1000. This complete experiment (100 trials, including testing) kept my
notebook busy for one night (runtime per trial about 6 minutes), which was the
maximum resource that I was willing to spend. Under the basic condition, a
sequence length Ty = 1000 was mastered with a reservoir size of K = 300.

The training data sizes were adjusted in the four experiments to warrant good
testing performance. When reservoirs are larger, larger training sets are necessary
to prevent overfitting. Since the results obtained were fully satisfactory, no further
smart condition experiments were undertaken.

Table 4.2 gives an overview of the parameters used, and the results obtained.
The input scaling parameters are given in this table as oy, 02, where the former
refers to the numerical payload input (multiplication candidates) and the latter
to the indicator input. In the blind condition both parameters were uniformly
optimized as (o1, 092) = o (1, 1), while in the basic condition they were individually
optimized. Figure 2 highlights the max abs error distribution across trials and
presents examplary reservoir state sequences.
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’ Multiplication: parameters

|
’ H blind | basic ‘
| | Ty =200 | Ty =500 | Ty = 200 | T, = 1000 |
K 300 1000 100 300
0 10 12 12 12
01,09 0.3,0.3 | 0.1,0.1 0.01, 1 0.01, 1
Q 0.0001 0.0003 0.00005 0.00002
Ntrain 1000 2000 1000 1000
’ Multiplication: results ‘
Mean CPU time (sec) 14 180 6.7 65
Mean abs output weight | 1.1e+9 9.7e8 2.4e+11 2.0ell
Mean abs train error 9.2e-5 0.0015 2.1e-4 1.9e-4
Mean abs test error 1.3e-4 0.0024 2.3e-4 2.3e-4
Max abs test error 0.0020 0.046 0.0034 0.0042
Nr failed trials 0 0 0 0

Table 2. Parameters and results of the multiplication task.

5 The XOR Task

5.1 Task

The XOR task is defined in close analogy to the addition and multiplication tasks,
except that the input signal w; is 0-1-binary (uniform random), and the target
output at the last timestep is y(7;) = XOR(u1(n1) u1(n2)). The success criterium
for runs is adapted to the binary nature of the task. A run is deemed successful
if the absolute output error at the last timestep is less than 0.5. Notice that
the model is simply trained with linear regression on real-valued targets 0 and 1.
Binary outputs could be then obtained by thresholding at 0.5, which is what this
success criterium amounts to. A trial is called a success if no more than 1 percent
of its test runs fail.

5.2 Experiment

This task again turned out quite easy, so only a single blind condition experiment
with Ty = 1000 was executed. Table 5.2 and Figure 3 present the settings and
findings.
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Figure 2: The multiplication task. Left: log2 of the maximum absolute test errors
obtained in the 100 trials, sorted. Right: traces of 8 reservoir units in a typical
run. From top to bottom: (i) condition blind, Ty = 200; (ii) blind, Ty = 500; (iii)
basic, Ty = 200; (iv) basic, Ty = 1000.

6 The 2-Symbol Temporal Order Task

6.1 Task

Synopsis. The reservoir is driven with a random distractor signal most of the
time, except at two random times T, 7Ty (where T} < T5), when the input is a
non-distractor event A or B. Which of the two events A or B is fed at time T} or
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’ XOR: parameters ‘
| | blind, T = 1000 |

K 100

0 2

o 3

o 0.00003
Ntrain 200

’ XOR: results

Mean CPU time (sec) 7.1
Mean abs output weight 3.3e8
Mean abs train error 7.8e-5
Mean abs test error 8.9e-5
Max abs test error 0.00097
Nr failed trials 0

Table 3. Parameters and results of the XOR task.
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Figure 3: The XOR task. Left: log2 of the maximum absolute test errors obtained
in the 100 trials, sorted. Right: traces of 8 reservoir units in a typical run.

T, is random, so there are four possible event orderings A-A, A-B, B-A, and B-B.
At the last timestep the output has to classify this order of occurrence, i.e. the
target output is a one-out-of-four choice.

Data, detail. The input in this task has six channels, the first four for the
distractor inputs and the last two for the critical events A and B. All runs have the
same duration T'. The critical event times T}, Ty are sampled from [0.17,0.27]
and ¢[0.57,0.6T]. To generate a task run input, at all timesteps except 17, T,
exactly one of the four distractor inputs is set to 1. At 77, channel 5 or channel 6
is randomly set to one; the same is done for time 75. There are four outputs. Only
at the last timestep n = T the network output is evaluated. The target output at
that time is one of the four possible indicator outputs (1,0,0,0),...,(0,0,0,1), in
agreement with the four possibilities of what the input at times 77,7, was.

Success criteria. This is a binary-value task. A test run of the trained network
is classified as success if none of the four outputs at time n = T differs from the
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’ 2-symbol temporal order: parameters

|

|

| blind, T =200 | basic, T = 1000 |

K 100 50
0 0.1 0.8
01,02 0.15 0.15 0.001 1.0
o 0.0001 0.001
Ntrain 500 200

’ 2-symbol temporal order: results
Mean CPU time (sec) 3.7 5.2
Mean abs output weight 3.5el0 3.6e6
Mean abs train error 0.00028 0.00029
Mean abs test error 0.00036 0.00039
Max abs test error 0.011 0.0066
Nr failed trials 0 0

Table 6.2 Parameters and results of the 2-symbol temporal order task. Notice
that in the blind conditions some runs failed (as can be seen from the max test
error) but their percentage was below 1% so the trials were counted as successes.

binary target value by more than 0.5. A trial is successful if no more than 1
percent of the test runs fails. In fact, in all trials all runs were successful.

6.2 Experiments

This task proved to be relatively easy, so I only ran a blind experiment for T =
200 and a basic one for T' = 1000. Quite small reservoirs of sizes 100 and 50,
respectively, were enough for perfect performance. In the basic condition, the four
distractors and the two “critical” channels were grouped for input scalings o1, 5.
Table 6.2 and Figure 4 summarize the parameters and outcomes.

7 The 3-Symbol Temporal Order Task

7.1 Task

The task is completely analogous to the 2-symbol temporal order task, except
that now there are three critical times (sampled from ¢[0.17,0.277, i[0.37,0.47]
and [0.67",0.77]) when one of the input channels 5 or 6 gets a randomly channel-
assigned 1 input. This makes for 8 possible orderings of events, which have to be
classified by the 8-channel output of the trained system at the last timestep.
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Figure 4: The 2-symbol temporal order task. Left: log2 of the maximum absolute
test errors obtained in the 100 trials, sorted. Right: traces of 8 reservoir units in
a typical run. Top: Condition blind, T' = 200; bottom: basic, T = 1000

’ 3-symbol temporal order: parameters ‘
| | blind, T = 200 | basic, T = 1000 |

K 500 100
0 1.3 0.8
01,02 0.008 0.008 0.001 1.0
« 0.003 0.001
Ntrain 2000 200
’ 3-symbol temporal order: results

Mean CPU time (sec) 47 6.5
Mean abs output weight 7.2e10 9.4e8
Mean abs train error 0.089 0.012
Mean abs test error 0.12 0.024
Max abs test error 1.26 0.32
Nr failed trials 0 0

Table 7.2 Parameters and results of the 3-symbol temporal order task.

7.2 Experiments

Again this proved rather easy, so I only carried out a single blind and a single
basic type experiment. Findings are given in Table 7.2 and Figure 5.
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Figure 5: The 3-symbol temporal order task. Left: log2 of the maximum absolute
test errors obtained in the 100 trials, sorted. Right: traces of 8 reservoir units in
a typical run. Top: Condition blind, T' = 200; bottom: basic, T = 1000

8 The Random Permutation Task

8.1 Task

The input in this task is 100-dimensional and binary. At each timestep, exactly one
of the 100 channels gets a 1 value, the others are zero; i.e. we have a 100-symbol
place coding. A run has length 7. At time 1, one of the first two channels is
randomly assigned to be 1. For the remaining time n = 2,...,7T', at each timestep
one of the 98 remaining channels is set to 1 in a random fashion.

The only relevant output is at the last timestep 7. At this last timestep, the
target output is a 100-dimensional binary vector which replicates the input vector
from time n = 1.

A run is successful if the output vector at n = T differs from the target vector
by no more than 0.5 in any component. A trial is successful if no more than 1
percent of its test runs fail.

In this task specification I follow Martens and Sutskever [11]. The original task
(Nr. 2b) in Hochreiter and Schmidhuber [4] differs in some non-crucial aspects
from the Martens and Sutskever version. Specifically, in the original version from
Hochreiter and Schmidhuber the runlength 7' is equal to the input dimension,
and the 98 distractor inputs which are then fed are a permutation of the possible
98 symbols (hence the name, “random permutation” task). When variable run-
lengthes are investigated (as in [11]) while the input dimension is kept constant,
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’ Random permutation: parameters ‘
| | blind, T = 1000 |

K 150
0 0.0 (1)
o 1
o 0.000001
Ntrain 500

’ Random permutation: results
Mean CPU time (sec) 24
Mean abs output weight 270
Mean abs train error 3.2e-16
Mean abs test error 3.6e-16
Max abs test error 1.2e-13
Nr failed trials 0

Table 8.2 Parameters and results of the random permutation task.

the permutation constraint must be replaced by a random presentation of the
distractors. Furthermore, Hochreiter and Schmidhuber call a run a success if the
absolute difference between outputs and targets is nowhere larger than 0.25.

8.2 Experiment

This proved a very simple task, even trivial in a revealing fashion. Thus I only
present a single blind experiment with 7" = 1000, but as will become clear, es-
sentially any runlength would be achievable. Findings are given in Table 8.2 and
Figure 6.

-42.5 12
10
8
5 -43
5 s
g g - i~
x —43.5 5
£ LY LY
‘}'5, S o
L2 44 _2
-4
-445 -6
0 20 40 60 80 100 0 200 400 600 800 1000
trials time (network updates)

Figure 6: The random permutation task, blind, T = 1000. Left: log2 of the
maximum absolute test errors obtained in the 100 trials, sorted. Right: traces of
8 reservoir units in a typical run.
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8.3 Discussion

An essentially zero test error was obtained with a spectral radius of 0.0, i.e. a
“reservoir” with all-zero connections, and a very small leaking rate, i.e. an extreme
degree of smoothing. This extreme configuration functions as follows. At each
timestep, the input connection weight vector corresponding to the input channel
that was 1 at that timestep is added to the network state. Due to the low leaking
rate, this additive contribution essentially remains there until the end of the run.
Thus, at the end of the run the network state x(7) is essentially the sum of
all the input weight vectors that have been activated by corresponding inputs
encountered during the run. The weight vectors for the 100 input channels have
been constructed as random vectors. The critical input in channels 1 or 2 given
at start time thus adds one of two unique random vectors to x(7"). If the network
size K is larger than the input dimension (such as here where K = 150 > 100 =
input dimension), generically these two critical weight vectors will be linearly
independent from each other and all the other 98 distractor weight vectors that
may appear as summands in x(7"). The linear regression computation of the
output weights thus just has to pick the projective component from the critical
weight vectors which is independent from all others, and transform it into a 1
value in the associated critical output channel.

Notably, this state of affairs was not transparent to me when I started opti-
mizing the global control parameters. I was however quickly guided to vanishingly
small values of the spectral radius, which then led me to the insight reported here
of why this task is essentially trivial.

9 The 5-Bit Memory Task

9.1 Task: Synopsis

At the beginning of each run, a 2-dimensional, 5-timestep memory pattern is
presented to the network. Then, for a period of duration T; — 1, a constant
distractor input is given. After this, i.e. at time 5 4+ T}, a cue signal is given as
a spike input, after which in the final 5 time steps, the memory pattern has to
be reproduced in the output units. In all preceding timesteps before this last 5-
step recall period, the output has to be a constant on anonther output channel,
signalling something like “still waiting for the cue for recall”.

9.2 Task: Detail

Data. The total length of a single run is 10 + 7. There are four binary input
channels and four binary output channels. The first two channels of each of the
inputs or outputs carries the memory pattern. The third channel in the input feeds
the distractor input. The fourth input channel carries the cue. In the output, the
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third output channel should signal the “waiting for recall cue” condition, and the
fourth is unused and should always be zero (this channel could just as well be
dropped but it is included in the original task specs, so I keep it).

Specificially, an input sequence is constructed as follows. First, all 4 x (10+1p)
inputs are initialized to zero. Then, for the first 5 timesteps, one of the first two
input channels is randomly set to 1. Note that there are altogether 2° = 32
possible input patterns, hence this task is named the 5-bit memory task. Then,
for timesteps 6 through 7y+4, the third input channel is set to 1 (distractor signal).
At time Ty + 5, the fourth input channel is set to 1 (cue). For the remaining times
from Ty + 6 to Ty + 10, the input is again set to 1 on the 3rd channel. Thus, at
every timestep exactly one of the four inputs is 1.

The target output is always zero on all channels, except for times 1 to Ty + 5,
where it is 1 on the 3rd channel, and for times T + 6 to the end where the input
memory pattern is repeated in the first two channels.

Notice that there are only 32 different sequences possible (given Tj).

Success criteria. A run is successful if at all timesteps and in all of the four
output channels, the absolute difference between the network output and the target
output is less than 0.5. A trial is successful if less than 1 percent of its runs
is successful. Since there are only 32 different sequences, this is equivalent to
requiring that all possible 32 test runs be successful.

9.3 Experiments

This task turned out more challenging than any of the preceding ones, so all
conditions blind, basic, and smart were demonstrated, in order to demonstrate
typical reservoir computing strategems when tackling a problem.

A peculiarity of this task is that there are only 32 different sequences available.
I trained and “tested” each model on all of these 32 sequences. Since everything
is deterministic, the training error equals the testing error, so a separate testing
phase was omitted. In the reference study [11], RNNs are trained iteratively
with randomly chosen input sequences. In the Ty = 200 version of this task (the
maximum length explored in that work), about 10 Mio randomly chosen sequences
were presented to the learning network. It is thus fair to assume that all possible
sequences were seen during training in almost exactly equal shares. In this sense,
my training setup which uses exactly these 32 sequences (and each of them once)
is comparable with the work in [11].

The following experiments were done:

1. Condition blind, Ty = 200. The blind setup rendered this task quite un-
wieldy, thus a quite large reservoir of size K = 2000 was needed to reach
perfect performance.

2. Condition basic, Ty = 200. Allowing the inputs to be scaled differently made
it possible to achieve reasonable performance with a much smaller reservoir
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5-bit Memory: parameters

blind basic basic smart smart
Ty = 200 Ty = 200 To =200 | Ty = 200 | Ty = 1000
K 2000 200 500 200 500
0 1 1 1 1 1
01,09,03 .01 .01 .01 | 2e-4 2e-6 2e-1 same same same
o 1 1 1 1 1
Ntrain 32 32 32 32 32
’ 5-bit Memory: results

Mean CPU 117 1.2 3.6 1.1 17.3
time (sec)
Mean abs 8.0e4 1.32e8 2.2e7 2.1eb 2.3e4
outweight
Mean abs .0050 .0013 9.6e-5 7.7e-b 8.7e-7
error
Max  abs 31 .80 .80 .039 .00044
error
Nr failed 0 13 1 0 0
trials

Table 4. Parameters and results of the 5-bit memory task.

of K = 200.

3. Condition basic, still Ty = 200, but using a larger reservoir of K = 500 led

to almost perfect performance.

4. Condition smart, Ty = 200: perfect performance was possible with a network

size K = 200.

5. Condition smart, Ty = 1000: perfect performance with K = 500.

Table 9.3 gives an overview of parameters and results of these five experiments.
In the basic and smart conditions, the four inputs were grouped in three groups,
with the two “memory payload” inputs lumped in one group and the remaining
two inputs in two further singleton groups. This led to three scaling parameters
o1 - (u1,uy), 09 - u3, 03 - Uy, — these three parameters are reported in the table. For

all basic and smart experiments, the same scalings were used.

9.4 Discussion

A number of phenomena that occurred in this interesting task deserve a little more

discussion.
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Figure 7: The 5-bit memory task. Left: log2 of the maximum absolute test errors
obtained in the 100 trials, sorted. Center: max absolute test error vs. average
absolute output weight size. Right: traces of 8 reservoir units in a typical run.
For the basic and smart conditions in rows 2-5, the state sequence is shown in
two parts in different scalings. From top to bottom: (i) condition blind, Ty = 200;
(ii) basic, Ty = 200, K = 200; (iii) basic, Ty = 200, K = 500; (iv) smart, Ty = 200;
(v) smart, Ty = 1000.
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Peak performance at unit spectral radius and unit leaking rate. The man-
ual optimization quickly revealed that performance in this task sharply peaks
when the spectral radius ¢ and the leaking rate v are both very close or iden-
tical to 1. A leaking rate &« = 1 means that the update equation (1) degener-
ates to a standard sigmoid-unit reservoir. With o = o = 1, reservoirs driven
by low-amplitude constant input will converge to a resting state extremely
slowly, and on this transient the state dynamics will exhibit a mixture of
decaying oscillations determined by the spectrum of complex eigenvalues of
W. This is clearly visible in the state sequences plotted in Figure 7 for the
basic and smart conditions, where the external input in the long interim dis-
tractor phase was scaled to a very low value of 2e-6. In the blind condition
(top row in this figure), the oscillatory component of the state dynamics is
overshadowed by the relatively large-amplitude distractor input which pulls
the states toward a nonzero fixed point attractor (which would be converged
to only long after the allotted runlength).

After witnessing this phenomenon in the basic condition, I was led to the in-
tuitive (but admittedly vague) understanding that the dynamical mechanism
which here “transports” the initial memory pattern information through the
distractor period might be based on phase and amplitude relationships of
the components of a frequency mix. I hypothesize that during the first five
timesteps, when the payload pattern is fed to the reservoir, the indigeneous
oscillation components of the reservoir (as determined by the complex eigen-
values of the weight matrix) are started off with a particular profile of phases
and amplitudes which is specific to the memory pattern. This profile would
then be carried through the distractor period by the undisturbed and almost
non-decaying oscillations of the p = @ = 1 dynamics, to be decoded during
the last five timesteps. It is interesting to note that the RNNs trained in
the reference work [11] likewise develop a mixture of high frequency oscil-
lations in successful training runs (as can be seen in the video available at
http://www.cs.utoronto.ca/~ilya/pubs/). If this hypothesis of coding
the memory pattern in oscillation relationships is true, it would explain the
peak in performance at p = a = 1. A value o < 1 would lead to a quick
attenuation of oscillations; a value o > 1 would lead to a quick expansion
of oscillation amplitudes, which would enter the nonlinear parts of the tanh
nonlinearity and lead to nonlinear confounding interactions between the os-
cillations; a value o < 1 would lead to a slowdown of oscillations on the one
hand (with likely detrimental effects on the decoding precision because we
need radically different decodings at each timestep), and furthermore o < 1
would attenuate oscillations if p = 1.

Informed design of reservoirs. Based on these intuitions, I created specially
designed reservoir matrices for the smart conditions, as follows. The ratio-
nale is to create reservoirs with a rich native mixture of oscillations. To
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this end, I first randomly chose a set of N°¢ period lengthes within a range
[Prins Pmax]. Concretely, this interval was first partitioned into N°€ subin-
tervals, from each of which one period length was uniformly sampled. This
resulted in a collection (py,...,pyosc) of desired periods for the oscillation
mix. Each of these periods was imprinted on a linear oscillator matrix

P - ( cos ¢; —sin ¢; )

sin ¢;  cos ¢;

where the rotation angle ¢; = p;/27. To create W of size K x K (where
K >> 2 N°€) these 2 x 2 rotation matrices were placed on the beginning
of the main diagonal of W. The remaining “bulk” matrix area (of size
K — 2N°¢ x K) below this upper block-diagonal submatrix assigned to
the oscillators was then sparsely filled with weights uniformly sampled from
[—1,1]. The sparsity was set to a value that on average every row received
10 nonzero entries. Finally, this raw matrix was scaled to the desired unit
spectral radius. When a reservoir based on a matrix of this type is run with a
small initial excitation, the oscillator submatrices will generate autonomous
oscillations which decay only very slowly (since we are in the almost linear
range of the tanh), and feed their oscillations forward into the remaining
“bulk” of the reservoir, yielding a rich mixture (in phase and amplitude) of
oscillations in the “bulk” units.

On a side note, having the oscillator-driven “bulk” part of the reservoir was
important. Reservoir matrices that were built entirely from oscillators on the
diagonal performed very poorly in this task (not documented here), much
worse than plain random reservoirs.

For the T, = 200, K = 200 experiment, I used N°¢ = 20 and [Pnin, Pmax] =
[2,8]. For the To = 1000, K = 500 experiment, I used N°¢ = 30 and
[Prins Pmax] = [2,10]. These were ad hoc settings with no optimization at-
tempted.

Effects of smart reservoir design. The benefits of the smart reservoir pre-
conditioning become apparent when one compares the performance of the
To = 200, K = 200 setup in the basic vs. the smart conditions (see Table
9.3 and Figure 7). The error distribution plots (left panels in the figure)
reveal that across the 100 trials, in the basic condition the log2 maximal ab-
solute test errors roughly range in [—12, —0.3], while with smart reservoirs
of the same size the range is [-11 — 5|. The high-error band from the ba-
sic condition is avoided in the smart experiment. Likewise instructive is an
inspection of the range of the log2 of learnt output weights, which is about
[15,30] vs. [14,21] in the two conditions (middle panels in the figure). Very
large output weights, such as the ones obtained in the basic case, indicate
that the solution-relevant components in the reservoir dynamics are strongly
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correlated, or stated the other way round, the lower output weights found
in the smart condition mean that the solution-relevant signal components
are better separated from each other (in the sense of being less correlated).
The middle panels in the figure also demonstrate that the model accuracy
is closely connected to the smallness of learnt ouput weights. The smart
reservoirs are superior to the basic ones in that they lead to a better direc-
tional separation of solution-relevant reservoir response signal components.
This is one of the many things that the reservoir parlance of “rich reservoir
dynamics” can mean.

Effects of very large reservoirs. The blind approach to this task was success-
ful with a rather large reservoir of K = 2000. One effect of largeness is
that random reservoirs will have less “individuality” than smaller ones; re-
peated trials with fresh reservoirs will yield more similar outcomes than
when small reservoirs are used. This becomes apparent in the top row of
Figure 7, which illustrates that the max error range and also the output
weight sizes are more narrowly distributed than in the other 5-bit experi-
ments that used smaller reservoirs. I refer the reader to recent theoretical
work [3] which unveils how with growing network size, reservoir systems con-
verge to infinite-dimensional recurrent kernel representations; in that work
it is also empirically demonstrated that with reservoir sizes of about 20,000,
the differences to infinite-dimensional “reservoirs” (which would all behave
identically) almost vanishes.

Outliers. In the basic condition with Ty = 200, K = 500, all but one trials were
successful, and indeed were so with log2 maximal absolute errors of at most
-4. However, there was one outlier reservoir with an extremely poor log2
error of about -0.3. This failing reservoir was parametrized in some “un-
lucky” way which exactly made it unsuitable for this task. This can always
happen in reservoir computing (unless one adequately pre-configures reser-
voirs, as in the smart conditions). On a related note, almost all sorted max
error distribution plots shown for the various experiments throughout this
report exhibit a mirrored-S curve shape, with an initial quick rise, followed
by a long and almost steady slope, followed by a terminal quicker rise. The
quick rises at the good and poor performance ends mean that with random
reservoir creation one sometimes — relatively rarely — stumbles across par-
ticularly good or exceptionally poor reservoirs. It would be interesting to
inspect similar performance distributions for gradient-trained RNNs, where
the training starts from different random parameter initializations. I would
expect to see similar phenomena of relatively rare cases of particularly good
or poor performance, and a similar weakening of this effect with growing
network size.

Linear vs. nonlinear behavior. In this task, the basic condition manual opti-
mization quickly and clearly led to very small input scalings except for the
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cue signal. The small input scalings for the memory payload and distractor
channels mean that the reservoir is essentially operating as a linear system
until the cue spike appears, when it is driven into the nonlinear range of the
tanh. The nonlinear behavior during the recall period appears to be impor-
tant. When experiments were run with linear reservoirs (not reported here),
performance was thoroughly poor. This task is dynamically interesting in
that it apparently benefits from linearity in its memorizing phase — which is
intuitively plausible — and nonlinearity in the decoding phase. Accordingly,
the best uniform input scaling found in the blind setup strikes a compromise
between linearity and nonlinearity.

Failing vs. successful trials. In the basic experiment with 7 = 200, K = 200
there were 13/100 failing trials. An inspection of the reservoir dynamics
dynamics revealed that a characteristic of failing trials was the absence of
oscillations in the distractor phase. Figure 8 contrasts the evolution of a
run in a failing trial with a run in a successful trial. This observation was
one of the reasons why I went for a reservoir pre-construction with built-in
oscillations in the smart setting.
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time (network updates) time (network updates)

Figure 8: A typical failing run (left) contrasted with a typical successful run (right)
in the 5-bit memory task.

10 The 20-Bit Memory Task

10.1 Task

This task is structurally identical to the 5-bit memory task, but now the memory
pattern is more complex. Instead of 2 binary “payload” channels there are 5,
and the length of the memory pattern is increased from 5 to 10. Again, at each
of the ten pattern timesteps, exactly one of the 5 channels is randomly set to 1.
This yields a set of 510 different possible patterns, which is a bit more than 20 bit
information per pattern and has given this task its accustomed name.

Again, in the interim period between the initial pattern presentation and the
recall, on channel 6 a distractor input is constantly set to 1. Then, at the last
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timestep before the desired recall, on channel 7 a single-timestep indicator signal
is given. During the following 10 steps of recall the input again is set to the
distractor. Thus there are 7 input channels. The length of the interim period is
Ty, which leads to a total length of a run of Ty + 20.

There are 7 output channels. The required output is a 1 on channel 6 for times
1 < n <Ty+ 10, followed by a repetition of the memory pattern on channels 1-5
in the last 10 timesteps. Channel 7 is again without function and must always be
zZero.

The success criteria for runs and trials are analogous to the 5-bit memory task.
A run is successful if at all timesteps and in all of the seven output channels, the
absolute difference between the network output and the target output is less than
0.5. A trial is successful if less than 1 percent of its test runs is successful.

10.2 Experiments

This task turned out to be the most difficult of all by far. The following experi-
ments were done:

1. Condition blind, Ty = 200. A very large reservoir of size 8,000 was found
necessary to give a reasonable performance. Since the RAM requirements of
the pseudoinverse computation exceeded the available resources, the linear
regression for the output weights was computed by the regularized Wiener-
Hopf solution (4), with a regularizer r? = le — 20 which was just big enough
to render the matrix inversion numerically reliable.

2. Condition basic, Ty = 200. A 2000-sized reservoir was now enough for very
good performance, using the pseudoinverse method for the linear regression.

3. Condition smart, Ty = 300. In order to demonstrate that reservoirs can
deliver memory spans beyond 200, another 2000-sized, “smartly” preconfig-
ured oscillator reservoir of similar makeup as in the 5-bit experiments was
employed. It was equipped with N°¢ = 50 oscillators whose periods ranged
in [2,10].

Given the slim RAM and time resources that I wanted to stay within (i.e. the
limits of a standalone notebook and at most minutes per trial), I could not venture
beyond Ty = 300.

Due to the large number of possible patterns, training and testing sequences
were randomly generated (different from the 5-bit task where all sequences could
be used for training = testing). I used 500 training sequences for all 20-bit exper-
iments.

In this task an output is required for every time step, that is, T°" = T, + 20,
and hence, the state collection matrix S (see Section 2) would grow to a very large
size, rendering the linear regression expensive. Note that this was not a problem
in the 5-bit case due to the small number of training sequences and smaller sizes of
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’ 20-bit Memory: parameters

blind basic smart

Ty = 200 Ty = 200 Ty, = 300
K 8000 2000 2000
0 1 1 1
01,09,03 le-7 1e-7 1le-7 | 1le-5 1e-6 1.0 same
« 1 1 1
Ntrain 500 500 500

’ 20-bit Memory: results

Mean CPU time (sec) 1700 313 121
Mean abs outweight 9.9e7 5.5eb 1.3e6
Mean abs train error | not computed 0.0010 0.00014
Mean abs test error 0.0080 0.00070 0.00010
Max abs test error 0.45 1.13 0.038
Nr failed trials 0 3 0

Table 5. Parameters and results of the 20-bit memory task. The CPU time for

the blind condition refers to a 2.9 GHz, 8 GB RAM PC.

reservoirs. In order to economize, from each training run I only kept 30 states from
the distractor period, discarding the remaining ones from the linear regression.
These 30 states were picked from a time interval that was cyclically shifted over
the interim period from run to run.

Table 10.2 and Figure 9 document the parameters and results.
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