
Jiwen Li, Herbert Jaeger

Minimal Energy Control of an ESN Pattern
Generator

Technical Report No. 26
February 2011

School of Engineering and Science

Minimal Energy Control of an ESN
Pattern Generator

Jiwen Li, Herbert Jaeger

Jacobs University Bremen
School of Engineering and Science
Campus Ring
28759 Bremen
Germany

E-Mail: {j.li, h.jaeger}@jacobs-university.de
http: // minds. jacobs-university. de

Abstract

In this report we present a method of adding a feedback control mecha-
nism to an echo state network (ESN) pattern generator in order to modulate
its output patterns with the purpose of tracking slowly varying control tar-
gets, e.g. shift, amplitude, or frequency of an oscillatory pattern. A proof-
of-principle case study is presented where a basic ESN is trained to produce
a stable sinewave oscillation with fixed shift, amplitude and frequency. With
the controller in place, the system demonstrates that the shift, amplitude
and frequency of the produced sine waveform can be modulated simultane-
ously by suitably generated slow varying control signals inserted into the
network. Furthermore, an equilibration procedure is introduced to relearn
ESN weights such that the equilibrated ESN pattern generator can approxi-
mately reproduce the reservoir dynamics across the controllable range, with
the feedback control loop switched off. As a result, when reconnecting the
feedback control loop to the equilibrated ESN, the energy of the control sig-
nals are many orders of magnitude smaller compared to the native system.

1 Introduction

Neural periodic pattern generators [2] are widely assumed to exist in animals,
serving a multitude of functions, from generating heartbeat to complex locomo-
tion patterns. The term central pattern generator (CPG) is commonly used for
such oscillator circuits, although the usage of this term is not clear-cut and, some-
what confusingly, also refers to neural pattern generators which are not located

http://minds.jacobs-university.de

“centrally” in the vertebrate spine or in central insect ganglions, but instead are
locally attached to their target organs, e.g. the heart or the stomach. Here we ab-
stractly consider only neural periodic pattern generators which indeed are located
centrally, participate in motor pattern generation, can be richly modulated from
higher up in the CNS hierarchy, and and can be shaped by learning [3]. The use
of the term, “central pattern generator”, should be unproblematic here.

Formal or computational models of modulatable CPGs often take the form of
ordinary differential equations (ODEs) describing the dynamics of a small number
of state variables, instantiating one of the standard nonlinear oscillator equations.
The modulation is then effected by regulating suitable control parameters in the
system equations. A typical example is the canonical nonlinear oscillation model
[4], which has the form of

ż = − µ

E0
(E − E0)z − k2u,

u̇ = z

and which shows a closed cyclic trajectory z2

2 + k2u2

2 = E0 (const) on the phase
plane. Here the parameter k corresponds to the frequency of the oscillator, and
E0 corresponds to the desired total energy and determines the amplitude of the
oscillation. µ determines the convergence rate to the limit cycle.

Mathematical/computational models of this kind may be appropriate for “low-
level”, simple and stereotyped periodic dynamics, and they may be realized in
animals by “hard-coded” neural circuits of small size, like in heartbeat [9] or the
well-known stomatogastric pattern generator [1]. However, it is less clear whether
such ODE-based, low-dimensional models can capture the nature of CPGs which
are assumed to reside in the vertebrate spine (or even higher levels of vertebrate
neural systems). First, these CPGs are constituted by a large number of neurons,
rendering these biological systems high-dimensional, at least in a formal sense.
Second, the modulations can often be adapted by learning along numerous con-
trol target dimensions, even dimensions not foreseen by evolution (e.g. a human
learning dance patterns). This “open-endedness” seems difficult to capture by
modulation mechanisms based on a limited number of specific control parameters
built into one of the classical, low-dimensional oscillator equations.

In this report we introduce a generic method which allows us to train a large
recurrent neural CPG network to become modulatable along control dimensions
which are not a priori limited in number or predetermined in character. Our
architecture is comprised of the following components.

• The core component is a discrete-time recurrent neural network (RNN) of
the “Echo State Network”(ESN) type [5, 8] with output feedback, with one
or several output nodes which are trained to generate a stable, periodic,

3

reservoir output patterns

Figure 1: The baseline periodic pattern generator, implemented by an ESN.

“baseline” pattern (see Figure 1). Following the tradition of reservoir com-
puting, we will call the “body” of this RNN (i.e., excluding the output units)
a reservoir. In formal terms, the dynamics embodied by this core system is
composed of one global periodic attractor.

• From this periodic output, arbitrary slow observables can be extracted, e.g.
shift (offset of the mean from zero), amplitude, or frequency. We call an
observable slow if its value changes on a timescale that is separated from
the baseline oscillation timescale by at least one base-10 order of magnitude.
How the observers for the slow observables are implemented is not a cru-
cial part of our model – any measurement subsystem which transforms an
oscillation into a slow observable can be used. This may range from simple
smoothing to frequency measurements to complex observables obtained by
involved mechanisms like slow feature analysis.

• The objective is to make any such slow observable controllable in the sense
of tracking control. That is, we assume that for each such slow observable,
a slow reference signal is given. Contrasting this reference with the slow
observable yields a likewise slow error signal.

• The error signal (a vector of slow errors, one per controlled observable) is
fed to a feedback controller C which issues a control input c(n) into the

4

reservoir. Concretely, it will turn out that c(n) may take the simple form of
a (slowly varying) bias vector added to the reservoir dynamics.

Furthermore, we introduce an equilibration method to “encode” the effect of
the feedback control mechanism mentioned above into the reservoir. This is done
by harvesting the control-input modulated reservoir dynamics and relearning the
reservoir weight W and feedback weight Wfb. By using these new weights, the
new network, which we call equilibrated, can approximately reproduce the reservoir
dynamics of the old network without using the control loop. Finally, by using these
new weights and the feedback control loop together, the same tracking control
tasks can be achieved using very small feedback control energy.

In the remainder of the report we use a step-by-step example to demonstrate
how a sinewave signal generator network can be obtained by ESN training (Section
2), and then subsequently be augmented by a feedback controller to become mod-
ulatable with respect to shift, amplitude, and frequency (Section 3). In Section 4
we explain the principle of equilibration, and demonstrate how it is implemented
in our example. Finally in section 5, we summarize our methods and architecture,
points out the current problems of the methods, and sketch the further research
we want to pursue.

targets:
Errors =

target ‐ observed
controller

Amp
Freq

Shiftobserved

reservoir output patterns

Amp
Freq

Shift

Figure 2: Overview of architecture. For explanation see text.

5

2 Training an ESN as a periodic oscillator

The proposed strategy to construct a modulatable ESN pattern generator proceeds
in two stages. In the first stage, an ESN with output feedback is trained, in the
standard reservoir computing way, to obtain a stable oscillator with fixed shift,
amplitude and frequency. In the second stage, a feedback tracking controller C
is trained and linked into the system. Throughout this technical report, we will
consider a single demo example with scalar output.

We consider a standard ESN with N reservoir units generating scalar output
y(n) and feeding it back to the reservoir:

x(n + 1) = tanh
(
Wx(n) + Wfby(n)

)
, (1)

y(n) = σ
(
Woutx(n)

)
, (2)

where W is the reservoir weight matrix (size N ×N), Wfb is the feedback weight
matrix (size 1 × N), Wout is the output weight matrix (size N × 1), and σ is
the logistic sigmoid σ(a) = 1/(1 + exp(−a)). Concretely, for our demo we choose
N = 400, construct W to have a connectivity of about 20%, scale it to a spectral
radius of 1.0, and sample the feedback weights Wfb from a uniform distribution
in [−0.5, 0.5]. These are ad-hoc settings. Throughout this report we assume that
the reader is familiar with the basic concepts of reservoir computing, and we will
not detail out standard procedures from that field.

In our demo example, we use a 15000 time-step sine oscillation as our training
signal. This sine signal has a period of 10 time steps, an amplitude of 0.2 and a
shift of 0.5. We will use notation u(n) for the training signal. Figure 3 illustrates
the training signal.

The network outputs are computed to minimize the mean square error on a
one-timestep prediction task, i.e. the teacher signal is teach(n) = u(n − 1). For
training, the reservoir is driven with the input signal through Wfb for 15000
time steps, and then output weights are computed from the harvested reservoir
states (dismissing the first 1000 ones to account for initial state washout) by ridge
regression with a regularization constant α = 0.05. This results in a normalized
mean square training error (NRMSE) of 0.000376, with a mean absolute output
weight size of 0.104. For testing, the reservoir is left running freely for another
15000 time steps. The resulted output y(n) shows a stable oscillation of sine
waveform, which imitates the training signal u(n). Figure 4 illustrates the output
produced from the trained network.

It becomes clear from the training NRMSE and an inspection of Figure 4(b)
that our ESN can be successfully trained to generate the desired sine oscillation.

Next we install an observer to track shift, amplitude, and frequency of the
output signal y(n). Exploiting the fact that the output is known to be close to a
(discretely sampled) sinewave, for simplicity we base this observer on a localization
of peaks and troughs. At each timestep, the observer generates a local estimate of

6

10 20 30 40 50

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 3: Closeup on the input signal used in demo example.

the current shift, amplitude, and frequency ms(n), ma(n), mf (n). The observer
maintains an internal 6-dimensional state s(n − 1) = [y(n − 1) y(n − 2) p(n −
1) v(n− 1) lt(n− 1) mf (n− 1)]. Here, y(n− 1) represents the output value in the
previous time step, y(n− 2) represents the output value in the pre-previous time
step, p(n − 1) represents the most recently detected output peak value until the
(n-1)th time step, v(n−1) represents the most recently detected trough value until
the (n-1)th time step, lt(n− 1) represents the time period since the last detected
peak until the (n-1)th time step, and mf (n−1) records the most recently computed
frequency of the output until (n-1)th time step.

With the current output y(n) and the previous observer internal state s(n−1),
the current measurement of shift ms(n) is computed as following:

1. Detect whether the previous output value y(n−1) is a peak, by the following
condition: if (y(n) < y(n− 1)) ∧ (y(n− 2) < y(n− 1)), then y(n − 1) is a
peak. If y(n− 1) is a peak, p(n) = y(n− 1), else p(n) = p(n− 1).

2. Detect whether the previous output value y(n − 1) is a trough, by the fol-
lowing condition: if (y(n) > y(n− 1))∧ (y(n− 2) > y(n− 1)), then y(n−1)
is a valley. If y(n− 1) is a valley, v(n) = y(n− 1), else v(n) = v(n− 1).

3. Compute the current measurement on shift as ms(n) = p(n)+v(n)
2 .

Similarly, to compute the current measurement of amplitude ma(n), we utilize
the above steps (1) and (2) to update the current peak value p(n) and the current
trough value v(n). Then we compute the current measurement on amplitude as
ma(n) = |p(n)−v(n)|

2 .

7

(a)

100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

 train result: output(green line) vs. teacher (red dot)
 training NRMSE = 0.000376 weights = 0.104

10 20 30 40 50 60 70 80 90 100

0.3
0.4
0.5
0.6
0.7

closeup of above

100 200 300 400 500 600 700 800 900 1000
-0.2

0
0.2
0.4
0.6

some reservoir unit activations

(b)

100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

 output (green) vs. teach (red), free running

10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

closeup of above

100 200 300 400 500 600 700 800 900 1000
-1

-0.5
0

0.5

some reservoir unit activations

Figure 4: Training an ESN as a periodic pattern generator. (a) Training phase,
(b) free running phase. Top: teacher vs. network output. Middle: closeup of the
top panel. Bottom: four traces of reservoir unit activations.

8

To compute the current measurement of frequency mf (n), we use the following
procedure:

1. Use the peak detection method mentioned in step (1) of computing ms(n)
to judge whether the previous output value y(n− 1) is a peak.

2. If y(n−1) is a peak, the time slice from last peak lt(n−1) is used to update
the current frequency as mf (n) = 1

lt(n−1) . Else, mf (n) = mf (n− 1)

3. Update the time slice since the last peak lt(n) as: if y(n − 1) is a peak,
lt(n) = 1. Else, lt(n) = lt(n− 1) + 1.

Finally, after all three measurements ms(n), ma(n) and mf (n) are computed
for the current time step n, we update the observer internal state vector s(n) =
[y(n) y(n− 1) p(n) v(n) lt(n) mf (n)].

The local estimates m(n) = [ms(n), ma(n), mf (n)]′ (we use ′ to denote trans-
pose) will be jittery due to sampling inaccuracies imposed on this simple peak and
trough location. We therefore subsequently feed m(n) through a simple smoother,
obtaining the final measurements o(n):

o(n + 1) = 0.99 · o(n) + 0.01 · m(n + 1). (3)

Next, with the observer module added in, we rerun the ESN another 15000 time
steps to generate an output sequence, and simultaneously monitor the shift, ampli-
tude and frequency of the output sequence, obtain traces of the three components
of o(n), and compute the means of the three traces. They are meanMShift = 0.5,
meanMAmp = 0.2, meanMFreq = 0.1, as anticipated.

3 Training and testing the controller

Our goal is to create a simple linear proportional feedback controller whose purpose
is to modulate the shift, amplitude and frequency of the output sine waveform with
the purpose of tracking the corresponding control targets.

First we describe the control targets we use in the demo. We denote the
target as t. At each time step n, the target is a column vector in the form of
t(n) = [ts(n) ta(n) tf (n)]′, where ts(n) is the shift target, ta(n) is the amplitude
target, and tf (n) is the frequency target. In our demo, a 15000 time step ramp
signal with starting value of 0.475 and ending value of 0.525 is used as the shift
target sequence, which represents a maximal 5% relative deviation from the shift
of the training signal. A 15000 time step slow sine oscillation with a period of 5000
time steps, an amplitude of 0.06, and a shift of 0.2 is used as the amplitude target
sequence, which represents a maximal 30% relative deviation from the amplitude
of the training signal. Another 15000 time step ramp signal with starting value of
0.095 and ending value of 0.105 is used as the frequency target sequence, which

9

2000 4000 6000 8000 10000 12000 14000
0

0.1

0.2

0.3

0.4

0.5

0.6

Targets: shift (blue), amplitude (green), frequency (red)
meanShift = 0.5, meanAmp = 0.2 meanFreq = 0.1

Figure 5: The control targets used in the demo, shift (blue), amplitude (green),
frequency (red)

also represents a maximal 5% relative deviation from the frequency of the training
signal. Figure 5 illustrates the trace of the control targets used in the demo.

With the control target defined, then the error signal e(n) at any time step n
is computed as the differences between the targets and the observers. Formally, it
is e(n) = t(n)− o(n) = [ts(n)− os(n), ta(n)− oa(n), tf (n)− of (n)]′.

Now we design a controller whose purpose is to bring the error signal e(n) =
[es(n) ea(n) ef (n)]′ to zero. Specifically, we want to find three control vectors cs,
ca, cf of size N such that the controlled reservoir dynamics

x(n + 1) = tanh
(
Wx(n) + Wfby(n) + γses(n)cs + γaea(n)ca + γfef (n)cf

)
, (4)

exhibits zero (or more realistically, low-amplitude) e(n). Here γs, γa and γf are
control gains for shift, amplitude, and frequency.

We compute the control vectors cs, ca and cf from the results of a series of
perturbations of the reservoir dynamcis. Specifically, we carry out the following
steps.

1. We freely run the reservoir 1000 time steps to home in on a stationary
output sine oscillation. This yields the initial conditions for the perturbation
experiments. Specifically, the reservoir state, the observer values, and the
observer internal state values at the last time step in this free run will be
used as the starting states of all following perturbation experiments. We

10

denote the reservoir initial state as x(start), the observer initial values as
o(start), and the observer internal state initial values as s(start).

2. Starting from x(start),o(start), s(start) we let the system run freely for fur-
ther 250 timesteps. From the last 50 timesteps we average the observations
o(n), obtaining unperturbed baseline values [ōs, ōa, ōf] for them.

3. We now repeat this 250-timestep run, started again from x(start),o(start), s(start),
as many times as there are neurons in the reservoir, i.e. N times. At each
instance, we perturb one unit xi in turn by adding a small constant bias
δ = 0.01 to it throughout the 250 timesteps. Concretely, for i = 1, . . . , N
we run the reservoir from the starting condition with the perturbed update
rule

x(n + 1) = tanh
(
Wx(n) + Wfby(n) + δei

)
, (5)

where ei is the ith unit vector of length N . Again, from each of these runs
we glean the average reading of the three slow observers o(n) over the last
50 steps; let us call these [ōi

s, ō
i
a, ō

i
f]. Figure 6 shows a plot of the observer

traces of a series of perturbation experiments.

50 100 150 200 250
0.0994

0.0996

0.0998

0.1

0.1002

0.1004

0.1006

Figure 6: Observer traces under perturbations. The thick black line in the center
of the bundle is the reading from the unperturbed baseline run.

4. We take the gradients of the slow observables w.r.t. the individual pertur-
bations,

[ci
s ci

a ci
f] =

[ōi
s, ō

i
a, ō

i
f]− [ōs, ōa, ōf]

δi
, (6)

and stack them in three N -dimensional column control vectors

[cs ca cf] = [ci
s ci

a ci
f]i=1,...,N . (7)

11

5. In order to minimize interactions between the controls for shift, amplitude
and frequency, we finally orthogonalize [cs ca cf] by the Gram-Schmidt
procedure, applied in the order cs → ca → cf .

Figure 7 shows the three control vectors thus obtained. Note that with the
construction methods mentioned above, these vectors are pairwise orthogonal.

50 100 150 200 250 300 350 400
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 7: The three control vectors cs (blue), ca (green) cf (red) obtained in our
demo example.

The rationale behind this method of computing control vectors is simple:

• The control objective is to suppress the amplitude of the (slow) error signal
e(n) = t(n)− o(n).

• Each of cs, ca and cf reflects in its ith component the differential contribution
of a slow perturbation of xi(n) to a change of os, oa and of .

• With the control law (4), these contributions are directly cancelled.

Figure 8 shows the behavior of the reservoir, and the observer of os, oa and
of when the control is enabled. By manual experimentation, control gains γs =
5 γa = 10 γf = 20 were found to work well enough for demonstration purposes.

An inspection of Figure 8 clearly shows that the control functions to a large
extent, although not to perfection.

4 Equilibration as a means to reduce control en-
ergies

The control loop has to act against the attractor “forces” of the reservoir, which
“try” to stabilize shift, amplitude and frequency at their baseline values. In this
situation we investigated how a method can help that we called equilibration in [7],

12

(a)

2000 4000 6000 8000 10000 12000 14000

-0.5

0

0.5

some reservoir unit activations, controlled

2000 4000 6000 8000 10000 12000
0.1

0.2

0.3

0.4

0.5

observer (line) vs. target (dot), controlled
shift (blue), amplitude (green), frequency (red)

(b)

0 2000 4000 6000 8000 10000 12000 140000.2

0.3

0.4

0.5

0.6

0.7

0.8
 output, controlled

Figure 8: Behavior of controlled reservoir. (a) top: some reservoir state traces
condition (same units are traced as in Figure 4b). (a) bottom: online measured
observers (solid lines) vs. control targets (dotted). (b): oscillation output of
controlled system.

and which has been independently discovered and explored for various purposes
elsewhere [10, 11].

The idea behind equilibration is as simple as it is general. Consider a generic
setting where a reservoir obeying the generic state update equation 1 is driven
by external influences of some sort – for instance, by sensor input, or (as in our
demo) by control input. Then,

1. collect states x(n) from an extended run of the driven system,

2. use these to recompute from scratch all the weights relevant for the reservoir
dynamics (including, if applicable, input weights and output and output
feedback weights), such that the collected states are reconstructed through
these new weights in the least mean square error sense,

3. replace the old weights with the new ones.

13

In an ideal case, with the new weights in place, the original dynamics captured
in the training states x(n) will be recovered by the new weights. The new weights
will however typically be of smaller magnitude than the old ones (if the least mean
square error minimization was properly regularized), which is generally beneficial
for robustness of dynamics in the presence of noise and for generalization in the
sense of machine learning. However, the most intriguing effect of the new weights
is that the new system has “internalized” the driving “forces” which gave rise to
the original collection x(n) of states.

For an intuitive understanding, and for preparing the application to our demon-
stration case, consider a simplified hypothetical case where the original reservoir
acts as a stable oscillator with one stable amplitude. Assume further that the ex-
ternal driver slowly modulated this amplitude, e.g. by externally changing some
control parameter within the reservoir. Then, in the equilibrated system, each of
the amplitudes that were maintained in the externally driven phase for some time
would become indifferently stable, whereas in the original system only the single
baseline amplitude would be stable. If the equilibrated system would be subjected
to some small state noise during a run, we would observe that the oscillation’s
amplitude would slowly change on a random walk.

The mathematical core (not the learning procedure) of the difference between
the unequilibrated original system and the equilibrated counterpart can be high-
lighted by a simple formal example. Consider, as a baseline system, the 3-
dimensional system

ṙ = τ (−r + exp x),

θ̇ = 1,

ẋ = −c x.

This system describes a stable circular oscillation of radius 1 in polar coordi-
nates θ, r at an x-location of 0. Figure 9 shows a phase portrait. If in the evolution
of this system the value of x would be clamped to other than its naturally stable
value of 0, the resulting amplitude would be exp x. Now assume that by external
manipulation x is indeed slowly varied, forcing the system through extended pe-
riods of time wherein the amplitude is thus changed together with x, and assume
further that a new set of equations is sought which can describe this behavior.
One would arrive at a new set of equations,

ṙ = τ (−r + exp x),

θ̇ = 1,

ẋ = 0,

which has “internalized” the forced dynamics in which x essentially stands still
at different values and the amplitude accordingly assumes different values. In the

14

new – equilibrated – system, each amplitude (togehter with its x-value) is now an
indifferently stable behavior mode of the system. Furthermore, small noise added
to the system evolution will send the amplitude (and x) on a slow random walk.

!!"# ! !"#

!$

!

$

!$

!%"#

!%

!!"#

!

!"#

%

%"#

$

&

'

(

!!"# ! !"#

!$

!

$

!$

!%"#

!%

!!"#

!

!"#

%

%"#

$

&

'

(

Figure 9: The mathematical core of equilibration. Left: original system, right:
equilibrated system. For explanation see text. The polar coordinates θ, r of the
equations in the text are plotted to the y, z plane.

Returning to our demo system, we equilibrated it as follows.

1. We repeated the controlled run shown in Figure 8, and collected the reservoir
states x(n) and the output unit’s states y(n) from this run. Notice that
these states come from periods during which, due to the slow targets and
the control, shift and amplitude and frequency differed from the native stable
values in various ways.

2. We then re-computed the reservoir weights W and feedback weights Wfb,
obtaining equilibrated versions Weq and Wfb

eq , by minimizing the square
error

MSE(W̃,W̃fb) =
15000−1∑

n=1

(
tanh−1(x(n + 1))− (W̃x(n) + W̃fby(n)

)2

, (8)

using ridge regression with a regularization constant α = 0.05. We did not
recompute the output weights Wout.

The bottomline purpose of equilibration in our task of controlling slow observ-
ables is to reduce the signal power of control inputs inserted into the reservoir
during controlled runs. The intuition is that in a perfectly equilibrated system,
control could be achieved with asymptotically zero energy of control signals if the
targets change “adiabatically” slowly; and with very small energy of control sig-
nals if the equilibration is not perfect or the change rates of the targets are not
exceedingly slow.

15

To demonstrate this point, the equilibrated system was again re-run in con-
trolled mode, using the same targets as before, and the same control vectors
cs, ca, cf . Because equilibration has bought us a highly increased sensitivity of
the reservoir to control inputs, the control gains had to be reduced accordingly.
By manual experimentation, a reduction by three orders of magnitude, from the
original values of γs = 5, γa = 10, γf = 20 to γeq

s = 0.005, γeq
a = 0.01, γeq

f = 0.02
were found to work reasonably well. Figure 10(a) reveals the behavior of the
equilibrated, controlled system.

(a)

0 2000 4000 6000 8000 10000 12000 14000-0.5

0

0.5

1
some reservoir unit activations, controlled, equilibrated

0 2000 4000 6000 8000 10000 12000 140000

0.2

0.4

0.6

0.8

observer (line) vs. target (dot), controlled, equilibrated
shift (blue), amplitude (green), frequency (red)

(b)

2000 4000 6000 8000 10000 12000 14000

0.3

0.4

0.5

0.6

0.7

0.8
 output, controlled, equilibrated

Figure 10: Control of equilibrated reservoir. (a) Top: some reservoir state traces.
Bottom: online measured observers (lines) against control targets (dotted). (b)
Network oscillation output.

To quantify the reduction in control energy, we monitored the energies (γ e(n))2

along the controlled runs in both the native and the equilibrated system. As ex-
pected, for the latter these energies are much smaller. Concretely, for the three
control dimensions shift, amplitude and target we observed reduction factors for
the mean control energies of approximately 4.6e+05, 1.1e+05, and 6.3e+05, re-
spectively, i.e., reductions by five orders of magnitude.

16

0 2000 4000 6000 8000 10000 12000 1400010-20

10-10

100

shift control energy: unequilibrated(dot) vs. equilibrated (line)
 meanEnergy = 0.000484 meanEquiEnergy = 1.05e-009

0 2000 4000 6000 8000 10000 12000 1400010-20

10-10

100

amplitude control energy: unequilibrated(dot) vs. equilibrated (line)
 meanEnergy = 0.0114 meanEquiEnergy = 1.04e-007

0 2000 4000 6000 8000 10000 12000 1400010-20

10-10

100
frequency control energy: unequilibrated(dot) vs. equilibrated (line)

 meanEnergy = 0.00177 meanEquiEnergy = 2.83e-009

Figure 11: Control energies in native (dotted) vs. equilibrated system (lines). For
explanation see text.

5 Discussion

The two core ideas of the approach outlined in this report can be summarized as
follows:

1. In order to render a given oscillator network controllable w.r.t. some slow
observable, we estimate a bias vector which incorporates the gradient of this
observable w.r.t. slow forced shifts of the network unit’s operating points.
When scaled with a suitable gain and multiplied with the current tracking
error, adding this bias to the ongoing network dynamics results in a (P-type)
feedback control loop.

2. In order to render the network more sensitive to control, it can be equili-
brated by recomputing its internal weights such that, in the ideal case, all
behaviors occuring within the controllable range become indifferently stable.
This leads to a very large reduction in the required control signal energy.

These two ideas are to a large extent independent of each other: the method
of using gradient-defined bias vectors for control does not need equilibration to
function; and reducing control energies by equilibration would function with other
control mechanisms as well.

We demonstrated the conceptual viability of these two ideas in a simple demon-
stration of simultaneously modulating shift, amplitude, and frequency of a neural
sinewave generator.

A number of refinements, extensions and alternatives suggest themselves and
will be investigated as next steps.

17

• Instead of a simple P-controller, one may use PI or PID type controllers.
We expect that this will improve the tracking accuracy, especially in the
equilibrated system where our currently implemented pure P-controller leads
to rather imprecise tracking (evident in Figure 10).

• The perturbation method for obtaining control vectors as gradient vectors
is computationally expensive and biologically hardly plausible. If a “behav-
ioral teacher” is available which provides paired modulated output and slow
observables, a much faster and biologically feasible learning method can be
used. This alternative method, described in [7] in a different context, would
identify the control vector c with the regression gradient β in the estimated
regression equation o(n) = α + β < x(n) >, where < x(n) > is a smoothed
version of the reservoir states.

• Among the three observables considered in this report, we found frequency
especially hard to control. Elsewhere, however, we have demonstrated that
slow bias input to an oscillator ESN can change its frequency over several
(base 2) orders of magnitude [6]. In that study, however, it was the weights
from the reservoir to the oscillator output neurons which were trained, not
the bias vector, which was randomly given and remained fixed. This suggests
that if we admit to adapt further parameters beyond the control vectors, we
may very much increase the attainable controllability ranges.

• Investigate how the simultaneous controls of targets ts(n), ta(n) and tf (n)
interact with each other. We found that if only one of these targets is con-
trolled for, the control is more efficient than when other targets are controlled
simultaneously (not reported).

• In order further demonstrate the universality of the ESN based pattern gen-
eration method, we plan to train the core pattern-generating ESN to produce
patterns more complex than sines (e.g. those used in robotic locomotion con-
trol tasks), and use our feedback control method to modulate these patterns.

• Animals can quickly modulate their locomotion patterns, e.g. when hitting
an obstacle, with a speed of adaptation which is only possible with purely
reflex-based, distal mechanisms. To come closer to such functionalities of
biological pattern generators, we want to investigate how to directly couple
sensor inputs into our controlled ESN pattern generator.

Finally, we want to point out a rather more visionary line of research based
on the idea of equilibration, which we will pursue in the context of the EU FP7
project “AMARSi”. The idea is to apply the principle of equilibration not only to
a single neural circuit, but to an entire robotic system, including its body hard-
ware. Abstractly, such a comprehensive system is just another high-dimensional
dynamical system. While an isolated ESN has essentially only weights and biases

18

to offer as adjustable parameters, an integrated robot system has many more, in-
cluding parameters defining its physical layout (e.g. spring constants, limb masses
and sizes, etc.). In a computer simulation model, such parameters are as easily
adaptable as are neural weights. From an equilibration perspective, recomputing
such an extended set of parameters to make numerous behavioral modes of the
(simulated) robot indifferently stable might lead to a combined physical/neural
re-design where control energies for given control objectives are much reduced.
Metaphorically speaking, equilibrated modes could in principle be sustained with
zero control energy, like in passive walking demonstrators. We believe that this
design idea holds some promise for passively compliant robots.

Acknowledgements. The research described in this report was supported by
a grant from the European Commission (Grant Nr. 248311 AMARSi: Adaptive
Modular Architecture for Rich Motor Skills, http://www.amarsi-project.eu/).

References

[1] A. Ayali. The insect frontal ganglion and stomatogastric
pattern generator networks. Neurosignals, 13:20–36, 2004.
http://stg.rutgers.edu/stgrefs/stg library/Ayali 2004.pdf.

[2] S. L. Hooper. Central pattern generators. Embryonic ELS, 1999. http://crab-
lab.zool.ohiou.edu/hooper/cpg.pdf.

[3] A. J. Ijspeert. Central pattern generators for locomotion control in
animals and robots: a review. Neural Networks, 21/4:642–653, 2008.
http://birg2.epfl.ch/publications/fulltext/ajIjspeert08a.pdf.

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic movements
by demonstration using nonlinear oscillators. IROS, pages 958–963, 2002.
http://birg2.epfl.ch/publications/fulltext/ijspeert02b.pdf.

[5] H. Jaeger. The ”echo state” approach to analysing and training recurrent neu-
ral networks. GMD Report 148, GMD - German National Research Institute
for Computer Science, 2001. http://www.faculty.jacobs-university.de/hjae-
ger/pubs/EchoStatesTechRep.pdf.

[6] H. Jaeger. Echo state network. In Scholarpedia, volume 2, page 2330. 2007.

[7] H. Jaeger. Reservoir self-control for achieving invariance against slow input
distortions. technical report 23, Jacobs University Bremen, 2010.

[8] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication. Science, 304:78–80, 2004.
http://www.faculty.jacobs-university.de/hjaeger/pubs/ESNScience04.pdf.

19

http://www.amarsi-project.eu/

[9] M. N. Levy and P. J. Martin. Neural regulation of
the heart beat. Ann. Rev. Physiol., 43:443–453, 1981.
http://www.annualreviews.org/doi/pdf/10.1146/annurev.ph.43.030181.002303.

[10] N. M. Mayer and M. Browne. Echo state networks and self-prediction. In
Biologically Inspired Approaches to Advanced Information Technology, volume
3141 of LNCS, pages 40–48. Springer Verlag Berlin / Heidelberg, 2004.

[11] R. F. Reinhart and J. J. Steil. A constrained regularization approach for
input-driven recurrent neural networks. Differential Equations and Dynamical
Systems, 2010 (online pre-publication). DOI 10.1007/s12591-010-0067-x.

20

