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Summary

Current advances in reservoir computing have demonstrated that fixed random
recurrent networks with only readouts trained often outperform fully-trained re-
current neural networks. While full supervised training of such networks is prob-
lematic, intuitively there should also be something better than a random net-
work. In this contribution we investigate a different approach which is in between
the two. We use reservoirs derived from recursive self-organizing maps that are
trained in an unsupervised way and later tested by training supervised readouts.
This approach enables us to train greedy unsupervised hierarchies of such dy-
namic reservoirs. We demonstrate in a rigorous way the advantage of using the
self-organizing reservoirs over the traditional random ones and using hierarchies
of such over single reservoirs with a synthetic handwriting-like temporal pattern
recognition dataset.
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1 Introduction

Despite the biological plausibility and theoretical computational universality of
artificial Recurrent Neural Networks (RNNs), their practical applications are still
scarce. This should arguably be attributed to their training being far from trivial.
While many algorithms for training RNNs exist, they usually require a high level
of expertise and do not scale up well to large networks. There are likely even the-
oretical limitations to using gradient descent training techniques in such networks
[1] [2]. One fresh strain of RNN training approaches has even abandoned training
the recurrent part of the network at all. The strain was pioneered by Echo State
Networks (ESNs) [3] in machine learning and Liquid State Machines [4] in compu-
tational neuroscience and is increasingly referred to as Reservoir Computing (RC)
[5] [6]. The fact that a simple ESN having a randomly generated recurrent part
(called reservoir) and only a readout from it trained is outperforming sophisticated
RNN training algorithms in many tasks [7] [8] [9] is in a way odd if not embar-
rassing. Intuitively, there should be something better than a random network.
It is also not well understood what makes a reservoir good for a particular task.
Dissatisfied with this situation many researchers are looking for such qualities and
for novel RNN (reservoir) adaptation algorithms (see [6] for an overview).

A part of our contribution is along the lines of these efforts. We focus our
attention on an unsupervised pre-training of the reservoir followed by a supervised
training of the readout. These are the middle grounds between a fixed reservoir
and a fully in a supervised way trained RNN, hopefully mitigating the shortcom-
ings of both. Among the benefits of the unsupervised pre-training are the ability
to utilize unlabeled data (input signals with no corresponding target outputs) that
are abundant in many applications and the ability to use such reservoirs as build-
ing blocks for more complex hierarchical architectures since they don’t require
an external error signal back-propagated through other complex components and
diluted in the process.

The latter is the main original motivation to this research and is further ex-
plored in this paper. We investigate architectures of multiple layers of such reser-
voirs that are greedily trained in an unsupervised way. It has been recently argued
[10] and widely believed in the machine learning community that such deep archi-
tectures are necessary for more challenging tasks.

The article is organized as follows. We specify our self-organizing reservoir
in Section 2, together with a short discussion on the properties of the neuron
model used in Section 2.2, and the training algorithms used in Section 3, both the
unsupervised training in Section 3.1 and the readout mechanism in Section 3.2. We
compare the self-organizing reservoir with simple ESNs in Section 4 and show that
it is consistently better in the investigated task. More concretely, we specify the
baseline ESN, the task used, and the technical details of the simulations in Sections
4.1, 4.2, and 4.3 respectively. We then analyze the results of the comparison in
Section 4.4. Utilizing the benefits of the self-organizing reservoirs we build multi-
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layered hierarchies of them in Section 5, giving the technical details in Section 5.1
and analyzing the success in Section 5.2.

2 Computational model

2.1 Self-organizing reservoir

There are quite some unsupervised adaptation techniques for the “weighted sum
and nonlinearity” (WSN) type of neurons suggested and recently investigated in
the RC context, however often the improvements they offer are minute and the
adaptation can be non-converging (see Section 6 in [6] for an overview). Instead,
we focused our attention to the tradition of Self-Organizing (also called Kohonen)
Maps (SOMs) [11], probably the most classic unsupervised neural network training
method, and their recurrent extensions. While there are many extensions of SOMs
to temporal data suggested (see [12] for a systematic overview), the one truly fully
recurrent model, as in normal WSN fully recurrent networks, was introduced as
Recursive Self-Organizing Maps (RSOMs) in [13]. In this work we use a similar
model for the reservoir with the state update equations

x̃i(n) = exp(−α
∥∥Win

i − u(n)
∥∥2 − β ‖Wi − x(n− 1)‖2), i = 1, . . . , Nx, (1)

x(n) = (1− γ)x(n− 1) + γx̃(n), (2)

where u(n) ∈ RNu is the input signal, x(n) ∈ RNx is a vector of reservoir neuron
activations and x̃(n) = [x̃1(n), . . . , x̃Nx(n)]

T ∈ RNx is its update, all at time step
n, ‖·‖ stands for the Euclidean norm, Win

i is the ith column of the input weight
matrix Win ∈ RNu×Nx , Wi is the ith column of the recurrent weight matrix
W ∈ RNx×Nx , γ ∈ (0, 1] is the leaking rate, and α and β are scaling parameters
for the input and the recurrent distances respectively.

Since we use leaky integration (2), our model also resembles the earlier tempo-
ral Kohonen networks [14] and recurrent self-organizing maps [15] that use leaky
integration as the only type of recurrence. The unit activation function (1) is a
Gaussian and in fact can be seen as a Radial Basis Function (RBF). However,
to the best of our knowledge, this type of fully recurrent systems has not been
investigated in the RBF literature, the closest of such being the recurrent RBF
network [16] which is similar to the temporal Hebbian SOM [17]. There seem to
not be any citations between the two communities.

A recent biologically-motivated contribution with similar objectives was intro-
duced in [18]. Also recursive SOMs are used as a pre-processor in the context of
reservoir computing in [19].
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2.2 Properties of the neuron

The difference between this model and a more conventional RNN as, for example,
in ESNs is the model of neuron: the WSN type x = f(Wu) versus the RBF type
x = f(‖W−u‖), where f(·) stands for a nonlinearity, typically a tanh(·) sigmoid
in the first case and a Gaussian in the second. Even more specifically it is how
the inputs to the neurons are combined. As a result RBF neurons have some very
different properties from the WSN neurons:

• Locality. By the virtue of calculating Euclidean distance ‖W − u‖ between
the vectors of its inputs u and the input weights W (as opposed to dot
product Wu in WSN units), responses of RBF units are intrinsically local.
The response is centered around W as the “prototype” input pattern that
excites the unit most. The excitation drops sharply when u moves away
from W.

• Prototype input pattern. The prototype input pattern u = W is bounded
for RBF units as opposed to WSN units where it is asymptotic: the bigger
the scalar projection of u on W, the bigger the output.

• Quasi-sparse coding. A group of RBF units receiving the same input u and
having different weights W produces a sparse spatial coding of u in a sense
that only a few units, W of which are closest to u, have higher activation.
This however is not sparse coding in the strict sense of the term [20] but
something in between a sparse coding and a local coding. On one hand,
units are excited by their local prototype patterns, on the other hand they
have continuous activations and in general any input can be reconstructed
from their activations as long as the number of units in the population is
greater than the dimensionality of the input and they are not on a lower-
dimensional hyperplane in the input space.

• Greater nonlinearity. The response of a RBF unit is more nonlinear than
that of the sigmoidal activation function of WSN units, which is monotonic
and changes only along one direction of the input space.

• Signal value invariance. Prototype inputs of RBF units can be placed any-
where in the input space, treating any value on the axis of real numbers like
any other. For example, an RBF unit can have its maximal response to the
input with all values 0 (if W = 0), while an WSN unit will have a zero
activation independent of its W. This gives more flexibility and requires
less care when encoding the inputs.

• No signal energy metaphor. A closely related issue is that with RBF units
the notion of signal energy is lost. Higher energy, or amplitude, input signals
u do not automatically result in higher energy, or amplitude, output signals
x and vice versa. In particular, because the zero input signal has no special
meaning, there is no “dying-out” of the signals due to zero input.
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Some of these features are desirable in a reservoir while others are daunting.
In particular, recurrent networks of such units are hard to analyze analytically,
because many insights on the WSN type of reservoirs, such as the role of the
spectral radius of the recurrent connection matrix [3], are based on their local
linearization, which is hard to apply here. The derived stability conditions for
RSOMs [21] are not as elegant as for reservoirs of WSN units.

In a way the RBF units in a recurrent network work as detectors of the state
of the dynamical system while at the same time constituting the next state by
representing the dimensions of it. Each of them “detects” a certain situation in
the combined space of the input and its history. This makes such a reservoir a
natural candidate for temporal pattern detection or classification tasks.

The specific properties of the RBF units allow them to be trained by some
state-of-art unsupervised methods.

3 Training

The training of our model consists of the unsupervised pre-training of the reser-
voir (1) and a supervised training of a readout from it to assess the effects of
unsupervised adaptation.

3.1 Unsupervised training of the reservoir

Based on the fact that input weights of the RBF units “dwell” in the same space
as their inputs, there is a large range of unsupervised training methods available
for them. Most of them combine competitive and collaborative aspects of learning
to make the units nicely span the input space. Virtually all such methods for
static data are also applicable to our recurrent model (1). One natural option for
training (1) is the classical SOM learning algorithm [22]:

Win
i(n+ 1) = Win

i(n) + η(n)h(i, n)
(
u(n)−Win

i(n)
)
, (3)

Wi(n+ 1) = Wi(n) + η(n)h(i, n) (x(n)−Wi(n)) ,

with η(n) being the learning rate and the learning gradient distribution function

h(i, n) = exp

(
−dh(i, bmu(n))2

wh(n)2

)
, (4)

where bmu(n) = argmaxi (xi(n)) is the index of the “best matching unit” (BMU),
dh(i, j) is the distance between units with indices i and j in the additionally defined
topology for reservoir units, and wh(n) is the neighborhood width of the gradient
distribution. In our experiments we use a 2D rectangular lattice where dh(i, j) is
the Manhattan distance between nodes i and j on it. Intuitively, h(i, n) distributes
the error gradient in (3) so that the BMU is updated with the biggest individual
learning rate (since h(bmu(n), n) ≡ 1) and this rate drops as a smooth Gaussian
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going further away from the BMU in the defined topology of units. Note, that we
are using x(n) for finding bmu(n) as in recurrent SOMs [15] as opposed to using
x̃(n) as in temporal Kohonen networks [14]. η(n) and wh(n) control the schedule
of the training process by varying the overall learning rate and amount of learning
done outside the BMU at each time step respectively.

Neural gas (NG) is another closely related alternative learning method to SOMs
that we tried. It differs only in the gradient distribution function, which instead
of (4) is

hng(i, n) = exp

(
−dng(i, n)

wh(n)

)
, (5)

where dng(i, n) is the zero-based index of the node i in the descending order-
ing of nodes by their xi(n). As in the case of RSOM, dng(bmu(n), n) ≡ 0 and
h(bmu(n), n) ≡ 1. In our experiments we got similar results with both RSOM
and NG training and will only report on the former.

3.2 Supervised training of the readouts

After unsupervised adaptation of such a reservoir to the given input u(n) a readout
y(n) ∈ RNy from such a reservoir can be trained in a supervised way to match a
desired output ytarget(n) ∈ RNy . A natural and straightforward option is to use a
linear readout

y(n) = Wout[1; x(n)], (6)

where [·; ·] stands for a vertical vector concatenation. The output weight matrix
Wout ∈ RNy×(Nx+1) is learned using linear regression, a standard technique in
reservoir computing [23]. The input u(n) can also be concatenated to [1; x(n)] in
(6), making Wout ∈ RNy×(Nx+Nu+1).

In this work we will not put much emphasis on designing elaborate output
schemes for particular applications (which would be important for tasks like clas-
sification or detection), but rather use simple linear outputs trained on simple
targets to estimate the quality of the unsupervised adaptation in x(n).

4 Comparing self-organizing reservoirs with ESNs

We made a systematic comparison between self-organizing reservoirs and classical
random echo state networks. We will first specify the ESNs used here for the sake
of completeness in Section 4.1, describe the data on which all the experiments
are run in Section 4.2, give the technical details of the numerical simulations in
Section 4.3, and analyze the results in Section 4.4.
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4.1 Baseline ESN architecture

We compare our self-organizing reservoirs presented in Section 2.1 to reservoirs of
classical echo state networks [3] [23] with the update equation

x̃(n) = f(Win[1; u(n)] + Wx(n− 1)), (7)

where f(·) = tanh(·) is the neuron activation function applied element-wise, in-
stead of (1). Here the input weight matrix Win ∈ RNx×(Nu+1) is a randomly-
generated matrix with elements uniformly distributed in a zero-centered range set
by the input scaling parameter. The recurrent weight matrix W ∈ RNx×Nx is
a random sparse matrix with 20% connectivity and scaled to have a predefined
spectral radius ρ(W). The rest of the model, including leaky integration (2) and
readout (6), is the same.

4.2 Synthetic smooth temporal pattern dataset

To investigate the effects of unsupervised pretraining in more controlled conditions
we used a synthetically generated smooth temporal pattern dataset (Figure 1) in
our simulations, the same as in some of our previous work [24, 8]. It is essentially
a multidimensional red noise background signal with smoothly embedded short
temporal patterns. Both the background signal and the patterns are generated in
the same way by low-pass filtering white noise. Both the background signal and
the patterns have the same amplitude and frequency makeup. The patterns are
embedded into the background signal by applying smooth envelopes that also have
the same frequency makeup. At the places where the patterns are embedded the
background signal is suppressed by the envelope and the pattern is accordingly
multiplied by it, producing smooth cross-fades between the background and the
pattern. The pattern signals have the same dimensionality as the background and
appear in all dimensions of the background simultaneously. All the dimensions in
the background and inside the patterns are generated as independent signals. The
patterns are chosen randomly with equal probabilities and embedded at randomly
varying intervals in the background. The patterns do not overlap. Almost half on
the final signal is constituted by the patterns, the rest is the background. Thus,
the more different patterns there are, the rarer they appear in the signal. The
average length of the pattern in the final signal is about 20 time steps. The whole
signal in addition is moderately time-warped: the original time step of size 1 can
obtain values from the interval [0.5, 1.5] during the transformation. See section
6.3 in [24] for more technical details on how the data were produced.

The dataset was originally designed having handwriting in mind. The back-
ground can be seen as the unknown handwriting characters and the patterns as
frequently reappearing letters to be recognized in it. Everything can be seen as en-
coded in, for example, pen movement data, or features extracted from sequentially
scanning the handwriting and treating it as a time series.
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Figure 1: A sample of a three-dimensional smooth pattern dataset with five dif-
ferent patterns highlighted in colors and their corresponding envelopes.

In our experiments for unsupervised training we only use the data with no
targets. The general idea is to test how well the unsupervised models learn the
structure of the data. To evaluate this we estimate how well the patterns are
separable form the rest of the signal in the reservoir activation space x(n). More
concretely, we test how well the envelopes of the patterns can be recovered from it.
For this we train a supervised output (6) using a signal containing the envelopes
with which the Ny patterns were inserted as the training target ytarget(n) ∈ RNy .

This data difficult in several aspects:

• The background can literally become very similar to the pattern. This makes
perfect learning impossible. The lower the dimensionality of the signal the
higher the probability of this happening.

• Because the background signal and the patterns (including transitions) have
the same amplitude and frequency makeup there are no “cheap tricks” to
spot them without looking at the exact shape of the signals. In fact the
patterns are not easy to see in the signal by the naked eye if they are not
highlighted.

• The background signal is very information-rich because it is not repeating
itself. This can be a problem for some unsupervised models.

• Time warping and relative slowness of the signal can be problematic for some
models.
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4.3 Simulation details

Since our data are generated randomly and the difficulty of the task depends
on the concrete instance, we run and average all our experiments with the same
ten different instances of the data. We also run the experiments with a different
number of patterns (corresponding to the dimensionality of the target Ny) in the
data, ranging from one to five. The input dimension of the data is always Nu = 3.

The training data of 50’000 time steps was used, of which the first 500 were
discarded from training and used to “wash out” the initialization transient in the
reservoirs. For such a long dataset overfitting was found to not be an issue. Thus
selection of the best parameters was performed on the same training set, choosing
the ones that give the smallest training error averaged over the ten runs. Testing
was also performed on continuations of the datasets of length 10’000 . Testing
errors match very closely the training errors (both presented in the article) proving
that overfitting is not happening. The exact same setup was used for both models.

All the three dimensions of input data were normalized to have 0.01 variance
and zero mean. For self-organizing reservoirs the input data was then shifted to
have a 0.5 mean, such that it lies almost entirely inside the [0, 1] interval. This
was done for convenience since the weights Win where standardly initialized for
the [0, 1] input intervals. For ESNs the data was left at zero mean, as this was
found to give slightly better results.

As the performance criteria for all the models we use the normalized root
mean square error (NRMSE) of the pattern envelopes reconstructed from x(n)
(with u(n) appended) using linear regression (6), as mentioned in Section 4.2.
This way both models have the same amount of parameters that are trained in a
supervised way, namely Wout ∈ RNy×(Nx+Nu+1) (or Nx + Nu + 1 = 54 parameters
per pattern). The pattern envelopes on which the outputs are trained (and per-
formance evaluated) are delayed by one time step, as such shift was found to give
the best performance.

The input weight matrix of the self-organizing reservoir was initialized as
Win(0) = ab

T
, where a ∈ RNu is a column-vector containing a linear progres-

sion starting at 1/Nu and ending at 1 and b ∈ RNx is a column-vector containing
a linear progression starting at 1/Nx and ending at 1. This gives a matrix with
an almost-zero value at the top left corner, value one at the bottom right corner,
and all the elements gradually interpolated between these values, which spans the
[0, 1] intervals of the input space nicely. This is a rather simplistic initialization.
A more sophisticated classical SOM initialization method would be making the
two edges of the lattice of the reservoir units follow the two principal components
of the input data. W was simply initialized as the identity matrix W(0) = INx .

The Nx = 50 units of the self-organizing reservoirs were arranged into a 2D
rectangular lattice topology of 10× 5 units for the SOM type (4) of unsupervised
initial training. The training schedule for the self-organizing reservoirs was set
manually. The unsupervised training was done by passing through the training
data once, that is in 49’500 time steps. The learning rate η(n) (3) followed a
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geometric progression from 0.04 to 0.01 and the neighborhood width wh(n) from
2 to 0.001. These parameters were found to be reasonable through some manual
experimentation.

4.4 Simulation results

To answer the question whether and by how much the use of the self-organizing
reservoir and its unsupervised pretraining benefits the pattern detection task, we
compare it with the regular type of reservoirs (7). We use the same number of
neurons Nx = 50 in both types of reservoirs, so that the reservoir signal space x(n)
has the same dimensionality. Both models have a number of parameters that need
to be set and values of these parameters influence the performance of the models.
To have a fair comparison we have run a grid search over the three parameters
that affect the performance most in both of the models. For the self-organizing
reservoir these three parameters are: input and recurrent distance scalings α and
β in (1), and the leaking rate γ in (2). For the regular ESNs the three similar
parameters are: the scaling of the input matrix Win (such that the elements of
Win are uniformly distributed between plus and minus the value of the scaling)
in (7), the spectral radius of the recurrent connection matrix ρ(W) (7), and the
same leaking rate γ in (2).

Table 1: Grid search parameters and best values found.

Model Self-organizing reservoir ESN
Parameter γ α β γ input scaling ρ(W)

Min. value 0.125 25/3 0.5 0.125 2.5 0.125
Step size 0.125 25/3 0.5 0.125 2.5 0.125
Max. value 1 200/3 4 1 20 1

Best values
1 pattern 0.75 100/3 2.5 0.25 10 0.75
2 patterns 0.875 50/3 2 0.25 10 0.125
3 patterns 0.625 100/3 2.5 0.125 10 0.125
4 patterns 0.5 125/3 1.5 0.125 15 0.125
5 patterns 0.5 100/3 1.5 0.125 20 0.125

The ranges, step sizes, and the best found values of the parameters are pre-
sented in Table 1. We take eight values of each parameter over a reasonable
interval. It took multiple trials to get the parameter ranges right. We found that
good α and β values in (1) should account for the normalization over the dimen-
sionality of the input Nu and the reservoir Nx. This is logical, because the two
‖·‖2 terms in (1) are summations over Nu and Nx dimensions respectively, and a
bigger dimensionality gives a bigger sum. As a result the intervals of α and β look
very different in Table 1 because they are normalized. If we denormalize them, we
see that αNu and βNx have the exact same intervals of [25, 200]. ESNs gave the
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best performance with quite surprisingly big input scalings, together with small
leaking rates and spectral radii.

Training and testing of a self-organizing network took about 7.6 seconds on an
average modern computer, so it is quite fast. Training and testing an ESN took
about 3.0 seconds. Thus self-organizing maps received more pure computational
time. On the other hand we have selected not only the best parameters from the
grid search for ESNs, but took the same ten randomly generated reservoirs with
these parameters (that gave the best average performing) for testing. Thus the
performance fluctuations caused by randomness of the reservoirs were used to the
advantage of ESNs.
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Figure 2: Mean training error surfaces for data with three different patterns.

Figure 2 illustrates in more details how the mean training error (averaged over
the ten runs) depends on the three parameters set by the grid search for both of
the models. The case with three patterns is shown here. The surfaces for ESNs are
a bit more rough because the use of random reservoirs introduces some additional
variance in performance. But the ranges of the ESN performance are smaller.
The self-organizing reservoirs are a bit more sensitive to the set parameters, at
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least in these ranges. We can see that the mean error surfaces are rather smooth,
not abrupt, indicating that the right parameters do not need to be picked very
accurately to get reasonably good performance.

The pattern separation errors for the two models and different numbers of
patterns in the data are presented in Figure 3. The best parameters found using
the grid search (Table 1) were used for every number of patterns in both models.
The bigger spread of the ESN errors can be explained by the the use of randomly
generated reservoirs.
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Figure 3: Separation errors with best parameter values of self-organizing reservoirs
(blue) and ESNs (black) for different number of patterns in the data. The values
of the ten data instances are represented by dots (slightly displaced for visual
clarity) and mean values by lines.

Figure 3 shows clearly that unsupervised training benefits the patterns sepa-
ration in the reservoir space. This improvement is statistically significant, present
with different numbers of patterns in the data, and, because of the grid search, is
not caused by parameter settings favoring one of the methods. We also see that
training and testing errors are almost identical in all the cases, justifying choosing
the parameters based on the training error.

Looking at Figure 3, we see that the benefit of the self-organizing reservoirs
is bigger in the cases where there are fewer different patterns in the data. The
reason for this is that given the limited capacity of the self-organizing reservoir
it can learn to better represent fewer different patterns than more, while the
random reservoir of ESN is universal and the readouts for the different patterns
are virtually independent. The drop in performance with the number of different
patterns is only due to the fact that each pattern appears more rarely in the input
and thus is harder to learn.

To visualize how different number of patterns are represented in the signal
space x(n) of the self-organizing reservoir, in Figure 4 we plot the two principal
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components of x(n) with activations corresponding to the patterns highlighted in
colors.
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Figure 4: 1 pattern and 5 patterns highlighted in the two principal components of
u(n), and in x(n) of both ESN and the self-organizing reservoir.

We can see that a single pattern gets a special representation in x(n) of the
self-organizing reservoir which is already clearly visible in the two principal com-
ponents. With more patterns we can see that they are spread more than in the
ESN or in u(n) but are in no way easily separable.

5 Hierarchies of self-organizing reservoirs

As mentioned in the introduction, one of the main benefits of unsupervised learning
is that components trained this way can be easier assembled into more complex
architectures. Here we investigate a simple layered hierarchy of such reservoirs
where the bottom reservoir receives the external input u(n) and every reservoir
above receives the activations x(n) of the reservoir directly below it as the input.
Such an architecture features only bottom-up interactions and can be trained
in a greedy layer-by-layer way starting from the bottom. Since every layer is
trained independently from the rest, this hierarchical structure in essence does
not introduce additional difficulties in training, except more of it needs to be
done, because there are more layers.

When comparing a hierarchy to a single reservoir, a natural question to ask is
whether it is better to invest the additional effort in training many layers of the
hierarchy or in better training of the single reservoir. More concretely, we take
the training time measured in epochs as the “effort”. As a generalization of this
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question, we investigate how the performance depends on the number of layers in
the hierarchy for a given fixed training effort. By this we mean that if a hierarchy
has k layers and the fixed training effort is l epochs, then each layer receives l/k
epochs of training.

5.1 Simulation details

For the experiments with the hierarchies we used the same data described in
Section 4.2. The same ten data instances with Ny = 5 temporal patterns in it
were reused as in Section 4.3 with the same normalization and splitting into the
initialization, training, and testing sequences. In these experiments, however, we
have gone through the 49’500 time steps of training data multiple times (epochs),
each time first initializing the model with the initialization sequence of 500 time
steps during which the training was not happening.

We again used reservoirs of Nx = 50 units and all the other parameters: γ =
0.75, α = 100/Nu, and β = 50/Nx = 1, the same in every layer. Note, however,
that Nu = 3 for the bottom layer and Nu = Nx = 50 for the others, which affects
α accordingly.

For training all of our reservoirs we used the same SOM algorithm (3)(4)
with the reservoir units again organized into a 10 × 5 lattice, the same weight
initialization, and the same but slightly more subtle training schedule, where η(n)
followed a geometric progression from 0.01 to 0.001 and the neighborhood width
wh(n) again from 2 to 0.001. The same training schedule was used independently
of the length of the training: if the training is taking more epochs, the learning
parameters are simply changing slower, but the end-points remain the same.

The same performance criterion is also used: a linear readout (6) is trained on
the pattern envelopes as the teacher and the error (NRMSE) of the reconstruction
computed. In this case the input u(n) was not included as part of x(n) in (6). For
every architecture the readout was trained only from the activations of the top-
most layer. This way the signal space from which the pattern separation is learned
always have the same dimensionality Nx = 50 and every model has the same
amount of parameters trained in a supervised way, namely Wout ∈ RNy×(Nx+1) (or
Nx + 1 = 51 parameters per pattern). The target signal ytarget(n) for each layer
was delayed by the number of time steps equal to the number of layer (1 for the
bottom layer, 2 for the second, and so on) as this was found to be optimal at least
for a couple of first layers.

5.2 Simulation results

The results showing how different numbers of layers and different numbers of
training epochs per layer affect the testing performance are presented in Figure 5.
The performance is plotted against the total number of epochs spent in training.
Each curve here represents a hierarchy trained with the same amount of epochs
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per layer. The points on the curves represent the mean test separation errors in
different layers. Every tenth layer is annotated. The hierarchies are trained with
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, or 120 epochs per layer. They are
colored from blue (the top-most curve, 120 layers, each trained with 1 epoch) to
red (a single point in the middle right, a single layer trained with 120 epochs) as
the two extreme cases.
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Figure 5: Mean testing separation errors in layers of differently trained hierarchies
plotted against the total epochs of training. See text for the details.

We can see that if the layers are not trained well, stacking them in a hierarchy
is not going to improve the result. The extreme case with each layer only trained in
one epoch is the top-most blue curve. We can see that in this case the performance
decreases with every additional layer and is approaching the worst NRMSE of
1. If a layer is not able to learn a good representation of its input, this bad
representation is passed to the upper layers, information from the input is lost
and the performance only decreases. Because we use quite small learning rates
here the training time of one epoch per layer might simply be not enough.

However, when we give each layer enough time to learn a good representation
of the input, we observe that adding additional layers improves the performance.
The better the individual layers are trained, the better the improvement in the
upper layers.

We can visualize the data of Figure 5 from a slightly different perspective. In
Figure 6 we connect the dots representing layers of the same level across differently
trained hierarchies. Here the six curves represent the errors in the first six layers
across the architectures. This way we can see that putting more effort in training a
single layer (the top-most blue curve) does improve the performance but only to a
point where additional effort does not help anymore. The additional layers are able
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Figure 6: Errors in the first six layers across differently trained hierarchies plotted
against the total epochs of training. See text for the details.

to break this performance ceiling achieving much smaller separation errors than
a single layer could reach. We observe that when going up into the higher layers
there is a significant drop in the error till about the fourth layer. This shows that
with the same total number of training epochs hierarchical architectures clearly
outperform a single reservoir.

The fact that the additional effort in training yields better results is not at all
trivial in this case, because we train our reservoirs in an unsupervised way and
test them on a supervised task. This proves that in this case the unsupervised
pretraining does indeed improve the performance of a supervised task and there
is a positive correlation between the quality of the unsupervised pretraining and
the performance on the supervised task.

To have a more detailed view, we single out one case from the Figure 5 where
every layer is trained using eight epochs of learning and present it in Figure 7. Here
both the training and testing errors are shown in all the fifteen layers. The mean
values are presented as well as the ten individual cases with the data instances to
indicate the variability among them.

We see, that while the difference between the training and testing errors in-
creases going up in the layers, it still remains quite small, and there is no real
overfitting, because both errors reach minimal values at the same layer (6 in this
case). One reason for this could be that we use long enough training data with
small enough models. Another reason could be that most of the training we do is
unsupervised, thus the model could overfit the input data but there is no training
target to overfit. It might well be that the input data is too rich and without the
target too open for interpretations to overfit.

The representation of five patterns in the two principal components of the
activations x(n) of the first six layers in a hierarchy is presented in Figure 8. We
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Separation errors in layers with 8 training epochs per layer

Figure 7: Errors in the layers each trained with eight epochs. Training errors are
shown in thin and testing errors in bold lines. The mean values are shown in black
and the ten separate instances are shown in light colors.
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Figure 8: Patterns highlighted in the two principal components of x(n) in the first
six layers of a hierarchy.
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can see that the special representation of the patterns in data gets more expressed
in the principal components of x(n) when going up in the hierarchy.

6 Discussion

We have demonstrated that the type of self-organizing recurrent neural network
investigated here can learn in an unsupervised way the representations of the tem-
poral input data that enable better results in a supervised task such as separating
repeated slow patterns in the input. This was rigorously compared to an echo state
network that produces random rich representations of the same dimensionality and
found to be better. Parameter sweeps and averaging of results over different in-
stances of data were performed for both models to exclude the possibility of an
unfair comparison.

We also showed that longer unsupervised training results in better supervised
performance, establishing a positive correlation between the two.

We do not have a rigorous explanation or analytical proof of this correlation,
but only some intuitions. The competitive nature of the self-organizing learning
diversifies the responses of the units in such a reservoir. Each unit during the
training is “looking for” its “niche” input pattern to which it produces a high
response. The reservoir tries to “inhabit” the input dynamics and intrinsically
looks for patterns in it. The parts of the data that are more predictable get a
more expressed representation in the reservoir space, as shown in Figure 4.

We have also demonstrated that hierarchies of such unsupervised reservoirs
improve the performance by a large margin. The exact reasons for this need
further investigation. Figure 8 gives an insight that the patterns in the data
get more expressed in the principal components of the reservoir activations when
going up in the layers. One reason for this could be that with more layers we
simply get more powerful models having more unsupervisedly trained parameters.
As a future work, it would be interesting to check if a single reservoir with a
comparable number of parameters could achieve comparable performance. We
have only compared the training effort so far. It could also be that the deep
structure produces a more compact representation of the input which can not
easily be achieved with a single layer (examples of such are presented in [10]). On
one hand there is nothing really deep in our data, but on the other hand the fact
that we get better representations in the reservoirs of the same dimension when
going up the hierarchy is still spectacular.

There are still many improvements that could be done to the model, both to
the structure and learning, as well as understanding it better. For example, an
interesting and biologically motivated modification would be to also have top-down
interactions in the hierarchies. It would also be interesting to see how the model
scales up to more challenging real-world data. This is our ongoing work.
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