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Abstract

In complex pattern recognition tasks data usually exhibits many local
distortions which significantly disturb the recognition process. A method
for extracting temporal features from a signal that are invariant to these dis-
tortions is presented in this report. The idea is to use Echo State Network to
generate a rich high-dimensional representation of data. Temporal features
are then extracted by finding projections of the high-dimensional represen-
tation that are minimally influenced by the selected distortions while still
carrying most of the information about the underlying signal required for
the performed task. The algorithm performance is analyzed on synthetic
signals as well as on high-dimensional handwriting data for shift and scale
distortions. It is shown that the algorithm is capable to extract a low di-
mensional feature set from a reservoir which is invariant to the selected
distortions and relevant to the performed task.

1 Introduction

Pattern recognition and signal processing of complex real world data, such as
speech or handwriting, is a difficult task for computational intelligence. One of the
reasons for it is the inherent abundance of distorting variations in data. In speech
processing such variations come from changes in pitch, accents and intonations of
different speakers. Similarly, variations in handwriting are caused by a different
slant, character size, pen width, writer style etc. Modeling all distortions for such
a high-dimensional data is a daunting task facing the curse of dimensionality.
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In the current state-of-art speech and handwriting recognizers data distortions
are handled from two different aspects. First, the data is heavily preprocessed by
multiple algorithms. These algorithms are usually carefully handcrafted for a very
specific distortion. For example, in handwriting recognition text is aligned, cen-
tered, deslanted and normalized using several specialized preprocessing routines.
The second aspect for dealing with variations in data is designing the recognizer
that inherently achieves invariance to some of the distortions. Good examples
of such models are convolutional neural networks [LBBH98] and multidirectional
multidimensional recurrent neural networks [GS09].

In this report I present a method for learning temporal features which are
invariant to certain distortions in the input data. The goal of the proposed al-
gorithm is to process complex data (such as handwriting or speech) and output
features that contain only relevant information to the task (e.g. classification)
with filtered-out distortions. The following list summarizes the main principles of
the proposed algorithm:

• Extracted features should contain information about the underlying signal
which is needed for the performed task. For example, in a classification
task information relevant for determining the label of a pattern should be
maximally retained.

• Variation that is caused by selected distortions should be filtered out in the
produced features. That is the same pattern with different distortions should
produce similar temporal features.

• Data processing is performed with an Echo State Network (ESN) [Jae01]. It
is a recurrent neural network with a random and fixed internal connectivity
matrix.

• The features are learned by a linear readout from the reservoir. This is the
core paradigm of reservoir computing. The reservoir acts only as an excitable
medium.

• The training data should contain pairs of examples that differ only by the
distortion that the algorithm should learn to remove in the extracted fea-
tures.

• Learning of the readout weights is performed by solving an optimization
problem which minimizes the mean square error between the outputs when
original and transformed instances of the same pattern are processed by the
reservoir.

• To enforce the features to represent useful information, additional constraints
are added. The learned outputs should be orthogonal, have a zero mean and
unit variance.
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• Learning of such features is efficient, i.e. of the same complexity as the
traditional output learning of the ESN using linear regression.

In the next section I describe the proposed algorithm for extracting trans-
formation invariant features from the reservoir. The performance of it will be
analyzed on simple synthetic data and real handwriting. A brief analysis of a lo-
cal receptive field reservoir layer which utilizes the described learning method will
be performed in the following section. The report will conclude with a discussion
and future directions of the research.

2 Model for extracting distortion invariant fea-
tures

Before going in details of the proposed learning algorithm, lets briefly recap the
basic ESN equations and fix the notation. In this report I will be dealing with a
standard discrete time ESNs with leaky integrator units which are updated by:

x(t+ 1) = (1− λ)x(t) + λ tanh(Win u(t+ 1) +Wx(t)). (1)

Here x(t) is the network unit activation at the discrete time step t, Win and W
are the randomly generated input and internal reservoir weight matrices, u(t) is
the network input and λ is the leaking rate of a neuron. The hyperbolic tangent
is used as a nonlinear activation function for the internal units of the reservoir.
The output of the ESN is read out by:

y(t) = Wout x(t), (2)

where Wout is the output weight matrix. In our case, learning of Wout is the
target of the learning algorithm.

As already pointed out, the input and internal weights for ESNs are generated
randomly. Thus the input is embedded by the reservoir in a (usually) high dimen-
sional space in a very complex manner. The rich expansion of the input allows
learning very powerful models for different kind of temporal data. In our case we
want to exploit the rich expansion of the input signal to separate the distortions
from information which is meaningful to the task. The hope is that the distortions
are most strongly represented in just a few dimensions of the reservoir. In this case
we want to learn a projection from the reservoir of K < N dimensions (where N is
the size of the reservoir) where we omit N −K directions in which the distortions
are pronounced most.

First, let us define what we call invariant features. Suppose φ(u) is the trans-
formation that the learned features should be invariant to (e.g. it shifts the given
input vector u by a random amount). Let the u(t) be the temporal pattern and
ũ(t) = φ(u(t)) its transformed version using the above defined transformation.
Then we will call a feature f invariant to transformation φ(u) if f(u(t)) ≈ f(ũ(t)).

4



This directly gives the criteria that should be optimized in learning invariant fea-
tures. That is, given an input signal u(t) and its distorted version ũ(t), we need to
find functions fj(u) such that the output signals yj := fj(u(t)) and ỹj := fj(ũ(t))
minimize the following quantity:

minimize ∆ :=
〈
(yj − ỹj)

2
〉

t
(3)

where 〈·〉t denotes averaging over time. Additionally we add the following
constraints:

〈yj〉t = 0 (4)
〈
y2j

〉

t
= 1 (5)

∀i < j : 〈yiyj〉t = 0 (6)

These constraints force the extracted features to have a zero mean (equation
4), unit variance (equation 5) and be orthogonal to each other (equation 6). The
first two constrains are added to avoid trivial solutions such as a constant output
which is independent from the input signal u(t). The last constraint forces different
features to represent different information. It also imposes order, meaning that
i-th feature will be more invariant to the distortion than j-th.
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Figure 1: The basic scheme for extracting transformation invariant features. The
ESN is run separately with the input signal u(t) and its transformation ũ(t).
This gives two state vector sequences x(t) and x̃(t) which are passed through a
whitening filter to produce whitened state vector sequences z(t) and z̃(t). The
difference z(t)− z̃(t) is then computed and principle components of the differences
are extracted using PCA. The resulting feature vector y(t) is the K principle
components with smallest eigenvalues.

A reader familiar with Slow Feature Analysis (SFA) [WS02] will notice that
this is very similar to the way slow features are defined. The difference is that
here we minimize the difference between outputs for two signals differing by a
transformation φ(u) while SFA minimizes the derivative of the output signal with
respect to time. Hence we also use a very similar learning procedure to solve

5



the above optimization problem. The algorithm for extracting the transformation
invariant features can be split to the following steps:

1. Input expansion. First we drive the Echo State Network with data and
collect the reservoir states. In this step we want to obtain a rich and high-
dimensional temporal representation of data. The core idea behind the al-
gorithm is the hope that in this representation there will be only a few
directions in which distortions are represented the most. These directions
then can be ignored in further processing of data. To find such directions we
have to collect the states during two separate runs. First, the ESN should
be driven with the original data. Second, it should be driven with the same
data having a particular distortion applied. We denote the collected state
sequences as x(t) and x̃(t). Note that quality of the input expansion can
be controlled by several parameters of the reservoir, such as: input scaling,
reservoir size, spectral radius and leaking rate. For details on how these
parameters affect the reservoir dynamics see [Jae01] and [LJ09].

2. Signal whitening. In the second step we normalize these signals x(t) and
x̃(t) by a whitening (or sphering) transformation. During whitening, the
mean of the signal is subtracted and a linear transformation is then applied
such that the resulting signal has a unit variance in all directions. This
is done by using principal component analysis. This step is important to
make the learned features obey constraints 4-6. In our case the whitening
is performed on the concatenation (x(t), x̃(t)). The result of this step is the
whitening matrix Z.

3. Calculate whitened state difference. After computing the whitening
matrix in the previous step we acquire the whitened reservoir state sequences
z(t) = Z · x(t) and z̃(t) = Z · x̃(t). In this step we calculate the difference
d(t) = z(t)− z̃(t).

4. Find directions of least variance. In the final learning step we have
to find directions of least variance of the whitened state difference d(t).
This will solve the initial optimization problem defined by the 3, because in
these directions on average the square of the signal difference is minimized.
Again these directions can be found using principal component analysis.
Principal components of d(t) will be the directions we are searching for.
Constraint 6 will be satisfied because principal components are orthogonal
while constraints 4 and 5 are satisfied because of the whitening. The result
of this step is the matrix P containing the K principal components of d(t)
with the smallest eigenvalues.

As we can see the training algorithm produces two matrices: the whitening
matrix Z and the projection matrix P. The output of the ESN in the exploitation
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phase is then obtained by using the output matrix Wout = P · Z. The scheme
described above is illustrated in Figure 1.

From a computational perspective the learning boils down to the following
steps:

1. Run ESN with u(t) and ũ(t) according to Equation 1. Obtain the reser-
voir state sequences x(t) and ˜x(t) (ignoring the initial washout phase). Let
x̄(t) := (x(t), ˜x(t)), i.e. temporal concatenation of the reservoir state se-
quences.

2. Subtract the temporal mean of reservoir states: x̄0(t) = x̄(0)− 〈x(t)〉t. Let
X̄0 = [x̄0(1) · · · x̄0(M)].

3. Compute the correlation matrix C = X̄0X̄
T
0 and perform SVD on it, getting

(U,S,V) = svd(C).

4. Compute the whitening matrix by Z = S− 1
2 · U and obtain the whitened

reservoir state sequences z(t) = Zx(t) and z̃(t) = Zx̃(t).

5. Compute the whitened state difference signal d(t) = z(t)− z̃(t).

6. Subtract the temporal mean from the whitened state difference d0(t) =
d(t)− 〈d(t)〉t. Let D0 = [d0(1) · · ·d0(M)].

7. Compute the correlation matrix C′ = D0D
T
0 and perform SVD on it, getting

(U′,S′,V′) = svd(C′).

8. The feature projection matrix is P = U′(N −K + 1 : N, :) (i.e. last K rows
of the U′ matrix)

In the above description step (1) corresponds to input expansion, (2)-(4) to the
whitening phase, (5) to the state difference calculation and (6)-(8) to the invari-
ant feature extraction. After the training in the exploitation phase the distortion
invariant features are obtained simply by using the learned whitening and feature
projection matrices (Z and P) on the states of the reservoir. The described learn-
ing algorithm is fast (i.e. of the same computational complexity as the traditional
supervised ESN learning by performing linear regression). This feature extraction
is also stable because in the spirit of reservoir computing the feature extraction
does not modify the reservoir or influence the dynamics in any way.

2.1 Spatial feature extraction from a single reservoir

The first demo example is a proof-of-principle and uses rather simple synthetic
input data. For this purpose I use a simple sine wave as an undistorted signal. To
generate distorted versions of this simple core signal three different transforma-
tions will be analyzed: shift variation, scaling variation and both shift and scaling

7



variations together. The distorted data in three described settings was generated
according the following expressions:

ushift(t) = sin(at) + f sin(bt+ c) + ν

uscale(t) = sin(at) · g · (2 + sin(dt+ e)) + ν

ushift+scale(t) = sin(at) · sin(dt+ e) +m sin(bt+ c) + ν

Here sin(at) is the core undistorted signal that we are interested in recovering.
The generated distortions are on a significantly slower time scale than the signal.
In the experiments the constants were selected from the following ranges: a ∈
[0.09; 0.11], b, d ∈ [0.09; 0.011], f, g ∈ [2; 3], e, c ∈ [0; 2π]. Also low amplitude
Gaussian additive noise ν is added to the distorted signal. Examples of clean
and distorted signals are shown in Figure 2. In this demo I use a standard ESN
(Equation 1) with a reservoir of size 50. The reservoir weight matrix has a spectral
radius of 0.9 and the input weights are sampled form a uniform distribution in [-
0.5,0.5]. The leaking constant λ is set to 0.7. Precise values are not very significant
because similar results can be achieved in a very wide parameter range.

To learn features invariant to a particular transformation I first generate two
signals according to expressions given above. It is important that the driving signal
in both of them remains the same (i.e. sin(at) part) while the distortion is different
(e.g. parameters b,c and f for shift distorted signal). These signals are used to
run the ESN and learn the invariant features using the algorithm described in the
previous section. To test the outcome of the training I generate a third signal
having the same type of distortion, however, here I use a different driving signal
(i.e. change the parameter a). This is done to ensure that the learned features
generalize well for slightly different signals than the ones that were seen during
training.

The features generated by the trained model for a specific distortion are shown
in Figure 2. The plots show 5 features that are most invariant to the selected
distortion. We see that, as expected, these features show almost no sign of severe
distortions that are exhibited by the input signal. Moreover, from visual inspection
it can be seen that these features also contain a lot of information about the
undistorted driving signal.

It is important to quantify how well the extracted features represent the un-
derlying undistorted signal (i.e. sin(at)). For this purpose I use them to recon-
struct the clean signal by using standard linear regression. The regression weights
are computed on the training data. The reconstruction quality is measured by
computing the normalized root mean square error (NRMSE) of the reconstructed
signal and the actual clean signal during the testing run. It is interesting to see
how the reconstruction quality changes when more and more distortion invari-
ant features are used. For this purpose the reconstruction was evaluated with
all possible numbers of features. The results of this study are shown in Figure
3. As a comparison, the clean signal was also reconstructed from distorted input
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Figure 2: On the left: the driver signal (in red) and the distorted signal (in
blue) for different distortions. On the right: five features with least information
about the distortion (ordered from most to less invariant). Vertically: signal with
shift distortion, signal with scaling distortion, signal with both shift and scaling
distortions applied.
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Figure 3: The NRMSE of reconstruction of the driver signal from the extracted
features. On x axis - the number of features used, on y axis - the reconstruction
error. The data is corrupted with shift distortion.

using different numbers of raw reservoir states and different numbers of principal
components of raw reservoir states. We see that using the invariant features the
reconstruction error drops very quickly and is optimal when using only 4 most
invariant features. Conversely, the reconstruction error when using an increasing
number of the raw reservoir states or principal components decreases slowly and
reaches the optimal value only when the whole 50 components (i.e. use the whole
reservoir as readout) are used. We may conclude that the learned features in-
deed efficiently represent the desired information and can be used to learn a low
dimensional distortion-invariant representation of data.

After getting positive results on the simple dataset, I tested the algorithm on
difficult real world data. For this purpose I used the USPS handwritten digit
dataset 1. This dataset contains 16x16 pixel size grayscale images of handwritten
digits from zero to nine. To generate a temporal data from it a random sequence of
single digit images were concatenated. The goal of this example is to learn vertical
shift invariant features. Therefore, a random vertical shift distortion of ±2 pixels
was added to every digit. This resulted in a 20-dimensional signal of handwritten

1Can be downloaded from http://cs.nyu.edu/~roweis/data/usps_all.mat
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Figure 4: The shift distorted handwritten digit data (top) and the reconstruction
from 200 most invariant features with the shift variation undone (bottom).

digits (see Figure 4). Similarly to the previous demo, three separate signals were
generated: two for training (with the same underlying digits, but different shift
transformations) and one for testing (with different digits).

In this example we are dealing with a high-dimensional and difficult data, thus
a large reservoir of 500 units is used. The internal weight matrix is scaled to a
spectral radius of 0.9. The input weights are generated by sampling from a uniform
distribution in [-0.1,0.1] and the leaking constant λ is set to 0.7.

Because of the complex nature of the input, it is virtually impossible to get an
intuition on what the extracted raw features represent. For this purpose I generate
a feature correlation with a past input window diagram. Namely, I compute
FCi = 〈yi(t) · [u(t− k + 1)...u(t)]〉t, where index i denotes the i-th feature in the
feature vector y. This gives an idea to what parts of input the feature responds
most. The feature correlation diagrams for handwriting data are shown in Figure 5.
We see that the most shift invariant features indeed extract low spatial frequency
components from data which are least affected by vertical shift. On the other
end, the least invariant features show little order in their response pattern and are
greatly influenced in even small variations in the input (e.g. single pixel shift).

Again it is interesting to quantify how well the extracted features represent the
data. We can do it by performing the reconstruction of the input data without the
shift distortion from the features. Similarly to the first demo, the reconstruction
weights are learned using linear regression on the training data and tested on the
reconstruction of the test data. In this case one additional trick was employed.
Due to the nature of data it is essentially impossible to remove the shift distortion
instantaneously. For this reason the reconstruction is delayed by 4 timesteps, i.e.
at time t the undistorted input at time t− 4 is produced.

The sample reconstruction of input with shift removed is shown in Figure 4.
200 most shift invariant features were used in this case. It is evident that the re-
construction is far from perfect, which is confirmed by the reconstruction NRMSE
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Figure 5: Feature correlation with the last 12 timesteps of input. Top two rows:
the 12 most invariant features. They show a clear organization responding pri-
marily to the vertical and diagonal lines in the input. Bottom row: the 6 least
invariant features. They are highly dependent on pixelwise vertical shift of the
input.

of 0.618. In Figure 6 the reconstruction performance with different number of
features is compared. Again, as in the first demo example the reconstruction er-
ror drops much faster when using the shift invariant features compared to the
raw reservoir states or principal components of the reservoir. Here, though, the
optimal performance is achieved with a 150-180 feature set (i.e. 30-40% of the
reservoir compared to 10% in the previous demo). Another important observa-
tion is that the optimal reconstruction NRMSE using the raw states (or principal
components) of the reservoir is worse (0.650). Although, improvement of the re-
construction performance when using the shift invariant features is not drastic, it
is still statistically significant.
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Figure 6: The NRMSE of the reconstruction of the handwriting signal without
the shift from extracted features. On x axis - the number of features used, on y
axis - the reconstruction error.

2.2 Model for processing multidimensional data

There are two shortcomings of the described algorithm that I want to briefly
address in this section. One is that it requires two instances of data that differ
only by the desired distortion. Second, that it does not work as well for complex
high-dimensional data as for simple ones. The idea to try to circumvent this is to
have a modular reservoir, where each module (i.e. reservoir) has local receptive
field designed in a such way that adjacent modules get adjacent data dimensions of
the input (see Figure 7). In addition, input and internal weights of the modules are
shared between all of them. In this case if we look at any two adjacent modules we
see that they differ only by the received input which is shifted by a few dimensions.
Thus we can directly apply the described feature learning algorithm using states
of the adjacent modules and learn locally shift invariant features.

For training of such modular reservoir one run with the original data suffices.
The shift invariant features are learned due to the internal structure of the model.
In addition, the fact that every module is processing only a few dimensions of the
data might allow to learn a more powerful model in the long run. Finally, there is
one additional benefit of using such architecture. Namely, we can learn not only
the vertical shift invariant features in an easy way. Let the output feature vector
of the i-th module at time t be yi(t). Then minimizing

〈
(yij(t)− yi+1

j (t))2
〉

t
give

the vertical shift invariant features as in previous examples, but we can also choose
to minimize

〈
(yij(t− 1)− yij(t))

2
〉

t
which would give the horizontal shift invariant

13



features2 or
〈
(yij(t− 1)− yi+1

j (t))2
〉

t
giving features invariant to a diagonal shift.

Indeed this learning scheme perfectly fits for learning outputs of the modules in
this architecture because (a) the learned features are invariant to local shifts (b) a
low dimensional output is enough to capture the underlying data (c) the learning
is unsupervised, i.e. a teacher signal is not needed. In fact, the core idea of the
algorithm was found when thinking on how to train such modular architecture
shown in Figure 7.




    

Figure 7: A modular reservoir for processing high-dimensional input. Each reser-
voir sees only a small window of the input. Input and internal weights are shared
by all reservoirs. The output feature vectors yi(t) (in red) should be learned.

A single layer of the modular reservoir was tested on the same handwritten digit
shift removing task as described in the previous section. Reservoirs of 50 neurons
were used for the modules. Each module received input from 6 input dimensions
with adjacent modules having the input shifted by a single dimension resulting
in 15 modules in total. Despite a substantially different setup the performance
of this model was very similar to the single reservoir. The best reconstruction
NRMSE (0.634) was achieved using 30 features while the reconstruction error
dynamics and feature correlation diagrams were almost identical to ones achieved
by the single reservoir (figures 5 and 6). This indicates that although the learning
algorithm integrates nicely into the modular reservoir the modularity alone does
not influence performance much (which is expected). The full potential of such a
modular architecture, however, should come from processing the extracted features
in a multiple hierarchical layers. The details on how multiple such layers should
be integrated to make use of the extracted features in a most efficient way remain
to be worked out.

2This is actually the standard Slow Feature Analysis.
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3 Discussion

An algorithm for learning distortion invariant features from a reservoir is out-
lined in this report. The core idea of the approach is to find linear projections
from the reservoir such that the projected reservoir states vary minimally when
the same signal with a distortion is processed. The learning process of finding
such projections boils down to solving an optimization problem by using principal
component analysis first for whitening the reservoir states and then for finding
the optimal projections. Due to the constraints in the optimization problem, the
resulting features are uncorrelated and ordered, i.e. from the most invariant to
the least invariant to the selected distortion. The algorithm was tested on a sim-
ple and complex data. In both cases the extracted features showed invariance to
the selected distortion and carried a high amount of information about the core
signal. Namely, 10-35% of the most invariant features were enough to optimally
reconstruct the underlying undistorted signal.

There are several target applications for the proposed algorithm. First and
foremost it allows one to generate a rich temporal feature set of a complex signal
while filtering for distortions. This approach could be used in the early stages
of speech or handwriting processing architectures. The second application of the
algorithm is to use it for obtaining a low dimension readout from a reservoir. As
seen in the examples the relatively small amount of invariant features are capable
to capture the information about the driving signal (contrary to PCA, which does
not seem to work well). Finally, the described algorithm will hopefully be a core
part of the currently developed architecture for multidimensional data processing
briefly described in Section 2.2.

This report contains initial findings on learning distortion invariant features
from reservoirs. There are multiple open questions that have to be further inves-
tigated:

• The current algorithm simply reads out features from the reservoir, thus
fully relying on it to obtain nice separation of the driving signal and distor-
tion components. Potentially much better features could be extracted if the
reservoir itself would be adapted. Thus possibility of having feedback con-
nections from the extracted features or internal adaptation of the reservoir
is currently under investigation.

• One of the shortcomings of the current algorithm is that two signals are
required for the training phase; they must have an identical driving signal
and should differ only by the distortion that is applied. It is interesting to
investigate how this constraint could be lifted allowing to learn, for example,
time warping invariant features.

• In the described handwriting example the two training data sequences were
generated by using the same digit instances with a random shift added. It
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is interesting to analyze if algorithm can work if different instances of the
same digits were used instead.

• Current learning is performed offline, however for some applications it might
be beneficial to obtain an online version of it.
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[LJ09] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing ap-
proaches to recurrent neural network training. Computer Science Re-
view, 3(3):127–149, 08/2009 2009.

[WS02] Laurenz Wiskott and Terrence Sejnowski. Slow Feature Analysis: Un-
supervised Learning of Invariances. Neural Computation, 14(4):715–
770, 2002.

16

http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz
http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz

