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Abstract

Neurodynamical models of working memory (WM) should provide mechanisms
for storing, maintaining, retrieving, and deleting information. Many models ad-
dress only a subset of these aspects. Here we present a rather simple WM model
where all of these performance modes are trained into a recurrent neural net-
work (RNN) of the Echo State Network (ESN) type. The model is demonstrated
on a bracket level parsing task with a stream of rich and noisy graphical script
input. In terms of nonlinear dynamics, memory states correspond, intuitively,
to attractors in an input-driven system. As a supplementary contribution, the
article proposes a rigorous formal framework to describe such attractors, gen-
eralizing from the standard definition of attractors in autonomous (input-free)
dynamical systems.
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1. Introduction

Working memory (WM), citing a version of the standard definition from
Durstewitz et al. (2000), is “the ability to transiently hold and manipulate goal-
related information to guide forthcoming actions.” We would like to add that
the storing should, in principle, be stable (or stabilizable on demand, e.g. by
rehearsal) for unbounded timespans. This commitment is implicit in all models
of WM that we are aware of.

Most of the RNN oriented literature on WM is concerned with models to ex-
plain behavioral and neural observations from cognitive processing experiments
(reviews Durstewitz et al. (2000); Howard (in press)). This is however not the
only possible motivation for neural network investigations into WM. One may
also investigate WM mechanisms with the aim to improve the engineering of
complex signal processing applications. This view is adopted in this contribu-
tion. The background is a European research endeavour which aims at estab-
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lishing neurodynamical models as a viable alternative to the standard Hidden
Markov Models (HMM)-based speech and handwriting recognition technology1.
Thus, our examples will be taken from that domain.

If the aim is engineering applications, not explaining nature, an immediate
question is why one should investigate RNN based WM models at all. After
all, standard digital signal processing systems offer a number of convenient
basic types of transient memories (e.g., multistable switching elements, FILO
and FIFO buffers, RAMs), and task-specific memory management routines are
readily programmed. Thus, what could be a benefit of “going neural”? Our
lead in this regard is that

• a potential advantage of complex RNN based signal processing is rich-
ness and dynamical adaptivity of internal representations – in the sense
that they are high-dimensional, may have interesting and relevant self-
organizing properties, are dynamically evolving, and are adaptable through
learning;

• items stored in WM should be enabled to modulate the ongoing dynamical
processing – in the sense of providing context;

• thus, these items should directly interact with the RNN that uses them;

• this, in turn, is most naturally warranted if the WM itself is framed as a
RNN – be it as a separate one connected with feedback loops to the RNN
that does the ongoing processing, or (our approach) as a subdynamics of
the latter.

A widely adopted idea is that stable short-term memory is realized in RNNs
by way of attractors. A diverse zoo of attractors in RNNs has been explored in
a variety of contexts. The biologically oriented WM literature mainly appears
to be considering point attractors (cell assemblies and bistable neurons) and
traveling waves (synfire chains), see the survey of Durstewitz et al. (2000). In
theoretical physics, pattern (= spatiotemporal attractor) formation in excitable
media is an area of its own standing, with connections into computational neuro-
science and robotics via neural field theories of cortical representation (Schöner
et al., 1995; Freeman, 2007a,b). Similarly, the investigation of coupled oscillator
networks is a significant research arena in theoretical physics with obvious con-
nections to attractors in (mostly spiking) RNNs, see, for instance, Radicchi and
Meyer-Ortmanns (2006). Chaotic attractors have been investigated as informa-
tion representing neural mechanisms at least since Yao and Freeman (1990) and
Babloyantz and Lourenço (1994); they are intriguing because of their richness of
structure and the option to stabilize and address sub-lobes as representational
subunits (Stollenwerk and Pasemann, 1996; Tsuda, 2001). In machine learning,

1www.reservoir-computing.org/organic
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the task of training a RNN to become a stable pattern generator, i.e. a peri-
odic attractor, has been addressed in many ways (e.g. Zegers and Sundareshan
(2003)).

Attractors, by definition, keep the system trajectory confined in their sup-
port. Since clearly cognitive dynamics does not get ultimately trapped in at-
tractors, it is a long-standing modeling challenge to account for “attractors”
that can be left again. Many answers have been proposed. If one adheres to the
standard concept of an attractor, neural noise is a plausible agent to “kick” a
trajectory out of an attractor. A difficulty with this simple solution is that the
effects of noise are unspecific and not easily reconciled with systematic infor-
mation processing. Departing from the classical notion of attractors, a number
of alternative “attractor-like” metastability phenomena have been considered
that may arise in high-dimensional nonlinear dynamics: saddle point dynamics
(Rabinovich et al., 2008); attractor relics (or attractor ruins) where classical
attractors in a fast-timescale subsystem are destroyed by a slow-timescale satu-
ration dynamics (Gros, 2009); transient attractors defined by transient volume
contractions of a flow (Jaeger, 1995); unstable attractors, a mathematically sur-
prising kind of classical attractors, which however arise generically in certain
spiking neural networks and can be left under the impact of arbitrarily small
noise because they are surrounded arbitrarily closely by basins of other attrac-
tors (Timme et al., 2002); high-dimensional attractors (initially named partial
attractors) which govern only some dimensions of a high-dimensional phase
space (Maass et al., 2007); attractor landscapes shaped by control parameter
(input) dynamics which lead to the appearance and disappearance of attractors
due to incessant bifurcations (Negrello and Pasemann, 2008).

Certainly yet more proposals exist of which we are not aware – they may
not be easy to spot because of the diversity of fields where they are described.
Biological brains may exploit several of these phenomena simultaneously; evo-
lution does not care about uniform and simple mathematical models. In our
opinion, all of this is likely only the beginning of explorations into attractor-like
phenomena in high-dimensional dynamics. We suspect that current mathemat-
ics is still blind to important phenomena in high-dimensional dynamics which
may be important for understanding information processing in RNNs in general
and WM in particular, and regard research on the latter, including our own, as
provisional.

This article makes two contributions which are quite different in nature.
Firstly, we describe a concrete WM mechanism based on Echo State Networks
(ESNs, Jaeger (2001)). This mechanism is obtained through a supervised train-
ing procedure, where not only the “raw” memory is shaped, but additional
functionality is trained. In our examples, this additional functionality concerns
image processing (for detecting specific bracket symbols in a visual input stream)
and counting (to keep track of opening levels of detected brackets). The training
scheme is generic and could similarly be employed for other input processing
tasks and other operations on memorized elements, provided they can be defined
through training examples. The memory items are represented by a dynamical
phenomenon related to point attractors, in that each stored item is reflected by

3



locking one of the RNN neurons in a specific “on” state. Much of the reser-
voir dynamics, however, is left largely unconstrained and remains utilizable for
other processing tasks (here: ongoing character recognition and classification
of text statistics). Attempting to give a precise mathematical account of this
phenomenon, we were guided to the formal model of input-induced attractors.
Their rigorous definition (which we call γ-attractors) is the second contribution
of this paper.

ESNs are an instance of the Reservoir Computing (RC) principle of designing
and training RNNs. According to this principle, a fixed, large, random reservoir
RNN is excited by input signals, and the desired output is combined from the
excited reservoir signals by a trainable readout mechanism (often a simple linear
regression). The RC principle has been independently discovered in cognitive
neuroscience (Temporal Recurrent Networks, Dominey et al. (1995)), in com-
putational neuroscience (Liquid State Machines, Maass et al. (2002)), and in
machine learning (Echo State Networks, Jaeger (2001)). RC has demonstrated
its usefulness for a variety of time series processing tasks (Jaeger and Haas, 2004;
Lukosevicius et al., 2007; Verstraeten et al., 2006), is becoming a standard tool
in recurrent neural network modeling (Jaeger et al., 2007) and has spurred an
active area of research (survey: Lukosevicius and Jaeger (2009)).

Attractor-based memory phenomena in RC systems have first been described
by Jaeger (2002), where a multistable switching system was trained. The switch-
ing states were associated with specific output neurons, which could be in “on”
or “off” states. A similarly switchable system was recently obtained (as one
among many other examples) in ESNs by a novel RC training algorithm which
may operate simultaneously on the reservoir and the readout, and which has
unprecedented stability properties (Sussillo and Abbott, 2009). In this system,
the switching states were not created and maintained by feedback from specific
output neurons, but as complex (and freely combinable) submodes of the reser-
voir dynamics. The present contribution goes beyond these investigations in
that it combines the raw WM functionality with ongoing input data processing
and trained interactions between WM states, and thus proposes an advancement
on the road to practically usable, RNN-based WM mechanisms.

The article is organized as follows. Section 2 gives a brief introduction to
ESNs. Section 3 introduces a model of working memory based on an ESN. This
concrete model is followed by our proposal of input-induced attractors in Section
4, together with a brief survey of related mathematical approaches. Section 5
presents a discussion on the results obtained throughout this paper.

2. Echo State Networks

Echo State Networks (ESNs) are a family of recurrent neural networks com-
posed of a reservoir, a recurrent internal layer of size N , to which K input and
L output units are added; for a diagram of this architecture see Figure 1. If
u, x, y are the activations of the input, the internal and the output units re-
spectively and Win, W, Wout and Wb are the weights matrices for the input
connections, internal connections, output connections and feedback connections
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Figure 1: General structure of an echo state network. Only the connections indicated by
dashed lines are trainable (collected in Wout).

from the output units back to the reservoir, the system update equations are
the following:

x(n+ 1) = f(Winu(n+ 1) +Wx(n) +Wby(n)) (1)

y(n+ 1) = fout(Wout(u(n+ 1),x(n+ 1))) (2)

Here, f subsumes the activation functions of the internal units (usually
the hyperbolic tangent) and fout the activation functions of the output units.
Win,W,Wb are randomly initialized and only Wout changes during training.
For the standard supervised offline learning approach, a training sequence is fed
to the network through the input units. The target of the output units is also
needed to compute the reservoir activations (see Eq. (1)). We use the target
at time step t − 1 in order to compute the reservoir activation at time step t.
The reservoir state vectors, together with the activations of the input units are
stored row-wise in data collection matrix G, and if Ytarget is the target signal,
then the output weights are computed using linear regression as shown in Eq.
(3), where † stands for pseudo-inverse.

Wout = (G† · fout
−1

(Ytarget))
T (3)

An important condition to make the learning of output weights by regression
a well-defined procedure is the Echo State Property (ESP). This is a property
of the reservoir and the admitted input. Roughly stated, a reservoir has the
ESP w.r.t. a given admitted input range if for any infinite input sequence the
network states x(n) asymptotically “forget” the (arbitrary) initial state x(0)
used at startup time. Formal definitions of the ESP are given in Jaeger (2001),
and refined algebraic conditions are in Buehner and Young (2006). In practice,
the ESP is usually ensured when the spectral radius of the reservoir weight
matrix W is set to a value below unity, but we emphasize that this is neither
a necessary nor a sufficient criterium (Jaeger, 2007), in spite of a folklore belief
in the field that it is both.

According to the task that needs to be solved, there are a few global pa-
rameters that need to be tuned for optimal learning, namely, global scalings of
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Figure 2: Diagram of the WM model. Dashed connections are trained, the others are left
untouched. Note that the main differences to figure 1 are the memory units. They differentiate
themselves from output units by having trainable connections among them. Also in our setup
the output units do not have feedback connections.

input weights, reservoir weights, and output feedback weights. In the RC field,
the global scaling of the reservoir weights W is typically specified through the
spectral radius of this matrix. All these tunable parameters are explained in
more detail in Jaeger (2001).

3. Working memory model

In this section we present a working memory model based on an ESN which
uses a dynamical mechanism related to point attractors for storing information.
It is able to simultaneously store information, use the stored information to
modulate further storing, detect patterns in the input that trigger memory
content switches, and perform input classification.

3.1. Model

Our model is obtained by adding a set of special output units to an otherwise
standard ESN. We called these units WM-units, and they differ from normal
output units by having trainable connection from one to another or to them-
selves, as in Figure 2. In our setup we only allow feedback connections from
the WM-units to the reservoir but not from the other, regular output units.
Another difference between WM-units and output units is that they are binary-
state neurons which can store memory bits. To achieve this behavior we use a
sharp threshold function fm as the activation function of these units:
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fm(x) =

{
−0.5 x ≤ 0.
+0.5 x > 0.

(4)

The network is described by Eqns. (5), (6) and (7), where we use the same
conventions as for the ESN (section 2). Equation (5) is similar to Eq. (1), with
the difference that Wb is the matrix collecting the feedback weights from the
WM-units (not output units) to the reservoir, and m denotes the activations
of the WM-units. Equation 6 is identical to Eq. (2). The activation of the
WM-units are computed through (7), where Wmem collects the weights from
the input units, the reservoir and the WM-units to the WM-units.

x(n+ 1) = f(Winu(n+ 1) +Wx(n) +Wbm(n)) (5)

y(n+ 1) = fout(Wout(u(n+ 1),x(n+ 1))) (6)

m(n+ 1) = fm(Wmem(u(n+ 1),x(n+ 1),m(n))) (7)

To train the model one needs to use Eq. (5) to compute the reservoir re-
sponse, where m is replaced by the target of the WM-units (teacher forcing).
The activations of the reservoir together with the input are collected in the ma-
trix G, while the same activations, the input and the target of the WM-units are
collected in H. Given Ytarget the target for the output units and Mtarget the
target of the WM-units, Wmem and Wout are computed using linear regression
as shown in Equations (9) and (8). As before † stands for pseudo-inverse. In

(9) we did not pass the target through fmem−1

because there is no inverse for
fmem (as defined in Eq. (4)).

Wout = (G† · fout
−1

(Ytarget))
T (8)

Wmem = (H† ·Mtarget)
T (9)

At first sight, the strong couplings between WM-units through the trained
Wmem might appear problematic for a “clean” storing of memory items, because
in technical storage devices one does not usually desire dynamical interaction
between stored items. However, we will demonstrate that such interactions can
be harnessed for realizing desirable processing functionalities which go beyond
pure storage and retrieval.

3.2. Experiments

Task. The task is to keep track of the number of opened curly brackets as
the system reads a rich graphic script input, one vertical pixel line per timestep.
An input sample is shown in Figure 3. The system is required to maintain a
counter. Any time an opened curly bracket appears at the input, the counter
has to increment by 1. When a closed curly bracket appears the counter needs
to decrement by 1. The architecture is required to be able to count up to 6.
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Figure 3: An fragment example of the rich graphic script used as input. The image was scaled
for better visualization.

The input data are generated such that no overflow or underflow occurs. This
task requires a persistent memory, as the network must remember the number
of brackets seen for unbounded periods of time, but it also requires the ability
to do the basic arithmetic operations of adding and subtracting 1.

In addition to this, as a “computational payload” the network also has to
predict the next character. This functionality is trained into the “normal”
output units. We use the same number of output units as the number of possible
characters (excepting the curly bracket characters). Each output unit predicts
how probable is that the corresponding character will follow in the input stream.
In doing this, the network will benefit from taking into account the current
bracket level (the number of unclosed brackets) since the conditional distribution
of the next character given the previous differs across the bracketing levels. This
additional task is meant to demonstrate that the network is able to use the
information stored in the WM-units.

Data. We train the network in two stages. During the first stage only Wmem

is computed. In this stage training sequences of only 10000 symbols are used.
In the second stage the weights Wout to the output units are computed. For
the second stage we use sequences of 49000 characters. In both cases the input
sequences are generated in the exactly same way.

For generating the sequences, characters are chosen randomly with a prob-
ability of 70% from a set of 65 different ASCII symbols (letters in lower case,
numbers and other symbols typically used in text including other types of brack-
ets and the blank space character), with a probability of 15% an open curly
bracket and with 15% a closed curly bracket. The opening and closing curly
brackets are inserted such that they form matching pairs with a nesting level
of up to 6. According to the nesting level i (which can be between 0 and 6),
a different Markov chain is used to sample from the other 65 characters. The
Markov chain is defined such that if the current character has the index j (a
number between 1 and 65 ) then the next character will be j + i+1 modulo 65
with probability 80% and with equal probability (0.3125%) any of the other 64
characters.

The testing sequence is generated similarly. It has 35000 characters, picked
now with a probability of 94% from the same set of 65 ASCII characters, while
curly brackets are picked with a probability of only 6%. The same 7 Markov
chains are used to sample characters in the periods corresponding to the 7
bracket levels.

The symbols are transformed afterwards to images by printing them with a
randomly selected font from four different font sets (FreeMono, FreeMono Bold,
FreeMono Italic and FreeMono Bold Italic of Gimp 2.3.6). All fonts have a
width of 7 pixels and height of 12 pixels, where each pixel is a grayscale value
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between 0 and 1. Before printing, the character images are stretched randomly
to a width of 6, 7 or 8 pixels. Salt-and-pepper noise with an amplitude of 0.1 is
added. The final image-per-symbol has a fixed height of 12 pixels and a varying
width. The images are concatenated one after the other (no extra blank space
is introduced), they appear in the script as the result of choosing the blank
space character. The resulting “script video sequence” is fed to the network
one vertical line at a time step through 12 input units. The testing data are
more challenging than the training data in the sense that switches between curly
bracket levels occur more rarely, which means that the WM must maintain the
current bracket level for longer periods. More precisely, in our training sequence
this period ranged between 0 to 248 cycle updates, with a mean of 17.7, while
in testing data the period ranges between 0 to 691 cycles with a mean of 96.8.
Note that while the average amount of time spent in a state during training is
well within the reach of the innate, “fading” short term memory of the reservoir
(Jaeger, 2002), this is not the case for the testing data.

Architecture detail. The model used has 13 input units, 12 representing a
line of the data, while the last unit feeds a constant bias of -0.5. The input to
reservoir connections are sparse, 80% of them being 0. The rest are randomly
chosen to be either -0.5 or 0.5 with equal probability. The reservoir has 1200
units with only 12000 non-zero connections. The non-zero weights are either
-0.1540 or +0.1540 with equal probability. The reservoir weight matrix has a
spectral radius of 0.5. The activation function of the reservoir’s units is tanh.
The number of units as well as the spectral radius was chosen such to maximize
the performance of the model. We remark that these values are a compromise
between the requirements of the different subprocesses that go on simultaneously
in the network. The task that the network is asked to solve requires the network
to recognize characters, to memorize the number of unclosed curly brackets and
to be able to do basic arithmetic operations.

Six WM-units are connected to the reservoir. The feedback weight matrix
from the WM-units units to the reservoir is dense, all weights being randomly
picked to be either -.4 or +.4. The value k of the counter is represented in the
WM-units by having the first k units at +0.5 while the rest are at -0.5. The
value 0 means that all WM-units are at -0.5. The network is able to represent
the numbers 0, 1, 2, 3, 4, 5 and 6. The WM-units have the activation function
described in equation (4). In addition to this, 65 ordinary output units are
connected to the reservoir, with no feedback to the reservoir. The activation
function for the output units is the identity function.

Training.
A teacher signal (target) for the 6 WM-units is generated for the training

sequence, which represents the prescribed -0.5/0.5 switching as curly brackets
pass by in the input. The target switches occur in the middle of the presentation
of a bracket character (see Figure 4). The training is done using the standard
supervised offline learning that computes the WM-units weights such that the
distance between the WM-units and the target is minimized in the mean square
error sense, as shown by (9).

Computing the weight matrix for the output units is done in a similar man-
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Figure 4: Fragment of data used during training. (a) shows the input data. (b) represents
WM-units’ target. Each unit is shown on a different line by using black for -0.5 (off state)
and white for 0.5 (on state). A black line is inserted between any two lines corresponding to
WM-units’ targets. (c) shows the target for the output units. The target is defined only when
switching between characters (the undefined regions are plotted as gray). At the points where
the target is defined, only the unit representing the next character is at 1 (plotted as white)
while the others are at 0.

ner. We first generate the target signal for the 65 output units. At any given
time step t either the target is undefined if t occurs during a character presenta-
tion or it is 0 everywhere except for the unit corresponding to the next character
where value is 1. This is represented in Figure 4 by using gray where the target
is undefined. This allows us to use longer training sequences then those for
the WM-units. To obtain the output weights we collect only the states of the
reservoir and the input at those steps when the target is defined. We then use
Eq. (8) to compute the output weights that would minimize the mean square
error between the outputs and the target.

Results. We run the experiment 30 times, each time with different randomly
generated training and testing sequences, and freshly randomly generated reser-
voir, input and feedback weights.

We start by inspecting the performance of the WM-units. An appropri-
ate measure of the performance of the memory performance is the number of
mistakes done. As a mistake we consider events where the WM-unit state is
different from the target. We do not check for mistakes during the presentation
of a curly bracket (i.e., we do not evaluate transient effects within the timespan
of a curly bracket). Once a mistake is present, we count it and then correct the
state of the network. To do so, we only correct the WM-units state by exter-
nally forcing them for one time step to the desired configuration; the feedback
connections then will also correct the reservoir’s state. We sorted the errors in
false positives (when the network detects a bracket character even though none
is present in the input) and false negatives (when the network fails to detect a
bracket). Table 1 lists the error counts.

At a closer inspection of the errors produced in the 30 runs, we found that
the network never changed the WM-units to an invalid (non-coding) state or
by increasing or decreasing the counter by more then one. This suggests that
any error is actually the result of misclassification of a character, and not by
the other subprocesses of WM-unit state management (adding/subtracting one
or keeping a certain value stable).
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Type of Number Percentage Percentage of Percentage of
error of errors of curly characters time steps

brackets

false negatives 7.2± 6.5 0.34± 0.30% 0.02± 0.018% 0.003± 0.002%
false positives 59.8± 21.6 2.84± 1.02% 0.17± 0.061% 0.024± 0.008%

total 67.0± 22.9 3.18± 1.09% 0.19± 0.065% 0.027± 0.009%

Table 1: Number of erroneous WM states obtained by the ESN, averaged over 30 runs

Following up on this observation, we further differentiated the number of
false positives according to what character triggered the error. Table 2 shows
these results, which coincide with our intuition of when the recognition subtask
might fail.

Character Number of times Number of times
(number of characters in the counter increased the counter decreased
the testing sequences)

“(” (499.5± 22.3) 21.5± 10.1 0± 0
“)” (502.4± 18.6) 0± 0 0.5± 0.2
“[” (496.2± 22.8) 5.8± 5.1 0± 0
“]” (501.3± 15.1) 0.05± 0.03 6.0± 5.4
“@” (492.7± 21.3) 25.1± 14.1 0.2± 0.1

other 0.05± 0.04 0.6± 0.5

Table 2: Trigger characters for false positives, averaged over 30 runs

Another question one might raise is if correcting only the WM-units state is
sufficient for correcting the state of the network. If this would not be the case
we would expect several errors to occur in rapid succession in a short timespan
(during the same character presentation or over two consecutive characters).
Such errors would also suggest instability of WM-unit locking. But such sce-
narios never happen in any of the 30 runs.

We also measured the average absolute value of the computedWmem weights,
i.e. the weights leading to the WM-units (Table 3). Their modest size is in-
dicative of a robust generalization, which indeed was observed, since the testing
data were more challenging than the training data.

considered weights average absolute value

input to WM-units weights 0.2327± 0.1813
reservoir to WM-units weights 0.0667± 0.0591
WM-units to WM-units weights 0.5825± 0.5627

Table 3: Average learned output weights of the ESN (over 30 runs).

The “payload” task our architecture had to solve was to predict the next
input character. In order to measure the performance of the network on this
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task, we considered as the predicted next character the most probable one (the
one that corresponded to the output unit with the maximal score). The per-
formance is quantified by simply counting the number of erroneous predictions.
Note that the output units do not feed back to the reservoir and therefore a bad
prediction will not affect any of the following predictions.

At any character switching step in between curly brackets, the next charac-
ter k is selected according to a distribution that puts 80% weight on a single
character. What we ask the network to do is to learn 65 such peaked condi-
tional next-character distributions for each bracket level, in total 455 different
distributions. Assuming that the network learns them perfectly, due to the
deterministic approach of selecting the prediction of the next character, the
network will always pick the character that has 80% weight, yielding an error
rate of 20%, which is the best performance that we can expect to achieve on
this task.

The error rate that we found on average over the 30 runs was 24.83 ± 0.27
%.

To demonstrate the importance of the WM-units in achieving this perfor-
mance level, we ran the same experiments with a ESN that had noWM-units but
was otherwise set up similarly. What we expect to happen is that the network
will not able to distinguish between bracket levels anymore. Assuming that the
current character is j, the network would learn in this case a distribution that
gives a larger, almost equal, probability to j+1 modulo 65, j+2 modulo 65, ..,
j + 7 modulo 65 (the most probable characters for the different bracket levels),
and much smaller equal probability to all other characters. This implies that on
average across the different bracketing levels (which cannot now be memorized
for longer time spans) the network is likely to give wrong predictions in 20 +
(6/7) * 80 ≈ 80.5% of the cases. We found an error rate of 83.75 ± 0.11 % in
this condition, close to what we expected.

4. Input-induced attractors

Now we proceed to characterize in a more rigorous way the dynamical phe-
nomena that we just witnessed. Abstractly and intuitively speaking, the system
from the previous section has the following characteristics:

1. It is a discrete-time dynamical system with stochastic input.
2. It could “lock” into distinctly different “dynamical configurations”, each

one associated with one of the possible WM-states.
3. Each of these dynamical configurations is resistant to a large class of vari-

ation in the input (while no further curly bracket comes along).

These “dynamical configurations” – a term that is just a working name which
will soon be replaced by a rigorously defined concept – have an intuitive similar-
ity with attractors, as familiar from dynamical systems theory. But the standard
definitions of attractors refer to autonomous systems, i.e. systems without in-
put. We will propose a generalization of the familiar notion of attractors in
autonomous systems to attractors in systems with input.
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A cautionary remark is in place. There are several subtly non-equivalent
definitions of attractors used in dynamical systems theory. It is neither straight-
forward nor easy to arrive at a convincing definition of attractors even in the
simpler case of autonomous systems. We may expect a multiplication of con-
ceptual subtleties when we turn to systems with input. Therefore we consider
our proposal as preliminary.

Adapting Milnor (2006), we depart from the following classical definition of
an attractor in an autonomous system.

Definition 1. Let X ⊂ Rm be a compact phase space, and f : X → X a map.
A subset A ⊂ X is f -invariant if f(A) = A. A neighborhood of A is a subset
of X which contains A in its interior. We say that a neighborhood N of A is
a forward isolating neighborhood of A if A is equal to the intersection of the
forward images fn(N) of N . Then, A is an attractor iff

1. A is compact,
2. A is f -invariant,
3. A has a forward isolating neighborhood, and
4. no proper subset of A has the previous three properties.

Now let us consider a discrete-time dynamical system with input. Let again
X ⊂ Rm be a compact phase space, U ⊂ Rk an input space, and f : X × U →
X a map. In the curly bracket counting system from the previous section,
X = [−1, 1]N × {−0.5, 0.5}6 is the set of possible reservoir-and-WM-unit states
and U = [0, 1]13. It is clear that a “dynamical configuration” switch of this
system (i.e., a change in the WM-units) at some time step n → n+ 1 depends
both on the reservoir state x(n) and the input u(n). In order to capture and
analyze the interacting effects of current state and current input on “dynamical
configuration” switches, we need a way to connect these two relevant items. The
most straightforward method is to specify, for each state, a set of admissible
inputs:

Definition 2. Let X ⊂ Rm be a compact phase space, U ⊂ Rk (where k ≥ 0)
an input space, and f : X × U → X a map. Let γ : X → 2U (where 2U is the
power set of U) be a map that assigns to every state a set of associated inputs.
Then we call γ a state-input-association (SIA), and (X,U, f, γ) a γ-system.

Once a SIA is fixed, we can define the set of input-driven trajectories relative
to the SIA:

Definition 3. Let X, U , f , γ as in the previous definition.

1. Let fγ : X → 2X be defined by

fγ : x (→ {y ∈ X | ∃u ∈ γ(x) y = f(x,u)}.

We call fγ the forward map induced by the SIA γ, or simply the γ-map.
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2. A forward γ-orbit is right-infinite sequence (xn)n=0,1,2,... of states, such
that ∀n : xn+1 ∈ fγ(xn).

Before we proceed to define attractors in γ-systems, it will be helpful to
inspect some examples of such systems.

Example 1: autonomous systems as γ-systems. If (X, g) is an ordinary au-
tonomous system, i.e. g : X → X, then using a “dummy” singleton input set
U = {c} and putting f : X × U → X, ((x), c) (→ g(x) and γ(x) = {c} for all
x ∈ X yields a representation of the original autonomous system as a γ-system.

Example 2: systems driven by i.i.d. input. If one wants to model a situation
where the input has no temporal structure in the sense that at every time step,
any value u ∈ U is possible regardless of history, the natural choice for γ is
γ(x) = U for all x ∈ X.

Example 3: a simple RNN driven by deterministic chaotic input. This ex-
ample can be regarded as a baby version of a RNN working memory, simplified
as much as possible in order to obtain instructive visualizations. Consider an
ESN whose reservoir consists of just two tanh sigmoid neurons, which receive a
scalar input signal, and which has a single output neuron with feedback to the
reservoir (the analog of a memory unit). Formally, this system is governed by

x(n+ 1) = tanh(Wx(n) +Winu(n+ 1) +Wfby(n)),

y(n+ 1) = tanh(Woutx(n+ 1)),

where x ∈ (−1, 1) × (−1, 1), u ∈ (0, 1) = U, y ∈ (−1, 1) are the reservoir
state, the input, and the output unit states. Note that from a formal per-
spective, this is a three-dimensional input-driven system with system states
(x1(n), x2(n), y(n)) ∈ (−1, 1)3 = X, and a map f : X × U → X. To make this
example concrete, we put

W =

(
1/2 −1
1 0

)
, Win =

(
−1
1

)
, Wfb =

(
1
1

)
, Wout = (−1, 1).

We generate scalar input sequences from the iterated logistic map in its
chaotic regime by

u(n+ 1) = 4 · u(n) · (1− u(n)) =: g(u(n)).

This system can lock in two “memory states” depending on the value of the
output unit, which, when negative, will remain negative regardless of the input,
and when positive, will remain positive. Figure 5(e) shows the state/input tuples
(x1(n), x2(n), y(n), u(n+1)) obtained from two long runs of this system, where
one run has the output unit taking only positive, and the other run only negative
values (some initial washout points have been discarded from this plot). The y
coordinate of system states is not plotted directly, only its sign is reflected in
the coloring of the x1(n), x2(n) components plotted at the bottom plane of each
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Figure 5: Demonstration of SIAs in the “baby” ESN model. (a) – (d) show the first iter-
ations of constructing a SIA γ, while (e) shows two separate trajectories. On the (x1, x2)-
plane, the reservoir states are shown in blue or green, indicating whether the correspond-
ing state of the output unit y is positive (blue) or negative (green). The red dots show
(x1(n), x2(n), u(n + 1)) triples; that is, γ(x1(n), x2(n), y(n)) comprehends the u values ap-
pearing above the (x1(n), x2(n)) plot points. 40,000 points are plotted per diagram. For
detail compare text.

diagram. It can be seen (rather, guessed) from this diagram that (after washing
out initial transients) the set of occurring (x1(n), x2(n), y(n)) system states is
a fractal, and that every state (x1, x2, y) from such an asymptotic state set is
paired with exactly one next input u.

In order to start a mathematical analysis of the state-input pairings shown in
Figure 5(e), and the input-driven attractor dynamics which, intuitively speak-
ing, is visible here, one has to define a SIA that is adapted to this situation.
More generally speaking, defining a SIA is the first step in a formal analysis,
and it depends on the goals of the analysis how the SIA is set up. Here we want
to analyse how trajectories of our baby system are pulled to one of the two
asymptotic behaviors visible in Figure 5(e), starting from any randomly chosen
initial state (x1(0), x2(0), y(0)) and input u(1). The natural way to proceed,
for these purposes, is to define γ inductively, as follows. Define a descending
sequence X0 ⊃ X1 ⊃ X2 . . . of state sets, together with a sequence of input
associations γ0, γ1, γ2, . . ., where γi : Xi → 2U , by putting

X0 = X; ∀x ∈ X0 : γ0(x) = U ; (10)

Xi+1 = {z ∈ X | ∃x ∈ Xi ∃u ∈ γi(x) : z = f(x, u)}; (11)

γi+1(z) = {v ∈ U | ∃x ∈ Xi ∃u ∈ γi(x) : z = f(x, u) ∧ v = g(u)}. (12)
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Then we set, for any x ∈ X,

γ(x) =
⋂

{i∈N|x∈Xi}

γi(x).

Panels (a) – (d) in Figure 5 show Xi and γi for i = 0, 1, 2, 4. It should be
noted that the SIA constructed here contains exactly those state-input pairs
(x, u) which can ever arise when our baby system is started from random initial
conditions. It can be seen that (Xi)i=1,2,... converges to the (topological closure
of the) carrier of the two asymptotic trajectories that we obtain from two infi-
nite runs of the system, as depicted in panel (e). It is also clear that with this
construction of γ, all forward γ-orbits will converge to one of the asymptotic
sets shown in panel (e). (We state all these observations informally and with-
out proof, as aids for intuition. A rigorous analytical workout of the material
indicated in this section is planned for a separate publication).

Equipped with SIAs, we can now make our intuitions about attractor-like
“dynamical configurations” precise, by extending Definition 1 to systems with
input:

Definition 4. Let (X,U, f, γ) be a γ-system. We define:

1. Let A ⊂ X. The fγ-forward image of A is the set

fγ(A) =
⋃

a∈A

fγ(a).

2. A subset A ⊂ X is fγ-invariant iff A = fγ(A).
3. A neighborhood N of A ⊂ X is a forward fγ-isolating neighborhood of A

if A is equal to the intersection of the forward images fn
γ (N) of N .

4. A ⊂ X is a γ-attractor if
(a) A is compact,
(b) A is fγ-invariant,
(c) A has a forward fγ-isolating neighborhood, and
(d) there exists no proper subset of A having the previous three properties.

Note that, if γ ≡ {u0} (constant input), this definition reduces to Definition
1.

The concept of γ-attractors enables us to formally describe some aspects of
the “dynamical configurations” associated with the locking states of the WM-
units, in terms of attractors. A somewhat simplified analysis might run as
follows. As phase space X we take the combined reservoir-and-WM-unit state
space. Notice that X = [−1, 1]N × {−0.5, 0.5}6, equipped with the product
topology of the euclidean metric topology of [−1, 1]N with the discrete topology
of {−0.5, 0.5}6. The input space U is the 13-dimensional pixel vector space
[0, 1]13. f is the input-dependent update function for reservoir-plus-WM-units
states, assembled from Eqns. (1), (2) and (4).

In order to obtain a SIA analog to the one from example 3 above, one would
ideally proceed as follows:
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• For each of the 7 WM-unit configurations that code bracketing levels, we
compute a separate preliminary SIA γk (k = 1, . . . , 7), as follows.

– clamp the WM units in the corresponding kth coding configuration;

– consider a right-infinite input signal u(n) corresponding in its Markov
chain properties to the current bracketing level k;

– call the closure of the set of all inputs in this sequence Uk;

– as an analog to (10), putXk
0 = Xk (whereXk = [−1, 1]N×(y1, . . . , y6),

with (y1, . . . , y6) fixed to the current WM configuration), and put

γk
0 (x) = {u ∈ Uk | f(x,u) ∈ Xk};

– as an analog to (11), put

Xk
i+1 = {z ∈ Xk | ∃x ∈ Xk

i ∃u(n) ∈ γk
i (x) : z = f(x,u(n))},

– as an analog to (12), put

γk
i+1 = {v ∈ Uk | ∃x ∈ Xk

i ∃u(n) ∈ γk
i (x) :

z = f(x,u(n)) ∧ z ∈ Xk ∧ v = u(n+ 1)},

– finally, for any x ∈ Xk, put

γk(x) =
⋂

{i∈N|x∈Xk
i }

γk
i (x).

• Notice that γk defined on Xk, which is a proper subset of X. Thus, w.r.t.
X, the γk are partially defined functions. Assuming that in runs of the
WM system no other than the 7 intended coding configurations of WM
units occur, it holds that X =

⋃
Xk. In order to obtain the desired totally

defined SIA γ : X → 2U , join the γk.

For practical investigations, one has to resort to some feasible sampling
strategy which approximates this theoretical construction.

The SIA γ thus obtained is a basis for analyzing γ-attractors that arise under
the assumptions that

• no other than the bracket-level coding configurations for the WM-units
do occur, and

• when the system is in a WM-unit configuration coding for the kth brack-
eting level, and input is given which contains no curly brackets and cor-
responds in its Markov chain properties to that level, that WM-unit con-
figuration is preserved by the system state updates.
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Given these premises, one can then study on the basis of our γ how the
reservoir state converges to different γ-attractors, when the system is started
with the WM-units set to one of the 7 admissible configurations and other-
wise arbitrary reservoir states, and receiving input that preserves the WM-unit
configuration.

For illustration we give an analog of Figure 5(e). It was obtained as follows:

• We ran the WMmodel from the previous section 7 times for approximately
45,000 network updates, each time with the memory units clamped in one
of the 7 settings coding for one bracketing level; the driving input was in
each case generated from an input character sequence whose Markov chain
properties were the same as used in the previous section, not containing
curly brackets;

• the obtained 7 sets of reservoir states and input vectors were concatenated
and the first principal components (PCs) of the reservoir states and inputs
were computed;

• separately for each of the 7 datasets, the first PC of the inputs was plotted
against the first two PCs of the reservoir states.

Figure 6 shows the obtained plot. One sees that even in only the first two
reservoir PCs, the reservoir state sets corresponding to the different memory
configurations become very well separated.

We have only started to work out the mathematical theory of γ-attractors.
Therefore, this sketch can serve only as a demonstration of the conceptual useful-
ness of these concepts. Our formal research aims at rigorous characterizations of
the interplay between input, critical state sets in which particular inputs have
attractor-switching effects, sizes of basins, types of attractors (point, cyclic,
strange), and more.

To our knowledge, attractors in systems with input have not previously been
investigated, at least not in the spirit of generalizing the classical concept of at-
tractors as subsets of phase space in autonomous systems. There are however
some related strands of research that we want to point out. To see the connec-
tions, we first remark that, when the SIA γ is fixed, one can drop the reference
to inputs from the model and consider maps f : X → 2X per se. Such maps,
and attractors arising from them, have been analysed in several contexts:

Random dynamical systems (RDS). This is an important subfield of er-
godic theory. A characteristic of RDS is that the possible transitions from
some state x to successor states are governed by a probability distribu-
tion. In the framework of RDS, these distributions are specified in terms
of a family of maps (ϕ(ω))ω∈Ω, where Ω is the domain of an underlying
probability space (Ω,F , P ) and for each ω, ϕ(ω) : X → X is a map on
X (here we consider only iterated function system RDS’s for reasons of
expository simplicity; the theory of RDS is usually expressed more gener-
ally for continuous-time systems). The distribution on the successors y of
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Figure 6: An analog of Figure 5(e) for the WM model system. The first PC of input signals
is plotted against the first two PCs of reservoir states, for the 7 WM unit configurations
described in the previous section. Different colors correspond to different WM configurations.
Projections of the reservoir state PCs are shown in darker shading on the ground plane. 6000
points are plotted per attractor. Notice that the value ranges do no longer correspond to
the (−1, 1) range of tanh reservoirs because we display projections on the PCs. For detail
compare text.

x is then given by Pϕ(Y ) = P ({ω | ϕ(ω)x ∈ Y }). This setting leads to a
concept of attractors as random sets A, i.e. they are objects of the type
A : Ω → 2X . Attractors in such systems can be defined in several ways;
see Crauel and Flandoli (1994) for a particular instantiation and pointers
to alternatives. In Kwiecinska and Slomczynski (2000) a generalization
of the concept is presented where the family of maps (ϕ(ω))ω∈Ω are gov-
erned by mixture distributions which vary with x. This brings the RDS
approach closer to our definition 4, where likewise the family of next-state
functions changes with x. – A fundamental difference between RDS and
our proposal is the probabilistic nature of RDS vs. the non-deterministic
(but not probabilistic) character of input-induced attractors.

Relational state transition dynamics (Manca et al., 2005; Scollo et al.,
2007) is an approach developed in a context of biomolecular dynamics
which, like our suggested framework, considers non-deterministic iterated
maps f : X → 2X , and attractors in such systems which are framed as
subsets A ⊂ X, like in our proposal. The intended use of the theory is in
symbolic dynamics and formal languages, and thus the phase space X is
assumed to be a countable set (of words).

Non-deterministic systems generated by open maps and their attractors
have been studied in detail in Duarte and Torres (2006). In this approach,
iterated non-deterministic maps f : X → 2X are required to have, for
every x ∈ X, an image f(x) which is open and connected. From this
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topological starting point, a theory is developed which allows to give con-
ditions on f that ensure the existence of (only) finitely many attractors,
and whose basins of attraction almost cover X. This work is performed
in the tradition of “pure” mathematical dynamical systems theory and
focusses on questions of structural stability.

While the probabilistic RDS’s have been widely investigated, the study of
non-deterministic iterated maps appears to be a quite recent phenomenon, with
a sparse “point support” of a few approaches in specialized communities, each
relying on different restrictions on the underlying phase spaces and maps. It
is likely that we did not detect all such approaches. We see our proposal as
one further member in this small and scattered family, with the distinctive
characteristic that we obtain our f : X → 2X from a single underlying dynamics
with input, via SIA’s. We see this as an appropriate starting point for an analysis
of attractors in input-driven systems, which – finally we close the circle of our
argument – is the basic abstract mechanism of working memory.

5. Discussion

This paper showed how ESN-based architectures can be set up and trained
to react to specific cues contained in a noisy and highly variable input signal,
transforming them into specifically organized, stable memory traces. The net-
work reliably exhibits such behavior, and greatly exploits information stored
in the memory states for ongoing “payload” processing (here: prediction) of
the input stream. We see this architecture as a step toward practically useful
RNN-based speech and handwriting recognition systems, which in our view hold
principled but as yet unfathomed promises with respect to robustness and speed
of recognition.

The presented model implements memory items by a dynamical phenomenon
that is intuitively akin to attractors. However, due to the presence of input, this
dynamical phenomenon cannot be understood as a classical (Milnor-) attractor.
We presented a coarse survey of known, generalized attractor concepts. None
of these completely fits the situation at hand. We proposed yet another formal
definition of attractors, γ-attractors, tailored to systems driven by essentially
arbitrary and unmodelled (i.e., non-deterministic) input. Ongoing research in
the group of the second author is concerned with a rigorous formal working-out
of this emerging mathematical picture.

Each γ-attractor in our WMmodel represents one memorizable concept/category
– one of seven bracketing levels. While we are in venerable company here (the
classical Hopfield networks likewise identify a given, finite set of memorizable
categories with point attractors, though as a long term memory model), we think
it would be more elegant, intellectually satisfactory, useful, and cognitively ad-
equate if we had a WM model where essentially arbitrary content items can be
stored. In the cognitive sciences, an archetype of such models is Baddeley’s WM
model (review Baddeley (2003)), which in its phonological loop component can
store arbitrary phonological sequences, subject only to length constraints. In
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(Jaeger and Eck, 2008), we presented an ESN-based model with the functional-
ity of such a phonological loop. More specifically, the cue-addressable periodic
attractor system (CAPAS) presented there lets an ESN lock in to any binary-
coded periodic signal (up to a maximum duration) after two presentations (the
minimum needed for identification) and stably repeat it. The system can store
only a single such sequence at a time, and it is not an input-induced, but clas-
sical, global, autonomous (Milnor-) attractor, which blocks the CAPAS system
for simultaneous input processing. As a next step on our way toward RNN
based speech recognition, we are investigating methods to combine the CAPAS
mechanism of storing arbitrary sequential information in the attractor with the
mechanisms suggested in this contribution, using input induced attractors to
store several arbitrary items simultaneously, with ongoing other processing.
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