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Abstract

Hidden Markov models (HMMs) are one of the most popular and success-
ful statistical models for time series. Observable operator models (OOMs)
are generalizations of HMMs which exhibit several attractive advantages. In
particular, a variety of highly efficient, constructive and asymptotically cor-
rect learning algorithms are available for OOMs. However, the OOM theory
suffers from the negative probability problem (NPP): a given, learnt OOM may
sometimes predict negative “probabilities” for certain events. It was recently
shown that it is undecidable whether a given OOM will eventually produce
such negative values.

We propose a novel variant of OOMs, called norm observable operator
models (NOOMs), which avoid the NPP by design. Like OOMs, NOOMs
use a set of linear operators to update system states. But differing from
OOMs, they represent probabilities by the square of the norm of system states,
thus precluding negative “probability” values. While being free of the NPP,
NOOMs retain most advantages of OOMs. For example, NOOMs also capture
(some) processes that cannot be modelled by HMMs. More importantly, in
principle NOOMs can be learnt from data in a constructive way; and the learnt
models are asymptotically correct. We also prove that NOOMs capture all
Markov chain (MC) describable processes.

This contribution presents the mathematical foundations of NOOMs, dis-
cusses the expressiveness of the model class, and explains how a NOOM can
be estimated from data constructively.

1 Introduction and Overview

Hidden Markov models (HMMs) (Bengio, 1999) have been intensely studied from
many angles (Ephraim and Merhav, 2002) and successfully applied in a wide range of
fields, including speech processing (Rabiner, 1989), control engineering (Elliott et al.,
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1995) and biosequence analysis (Durbin et al., 2000). However, the EM (Baum-
Welch) algorithm (Dempster et al., 1977; Baum et al., 1970), as the predominant
learning algorithm of HMMs, is not entirely satisfactory due to slow convergence
and the presence of local minima.

Observable operator models (OOMs) (Jaeger, 2000) are a proper generalization
of HMMs (in that they extend the range of processes that can be modelled) which
leads to fast and asymptotically correct learning algorithms. The key element in
OOMs is to identify a sequence of observations (at)t=1,2,... with a sequence of linear
operators (τat

)t=1,2,... acting on system states, called observable operators; and to
evaluate probabilities of certain outcomes by a linear functional on the state space.
See Jaeger (1999) for an introduction to the general theory of OOMs, including
infinite-dimensional, continuous-time, and continuous-valued processes.

In a machine learning context, we are particularly interested in discrete-time,
finite-valued OOMs of finite dimension. Such OOMs can be naturally represented,
under a proper basis of the state space, in a matrix formalism that is structually
similar to a standard matrix formalism of HMMs. The theory of finite-dimensional
OOMs, as well as their matrix representations, is presented in Jaeger et al. (2005).

From an algebraic point of view, OOMs differ from HMMs in that the matrix
entries in OOMs can be any real numbers, whereas the analog entries in HMMs,
interpretable as probabilities, must be nonnegative. This range extension in model
parameters endows OOMs with remarkable mathematical features:

• OOMs are more expressive than HMMs, that is, every stochastic process that
can be described by HMMs can also be modelled by OOMs, but not vice versa.
In this sense, HMMs are a subclass of OOMs. See Jaeger (2000) for a simple
3-dimensional OOM example (the probability clock) that cannot be modelled by
any finite-dimensional HMM.

• OOMs can be conveniently analyzed with methods from linear algebra (where
an analogous treatment of HMMs is encumbered by the nonnegativity con-
straint in model parameters), giving rise to a purely linear algebraic way to
describe and analyze stochastic processes (Faigle and Schönhuth, 2006, 2007;
Schönhuth, 2006).

• The linear algebra nature of OOMs leads to a basic constructive procedure
for estimating OOMs from data (Jaeger, 2000), based upon which a variety
of highly efficient, constructive and asymptotically correct learning algorithms
have been developed (Jaeger et al., 2005; Zhao et al., 2009).

However, extending the range of model parameters from nonnegative numbers to
real numbers also raises a painful negative probability problem (NPP) (Jaeger et al.,
2005) in the OOM theory. The NPP surfaces in various ways:

• An OOM is, by and large, represented by a finite set of matrices. A simple algo-
rithm employs these matrices to calculate probabilities of events in a stochastic
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process. Now, given a set of matrices, will this algorithm ever yield negative
numbers? This decision problem is particularly relevant in the context of learn-
ing OOMs, where the set of matrices is estimated from data, and one would
naturally want to determine whether the obtained model is “valid” in the sense
of never producing negative “probabilities”. Much effort has been spent on this
problem in our group during the past years. The quest came to an end by a
result due to Wiewiora (2008): “It is an undecidable problem to decide whether
or not a given collection of matrices (using them as a OOM without consider-
ing the nonnegativity constraint, i.e., the third condition from Table 1) produces
only nonnegative values.”

• Thus far no nontrivial sufficient conditions for a collection of matrices to be a
valid OOM has been found. Consequently, none of the existing OOM learning
algorithms (Jaeger et al., 2005; Zhao et al., 2009) takes the nonnegative-output
constraint into account. Practical experience shows that models learnt by these
algorithms are typically invalid in that they yield “negative probabilities” for
some (rare) sequences.

We hasten to add that well-working heuristic methods for circumventing the
NPP exist, e.g., the one presented in Appendix J of Jaeger et al. (2005). Such
methods simply replace negative “probabilities”, when encountered, with a small
positive value and renormalize the OOM state. Yet, both for theoretical reasons
and for avoiding such heuristics, it is highly desirable to have an alternative to
OOMs which is free of the NPP, while keeping as many of the good properties of
OOMs as possible. To this end, we propose in this paper a novel variant of OOMs,
norm observable operator models (NOOMs).

NOOMs, like OOMs, associate each possible outcome a with a linear observable
operator ϕa, and use these operators to update system states. But they take the
square of the norm of system states for probabilities of certain outcomes, rather
than values of a special linear functional of system states as OOMs do. This design
makes the above mentioned NPP a nonissue for NOOMs.

This paper is theory-oriented and is mainly devoted to the mathematical foun-
dation of NOOMs (Section 3). In particular, we show a mathematical construction
of (possibly infinite-dimensional) coordinate-free NOOMs from discrete-time, finite-
valued stochastic processes. Besides this fundamental result, we also discuss some
related topics that (we thought) are of theoretical or practical interest, as outlined
below.

By using the notation of Kronecker product (Brewer, 1978), we show how any
m-dimensional NOOM can be converted into an equivalent finite-dimensional OOM.
Therefore, NOOMs are revealed to be a subclass of OOMs 1 . It is currently unknown
whether this inclusion is proper. We show, however, that NOOMs are powerful

1Unless otherwise stated, we were talking about finite-size models (HMMs with finitely many
hidden states, finite-dimensional OOMs, etc.). See Section 2 for the mathematical definition of the
dimension of an OOM.
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enough to capture all Markov chain (MC) describable processes and some processes
that cannot be modelled by HMMs, e.g., the above-mentioned probability clock
(see Section 5). Since to construct such non-HMM NOOMs and to convert them
into equivalent OOMs are relatively easy, this actually provides an efficient way to
construct non-HMM OOMs from scratch, which was not at all an easy task before.

For generic models such as OOMs and NOOMs, learnability is of critical impor-
tance from an application perspective. NOOMs, while making the NPP a nonissue,
retain most of the favorable features of OOMs in this respect. Specifically, they
also admit a constructive and asymptotically correct learning algorithm – a dual
commodity of which neither part is available for HMMs. A basic version of such a
learning algorithm of NOOMs is outlined in Section 6.

Both OOMs and NOOMs encode predictions of future events into system states.
There have been some related models on the basis of the same principle developed in
the literature, most recently and most conspicuously, predictive state representations
(PSRs). PSRs (Littman et al., 2001) generalize partially observable Markov decision
processes (POMDPs) just like OOMs generalize HMMs. PSRs have been proposed
to describe discrete, stochastic input-output systems and are more closely related to
input-output OOMs (IO-OOMs). A thorough comparison between the two model
classes is given in Jaeger (1998). (IO-)OOMs and PSRs use a linear functional on
system states to evaluate the probabilities of certain future events, and thereby fall
prey to the NPP.

The rest of the paper has the following organization. Section 2 reviews the basic
OOM theory in a more abstract and more general fashion than that in Jaeger (1998);
Jaeger et al. (2005), clarifying the main problems to be solved in the paper. The
general mathematical foundation of NOOMs is established in Section 3, where we
prove that any discrete stochastic process can be modelled by some abstract NOOM
(of possibly infinite dimension). In Section 4, we demonstrate how NOOMs can be
utilized to generate and predict stochastic time series. We study the expressiveness of
NOOMs in Section 5, in which a NOOM version of the probability clock is presented
(to show that some, actually many, NOOMs are “beyond HMMs”); and a general
way for constructing non-HMM OOMs is introduced. We then briefly explain in
Section 6 how a NOOM estimate can be obtained, in principle, from empirical data
in a constructive way. Finally, we summarize the paper in Section 7.

2 A Review of Basic OOM Theory

Let us consider the class of all discrete-time stochastic processes (Xt)t=1,2,... with
each Xt taking values from a common finite alphabet O = {a1, a2, . . . , aℓ}. It is well
known that, to completely describe the distribution of such a process (Xt) one needs
only to specify, for each finite sequence a1 . . . an of symbols from O, the initial joint
probability of the form

{Pr(X1 = a1, . . . , Xn = an) =: P (a1 . . . an)}a1,...,an∈O, n=0,1,2,... . (1)

4



We hence identify the distribution of a process (Xt) with (the set of) its initial
probabilities (of finite strings), which we denote for brevity by P (a1 . . . an).

To simplify notation we denote by small letters with a bar finite sequences over
O, e.g., ā = a1a2 . . . an; and by O∗ the set of all such finite sequences, including the
empty sequence ǫ. The probability distribution (1) can then be simply written as
{P (ā)}ā∈O∗, with the obvious agreement that P (ǫ) = 1. Moreover, in the sequel we
will often use phrases like “a process P (ā)”, which, obviously, should be understood
as “a stochastic process with the distribution specified by {P (ā)}ā∈O∗”.

It was proven in Jaeger (1998, 2000) that any process P (ā) can be modelled by
an abstract linear system of the form (H, {Ta}a∈O, w0, σ), where H is a real vector
space (possibly of infinite dimension), the Ta’s are linear operators on H, w0 ∈ H is
the initial state of the system and σ is a linear functional on H, through the formula

P (ā) = P (a1a2 . . . an) = σTan
Tan−1

· · ·Ta1
w0 =: σTāw0 ,

where Tā denotes, for any sequence ā = a1a2 . . . an ∈ O∗, the reverse-ordered product
Tan

Tan−1
· · ·Ta1

, with the agreement that Tǫ = idH — the identity operator on H.
We call the structure (H, {Ta}a∈O, w0, σ) an abstract OOM of the process P (ā).

Its dimension is defined as the dimension of the space H 2 . Obviously P (ā) can
be seen as a real-valued function on O∗, with some special properties that will be
discussed in detail in Subsection 2.2. In other words, the class of distributions of
stochastic processes can be embedded into the class F of functions from O∗ into
R. We will later extend the concept of (abstract) OOMs to the larger class F
(Subsection 2.1).

In machine learning applications, we are particularly interested in modeling
stochastic processes by OOMs of finite dimension. The class of processes that admit
finite-dimensional OOMs have been characterized independently several times and
are now often termed linearly dependent processes (LDPs). They have a long history
of mathematical investigations (Heller, 1965; Ito et al., 1992). The formal definition
of LDPs (independent of OOMs) will be given in Subsection 2.1.

Now let P (ā) be a LDP specified by an OOM (H, {Ta}a∈O, w0, σ) of dimension
dimH = m. By selecting a proper basis {w1, w2, . . . , wm} of the space H with the
property σwi = 1 (i = 1, 2, . . . , m) 3 , we obtain the following representation:

H → R
m , Ta → τa ∈ R

m×m , w0 → w0 ∈ R
m , σ → 1T

m , (2)

where 1m denotes the m-dimensional vector of units. We hence get a matrix rep-
resentation of the abstract system (H, {Ta}a∈O, w0, σ), namely (Rm, {τa}a∈O, w0),

2This definition of dimension of OOMs is different from that in Jaeger (2000).
3This can be done in three steps: first select an arbitrary basis {w1, w2, . . . , wm} of H, then

there must be some k such that σwk 6= 0 since σ is clearly not a zero functional, pick one such
k; next let wi ← wi + wk for any i with σwi = 0, we therefore have σwi 6= 0 for all i; finally set
wi ← (σwi)

−1wi for all i.
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in which the “default” element 1T

m has been omitted. We will sometimes call such
matrix representations of finite-dimensional OOMs concrete OOMs.

One sees that a concrete OOM (Rm, {τa}a∈O, w0) has the same structure as
a (transition-emission) HMM (Bourlard and Bengio, 2002; Jaeger, 2000), but with
model parameters from a larger domain (real numbers) than HMMs (nonnegative
numbers). It is a (nontrivial) consequence of this added algebraic freedom that
OOMs can capture more processes than HMMs (Jaeger, 2000). Moreover, a concrete
OOM (Rm, {τa}a∈O, w0) calculates a distribution P (ā) in a linear way:

P (ā) = P (a1a2 . . . an) = 1T

mτan
τan−1

· · · τa1
w0 =: 1T

mτāw0 , (3)

enabling us to study stochastic processes by methods from linear algebra encumbered
by the nonnegative-paramater constraint of the analog HMM mechanism. However,
as we pointed out before, this elegance has its price: the undecidable NPP. Using
(3), the NPP can now be stated more precisely as follows: To check whether a given
matrix system (Rm, {τa}a∈O, w0) yields a negative value P (ā) = 1T

mτāw0 < 0 on
some ā ∈ O∗ is an undecidable problem (Wiewiora, 2008).

A natural way one could think to back out of the NPP is to wrap the right
hand side (r.h.s.) of (3) by some nonlinear function which only has nonnegative
values. There are several natural choices for this, for example, one might require
that P (ā) = (1T

mτāw0)
2 (giving rise to quadratic OOMs (QOOMs)) or P (ā) =

‖τāw0‖2 (this gives norm observable operator models (NOOMs)). The first author
investigated both alternatives. While the present contribution focusses solely on the
latter, here is a short account of the status of QOOM research. QOOMs admit a
straightforward re-use of the known learning algorithms for OOMs, and thus were
the first of the two new model classes that were explored. It turned out however that
it is not easy to check whether a given set of matrices, considered as a candidate
QOOM, satisfies the fundamental summation constraint required from models of
stochastic processes (see Table 1 below). This circumstance hindered swift progress
in QOOMs, and made us turn toward NOOMs instead.

2.1 OOMs for linearly dependent functions

To pave the ground for the subsequent development of a theory of NOOMs, we will
first generalize linearly dependent processes to linearly dependent functions (LDFs).

Throughout the paper we shall denote by F the set of all real-valued functions
defined on O∗. With addition and scalar multiplication defined pointwise, F canon-
ically becomes a real vector space. For each symbol a ∈ O, we define an operator
La on the vector space F by setting (Laf)(x̄) := f(ax̄) for any f ∈ F and x̄ ∈ O∗.
These operators are called left-appending operators. Note that each left-appending
operator La is a linear operator on F . In fact, for any f, g ∈ F and α ∈ R, we have

(La(f + g))(x̄) = (f + g)(ax̄) = f(ax̄) + g(ax̄) = (Laf + Lag)(x̄) ,
(La(αf))(x̄) = (αf)(ax̄) = αf(ax̄) = α(Laf)(x̄) = (αLaf)(x̄)

6



for all x̄ ∈ O∗. It then follows that La(f + g) = Laf + Lag and La(αf) = αLaf .
Iteratively applying left-appending operators on a function h ∈ F , we get a linear

formula to evaluate the value of h at any sequence ā = a1a2 . . . an ∈ O∗:

h(a1a2 . . . an) = (La1
h)(a2 . . . an) = (La2

La1
h)(a3 . . . an)

= . . . = (Lan
· · ·La2

La1
h)(ǫ) := σLāh ,

(4)

where, as before, Lā denotes the reverse-ordered composition of La1
, . . . , Lan

; and
σ is the linear functional on F that maps each f ∈ F to the real number f(ǫ). By
(4) we see that (F , {La}a∈O, σ) provides an algebraic representation of the family F
that allows us to calculate the value h(ā) of any h ∈ F on any ā ∈ O∗.

For any single h ∈ F we define Fh to be the subspace of F spanned by the
functions {Lāh : ā ∈ O∗} and call it the space induced by h. It is clear that Fh

is invariant under the operation of each La, that is, f ∈ Fh implies Laf ∈ Fh.
So we can restrict the domain of La’s and σ to the space Fh, getting a new set of
linear operators and a new linear functional on Fh which we will denote by the same
symbols La and σ, respectively, trusting in the reader’s good sense to avoid confusion.
We thus obtain a smaller system (Fh, {La}a∈O, h, σ) in which again h(ā) = σLāh
holds for all ā ∈ O∗.

We call a function h ∈ F a linearly dependent function (LDF) if it induces a
finite-dimensional space Fh; and a process (Xt) a linearly dependent process (LDP)
if its distribution P (ā), regarded as a member of F , is a LDF. One notes that LDPs
can be seen as a subclass of LDFs.

A remark on terminology: to the best of our knowledge, the generalization from
LDPs to LDFs has not been done previously in the literature; and “LDF” (inherited
from the term “LDP”) is a new terminology with the special meaning explained
above. Specifically, the word “LDFs” should not be understood in the standard
sense as “(a set of) functions that are linearly dependent” 4 .

Assume now h ∈ F is a LDF with dimFh = m, then, as in (2), we can select
a proper basis of Fh and get a matrix model (Rm, {τa}a∈O, w0) which describes the
function h just like an OOM describes a distribution (see equation (3)); we hence
also call the model (Rm, {τa}a∈O, w0) an OOM of h. Obviously, the value of a LDF
h at any ā ∈ O∗ can be computed from its OOM by the formula h(ā) = 1T

mτāw0,
with the understanding that τǫ = Im, the identity matrix of order m.

2.2 Probability constraints on models of LDPs

In the previous subsection we have re-derived (and broadened) the concept of OOMs
in an abstract-to-concrete, general-to-special manner; and have shown that any LDF,
and hence any LDP, can be modelled by some (finite-dimensional) OOM. In this
subsection we will focus our attention on LDPs and their OOMs.

As mentioned before, LDPs can be seen as a special subclass of LDFs char-
acterized by three conditions which are essentially inherited from the well-known

4See, e.g., http://mathworld.wolfram.com/LinearlyDependentFunctions.html.
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Kolmogorov axioms of probability theory. We will refer to these conditions as prob-
ability constraints. They are listed in Table 1 together with their reflections in
OOMs (where x̄ runs over O∗ and x̄a denotes the concatenation of x̄ and a; see
Jaeger (2000) for a detailed explanation and proofs of these probability contraints).

Table 1: Probability constraints for LDPs and their OOMs.

probability constraints in OOM (Rm, {τa}a∈O, w0)

unity constraint: P (ǫ) = 1 1T

mw0 = 1
summation constraint: P (x̄) =

∑

a∈O P (x̄a) 1T

m

∑

a∈O τa = 1T

m

nonnegativity constraint: P (x̄) > 0 1T

mτx̄w0 > 0

As one can see from the second column of the above table, for OOMs of LDPs,
checking the first two probabilty constraints is straightforward, whereas the third
one is (as we know today thanks to Wiewiora (2008)) undecidable. We therefore turn
to variants of the OOM class for which the nonnegativity constraint is automatically
fulfilled.

We have already mentioned two such variants right before Subsection 2.1, viz.
quadratic observable operator models (QOOMs) and norm observable operator models
(NOOMs). They compute a distribution P (ā) by P (ā) = (1T

mϕāu0)
2 and P (ā) =

‖ϕāu0‖2, respectively. Here ‖ · ‖ denotes Euclidean norm and different symbols have
been used for operators and initial states to distinguish the two OOM variants from
normal “linear” OOMs. This paper will only investigate NOOMs, for which the
probability constraints read as in Table 2.

Table 2: Probability constraints for LDPs and their NOOMs.

probability constraints in NOOM (Rm, {ϕa}a∈O, u0)

unity constraint: P (ǫ) = 1 ‖u0‖ = 1
summation constraint: P (x̄) =

∑

a∈O P (x̄a) ‖ϕx̄u0‖2 =
∑

a∈O ‖ϕaϕx̄u0‖2
nonnegativity constraint: P (x̄) > 0 ‖ϕx̄u0‖2 > 0

For NOOMs, the unity constraint is easy to check and the nonnegativity con-
straint a nonissue. The summation constraint, however, contains infinitely many
equality constraints and seems to be much more difficult than its linear OOM ana-
log. To algebraically characterize the summation constraint for NOOMs, and giving
a simple decision procedure, is one of the main results of this paper.
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3 Norm Observable Operator Models

In the previous section we defined a NOOM as a triple (Rm, {ϕa}a∈O, u0) that sat-
isfies the three conditions listed in Table 2. By the definition of the Euclidean norm
‖x‖ :=

√
xTx, the summation constraint for NOOMs can be rewritten as

(ϕx̄u0)
T(

∑

a∈O ϕT

a ϕa)(ϕx̄u0) = (ϕx̄u0)
T(ϕx̄u0) . (∀x̄ ∈ O∗) (5)

It is hence clear that
∑

a∈O ϕT

a ϕa = Im is a sufficient condition for the summation
constraint (5). This motivates us to introduce the concept of standard NOOMs.

Definition 1 A (finite-dimensional) standard NOOM is a system (Rm, {ϕa}a∈O, u0)
with ϕa ∈ R

m×m and u0 ∈ R
m, such that

∑

a∈O ϕT

a ϕa = Im and ‖u0‖ = 1.

A remark on terminology: in the above defintion the qualifier standard refers to
the property

∑

a∈O ϕT

a ϕa = Im. For expository reasons we have introduced it here
for finite-dimensional models in matrix representations. But it is straightforward
to generalize this definition of standard NOOMs to possibliy infinite-dimensional
models in a coordinate-free representation, as is revealed by Theorem 1.

Theorem 1 For any stochastic process P (ā) there exist an inner product space E ,
a set of linear operators ϕa : E → E (a ∈ O) and an initial vector u0 ∈ E , such that
‖u0‖ = 1,

∑

a∈O ϕ∗
aϕa = idE (the identity map on E) and P (ā) = ‖ϕāu0‖2 for all

ā ∈ O∗, where ϕ∗
a denotes the adjoint of ϕa, a linear operator on E defined by the

property “〈ϕ∗
av, w〉 = 〈v, ϕaw〉 for all v, w ∈ E”.

Conversely, any triple (E , {ϕa}a∈O, u0) with the properties
∑

a∈O ϕ∗
aϕa = idE and

‖u0‖ = 1 describes some stochastic process via P (ā) = ‖ϕāu0‖2.
This theorem gives rise to, for each process P (ā), a system (E , {ϕa}a∈O, u0) of an

inner product space E of possibly infinite dimension, a set {ϕa}a∈O of linear operators
on E and an initial state u0 ∈ E with the properties

∑

a∈O ϕ∗
aϕa = idE and ‖u0‖ = 1,

which describes P (ā) by P (ā) = ‖ϕāu0‖2. We call the triple (E , {ϕa}a∈O, u0) a
(standard) abstract NOOM of the process P (ā), with the qualifier “standard” now
referring to the condition

∑

a∈O ϕ∗
aϕa = idE .

By Theorem 1, the class of standard NOOMs has the same expressiveness as the
class of general NOOMs. In other words, any general NOOM allows an equivalent
standard NOOM such that both models describe the same process. In this sense,
the equality

∑

a∈O ϕT

a ϕa = Im can be seen as the sufficient and necessary condition
for the summation constraint (5). Note that, according to its definition, it is trivial
to check whether a given system (Rm, {ϕa}a∈O, u0) is a standard NOOM or not,
whereas we emphasize again that the analog problem is undecidable for OOMs. In
the sequel we shall consider only standard NOOMs and simply call them NOOMs.

The rest of the section is devoted to the proof to Theorem 1. While the conversely
part is easy to prove (by using the Kolmogorov Extension Theorem, see Appendix
A for the detail), the proof to the first part is not trivial. It will be divided into
two parts: we first (Subsection 3.1) define an inner product space D which plays a
similar role for NOOMs as the vector space F plays for OOMs of LDFs; and then
(Subsection 3.2) construct an NOOM of a given process P (ā) in the space D.
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3.1 The Inner Product Space D
The construction of the inner product space D is further divided into three steps:

1. The set P of all nonnegative functions p(ā) with p2(ā) satisfying the three
probability constraints is considered. These functions will be referred to as
probability amplitudes (a terminology borrowed from quantum machanics).

2. As P is not a linear subspace of F , we embed it into a convex cone B+ (in
F), on which a bilinear function L·, ·M is defined. The domain of L·, ·M is then
extended to the subspace B spanned by B+, yielding a semidefinite inner
product space (B, L·, ·M) that contains P as a subset.

3. A null subspace N of B is defined through the semidefinite inner product L·, ·M;
and D is then defined to be the quotient space B/N , on which an inner product
〈·, ·〉 is induced from L·, ·M.

The family P of probability amplitudes. Let P be the family consisting of
all nonnegative functions p : O∗ → R

+ such that p2(ā) satisfies all the probability
constraints. In other words, here P is a subset of F defined by

P :=
{

p ∈ F : p(ǫ) = 1, ∀ x̄ ∈ O∗, p(x̄) > 0, p2(x̄) =
∑

a∈O p2(x̄a)
}

. (6)

It is clear that each p ∈ P specifies a stochastic process distribution P (ā) := p2(ā);
and that each process P (ā) determines a probability amplitude p ∈ P via p(ā) =
√

P (ā). We may therefore identify each distribution P (ā) with its probability am-
plitude p(ā); and view P as the class of distributions of stochastic processes.

The convex cone B+ and the subspace B in F . The family P of probability
amplitudes, as a subset of F , is neither a vector space nor invariant under the left-
appending operators La. We thus need to find a larger subset of F that contains P
as a subset and, at the same time, is an invariant subspace of F under the operation
of La’s.

Let B+ be the subset of F consisting of those nonnegative functions f ∈ F with
the property f 2(x̄) >

∑

a∈O f 2(x̄a) for all x̄ ∈ O∗, i.e.,

B+ := {f ∈ F : ∀ x̄ ∈ O∗, f(x̄) > 0, f 2(x̄) >
∑

a∈O f 2(x̄a)} . (7)

Then it is clear that P ⊆ B+. Moreover,

Theorem 2 B+ is a convex cone in F pointed at 0 (the zero function), that is, for
any f, g ∈ B+ it holds that (i) −f ∈ B+ implies f = 0; (ii) αf ∈ B+ for any α > 0;
and (iii) f + g ∈ B+. Furthermore, B+ is invariant under the operators La, in other
words, Laf ∈ B+ whenever f ∈ B+.

Proof: The assertions (i) and (ii) can be easily deduced from equation (7). To
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prove (iii) we need only to show that f(x̄)g(x̄) >
∑

a∈O f(x̄a)g(x̄a). But Cauchy’s
inequality and (7) tell us

[
∑

a∈O f(x̄a)g(x̄a)
]2

6
[
∑

a∈O f 2(x̄a)
]

·
[
∑

a∈O g2(x̄a)
]

6 f 2(x̄)g2(x̄) . (8)

So the desired inequality follows. To see that B+ is invariant under La, it suffices
to show (Laf)2(x̄) >

∑

b∈O(Laf)2(x̄b), i.e., f 2(ax̄) >
∑

b∈O f 2(ax̄b), for any f ∈ B+

and any x̄ ∈ O∗, which is obvious by the definition of B+. �

For each n ∈ N = {0, 1, 2, . . .} we define a binary function Qn on F , by

Qn(f, g) :=
∑

ā∈On f(ā)g(ā) , (∀ f, g ∈ F) . (9)

Then, for any f, g ∈ B+, the sum of the inequalities f(x̄)g(x̄) >
∑

a∈O f(x̄a)g(x̄a)
(cf. equation (8)) over all x̄ ∈ On reveals that (Qn(f, g))n=0,1,2,... is a decreasing
sequence lower bounded by 0, so the limit

Lf, gM := limn→∞ Qn(f, g) = limn→∞

∑

ā∈On f(ā)g(ā) (10)

exists and takes values in [0,∞).
Now let B be the subspace of F spanned by vectors in B+. As B+ is a convex

cone, we know B consists exactly of those functions h ∈ F which can be written as
the difference of two members from B+:

B := spanB+ = {f − g : f, g ∈ B+} . (11)

Since B+ is invariant under each La (see Theorem 2), by (11) we know B is an
invariant subspace of the linear operators La. This allows us to restrict the operation
of La’s on the space B in the sequel. To extend the domain of the binary function
L·, ·M defined by (10) from B+×B+ to B×B, we need the following lemma to which
the proof is trivial and omitted here.

Lemma 1 Let (ai
n)n=0,1,2,..., (bi

n)n=0,1,2,... (i = 1, 2, . . . , k) be 2k real sequences such

that
∑k

i=1 ai
n =

∑k
i=1 bi

n and limn→∞ ai
n = ci for all i 6 k. Then (

∑k
i=1 ai

n)n=0,1,2,...

and (
∑k

i=1 bi
n)n=0,1,2,... are two convergent sequences with the same limit

∑k

i=1 ci.

For any f, g ∈ B, let f = f1 − f2 and g = g1 − g2 with fi, gi ∈ B+ (i = 1, 2) be one
of their decompositions, respectively. Then, by the linearity of Qn,

Qn(f, g) = Qn(f1, g1) + Qn(f2, g2)−Qn(f1, g2)−Qn(f2, g1) . (12)

Since fi, gi ∈ B+, each of the four items on the r.h.s. of the above equality converges
to a nonnegative number when n → ∞; and their sum Qn(f, g) is independent of
the choice of f1, f2, g1, g2. Thus, by Lemma 1 the limit Lf, gM = limn→∞ Qn(f, g)
exists and, by (12), assumes values in R.

By its definition (cf. equation (10)), one easily sees that the function Lf, gM is
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(a) nonnegative definite: Lf, fM > 0;
(b) symmetric: Lf, gM = Lg, fM;
(c) linear (in f and g): Lαf + βh, gM = αLf, gM + βLh, gM,

Lf, αg + βhM = αLf, gM + βLf, hM.

In the above list, f, g, h are arbitrary functions in B and α, β ∈ R. We proceed to
construct an inner product space D from B and L·, ·M, taking a route via semidefinite
inner products.

Semidefinite inner product and seminorm To be self-contained this subsec-
tion introduces the construction of inner products (norms) from semidefinite inner
products (seminorms) in an abstract vector space V . After giving the formal defini-
tion of semidefinite inner products and seminorms, we show that from any semidefi-
nite inner product a seminorm can be defined. We then argue that points with zero
seminorm form a linear subspace N of V , and so the quotient space V/N is well
defined. Finally we define on this quotient space an inner product (norm). Readers
familiar with this standard mathematical treatment may skip this subsection.

Let V be a vector space over R. A semidefinite inner product on V is any binary
function L·, ·M : V × V → R that is nonnegative definite, symmetric and linear in
both arguments. A seminorm on V is any nonnegative unary function 8 · 8 that
satisfies (i) 8αx8 = |α| ·8x8 and (ii) 8x+y8 6 8x8+8y8 for all x, y ∈ V and α ∈ R.
Note that, by the condition (i) we know 808 = 0 for any seminorm 8 · 8 on V .

Like each inner product 〈·, ·〉 induces naturally a norm ‖ · ‖, each semidefinite
inner product L·, ·M induces a seminorm 8 · 8 by putting 8x8 :=

√

Lx, xM for each
x ∈ V . To see this, we need an inequality, namely,

Lemma 2 (Cauchy-Schwarz inequality for semidefinite inner products) Let V be a
vector space and L·, ·M a semidefinite inner product on V . Let 8 ·8 : V → R be defined
by 8x8 =

√

Lx, xM. Then, for any x, y ∈ V , |Lx, yM| 6 8x 8 · 8 y8.

Proof: By the definition of semidefinite inner product, we have

0 6 Lx− αy, x− αyM = 8x 82 −2αLx, yM + α2 8 y 82 . (13)

If 8y8 = 0, then (13) reads: 8x 82 −2αLx, yM > 0 (∀α ∈ R). Thus Lx, yM = 0 and the
desired inequality follows. If 8y8 6= 0, the quadratic 8x 82 −2αLx, yM + α2 8 y82 (on
α) assumes no negative value. So its discriminant is nonpositive, which implies the
claim. �

We now show that 8x8 =
√

Lx, xM is indeed a seminorm. The conditions 8x8 > 0
and 8αx8 = |α| · 8x8 are easy to verify. To prove 8x+ y8 6 8x8+ 8 y8, we calculate
8x+y82 = 8x82 +2Lx, yM+8y82 6 8x82 +28x8 ·8y 8+8y82 = (8x8+8y8)2, where
the second inequality follows from Lemma 2. We thus get 8x + y8 6 8x 8 + 8 y8.

Geometrically, a vector space V equipped with a seminorm 8·8 (or a semidefinite
inner product L·, ·M) can be seen as a “weak” distance space in which two distinct
points x, y ∈ V may have zero distance: 8x − y8 = 0. However, if one identifies all

12



these zero-distanced points, he obtains a normed vector space (or an inner product
space).

Let 8 · 8 be a seminorm on the vector space V . We call a point x ∈ V a null
element (w.r.t. the seminorm 8 · 8) if 8x8 = 0. Let N ⊆ V be the set of all null
elements in V . By the conditions 8αx8 = |α|·8x8 and 8x+y8 6 8x8+8y8 we know N
is a subspace of V . We therefore can define the quotient space V/N := {[x] : x ∈ V },
where [x] denotes, for each x ∈ V , the equivalence class {y ∈ V : x− y ∈ N}.

It is well known that the quotient space V/N forms a vector space under the
addition and scalar multiplication operations

[x] + [y] := [x + y] , α[x] := [αx] . (∀x, y ∈ V , ∀α ∈ R)

Note that the definitions above are independent of the choice of the “representative”
elements x, y (in their equivalence classes [x] or [y]). Finally, the vector space V/N
becomes a normed space under the norm ‖[x]‖ := 8x8, (∀x ∈ V ).

If the seminorm 8 · 8 is induced from some semidefinite inner product L·, ·M, we
can correspondingly define an inner product 〈·, ·〉 in the quotient space V/N :

〈[x], [y]〉 := Lx, yM , (∀x, y ∈ V ) . (14)

To see that the function 〈·, ·〉 is well-defined, we need to prove Lx, yM = La, bM for any
a ∈ [x] and b ∈ [y]. Noting that a ∈ [x] iff x − a ∈ N iff 8x − a8 = 0, we know
from Lemma 2 that, for any z ∈ V , |Lx − a, zM| 6 8x − a 8 · 8 z8 = 0 and hence
Lx, zM = La, zM + Lx − a, zM = La, zM. Similary, Lz, yM = Lz, bM for any z. We thus get
Lx, yM = La, yM = La, bM. Moreover, since L·, ·M is a semidefinite inner product, by (14)
one sees that 〈·, ·〉 is also a semidefinite inner product. Now assume 〈[x], [x]〉 = 0,
then Lx, xM = 8x82 = 0, thus x ∈ N = [0] and so [x] = [0]. This proves that 〈·, ·〉 is
indeed an inner product on the space V/N . This inner product induces the norm
‖[x]‖ =

√

〈[x], [x]〉 =
√

Lx, xM =
√

8x82 = 8x8, which is exactly what we have
introduced above for the general case where only a seminorm is defined.

The quotient space D and its process-representing subset DP. Now let
us return to the vector space B defined by (11), on which we have constructed a
semidefinite inner product (10). Therefore, as discussed above, we can define

1) the seminorm (on B): 8f8 :=
√

Lf, fM = limn→∞

√
∑

ā∈On f 2(ā);
2) the subspace (of B): N := {f ∈ B : 8f8 = 0};
3) the quotient space: D := B/N = {[f ] : f ∈ B};
4) the inner product (on D): 〈[f ], [g]〉 := Lf, gM = limn→∞

∑

ā∈On f(ā)g(ā).

In sum, so far we have obtained a semidefinite inner product space B, which
contains the family P of all probability amplitudes — we have P ⊆ B+ ⊆ B; and
an inner product space D which can be seen as an “image” of B. Next we will
investigate those members [f ] (f ∈ B) of D that actually represent a stochastic
process, i.e., the subset DP := {[f ] : f ∈ P} of D.
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Firstly, by (6) and induction on n, we know
∑

ā∈On p2(ā) = 1 for all p ∈ P and
n ∈ N. Thus, for any [f ] ∈ DP, [f ] = [p] for some p ∈ P and hence ‖[f ]‖ = ‖[p]‖ =
8p8 = 1. This means DP lies on the unit sphere of D, i.e.,

DP ⊆ {[f ] ∈ D : ‖[f ]‖ = 1} =: DS . (15)

Furthermore, we define D+ to be the set of equivalence classes [f ] in D induced by
members f from B+, i.e., D+ := {[f ] : f ∈ B+}. As P ⊆ B+, we know DP ⊆ D+.
This inclusion relation, together with (15) and Theorem 3 (with α = 1), shows that
DP is exactly the intersection of DS and D+: DP = DS ∩ D+.

Theorem 3 For each f ∈ B+ with ‖[f ]‖ = 8f8 = α, there exists a p ∈ P such that
[f ] = α[p], or equivalently, 8f − αp8 = 0.

Proof: If α = 0, then any member of P can be taken as p. So we assume α > 0.
For every f ∈ B+ define a sequence of functions (fn)n=0,1,... on O∗ as fn(ā) :=

√
∑

x̄∈On f 2(āx̄). Then f0 = f and fn > 0 for all n. By the definition of B+

(cf. equation (7)), we know
∑

x̄∈On f 2(āx̄) >
∑

x̄∈On,b∈O f 2(āx̄b) =
∑

x̄∈On+1 f 2(āx̄),
which implies fn(ā) > fn+1(ā). It follows that, for each ā ∈ O∗, (fn(ā))n=0,1,2,... is a
decreasing sequence with lower bound 0. Thus, the function

f∞(ā) := lim
n→∞

fn(ā) = lim
n→∞

√

∑

x̄∈On f 2(āx̄) , (∀ ā ∈ O∗) (16)

is well defined and satisfies f(ā) = f0(ā) > f1(ā) > . . . > f∞(ā) > 0. Moreover,

∑

b∈O

f 2
∞(āb) = lim

n→∞

∑

b∈O,x̄∈On

f 2(ābx̄) = lim
n→∞

f 2
n+1(ā) = f 2

∞(ā) , (17)

Let p = α−1f∞, then it follows from (17) that
∑

b∈O p2(āb) = p2(ā) and from (16)

that p(ǫ) = α−1 lim
n→∞

√
∑

x̄∈On f 2(x̄) = α−1 8 f8 = 1. Therefore p ∈ P.

As f > f∞ = αp > 0, by (9) we know Qn(f, αp) > Qn(αp, αp) for all n. These
inequalities and the definition (10) imply that Lf, αpM > Lαp, αpM = 8αp82 = α2.
Thus, 8f − αp82 = 8f 82 −2Lf, αpM + α2 8 p82 = 2α2 − 2Lf, αpM 6 0. It then follows
that 8f − αp8 = 0, i.e., [f ] = α[p]. �

Secondly, by Theorem 2 we know B+ is a convex cone in the space B. A natural
question arising here is whether the subset D+ = {[f ] : f ∈ B+} is also a convex
cone in the space D = {[f ] : f ∈ B}. The answer is yes, as stated in the following
theorem.

Theorem 4 (i) Let f, g ∈ B+ be such that 8f + g8 = 0, then 8f8 = 8g8 = 0; (ii)
D+ is a convex cone in D pointed at [0].

Proof: Since f, g ∈ B+, we know f, g > 0 and so 8f + g8 > 8f8 > 0. But
8f + g8 = 0, thus 8f8 = 0. By the same reason, 8g8 = 0. This proves (i).
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Let [f ], [g] ∈ D+. By the definition of D+, there are f ′, g′ ∈ B+ such that
[f ] = [f ′] and [g] = [g′]. As B+ is a convex cone, we have f ′ + g′ ∈ B+ and αf ′ ∈ B+

for any α > 0. It follows that [f ]+[g] = [f ′]+[g′] = [f ′+g′] and α[f ] = α[f ′] = [αf ′]
both belong to D+. So D+ is a convex cone.

Now let [h] ∈ D+ be such that −[h] = [−h] is also a member of D+. Then there
exist f, g ∈ B+ satisfying [f ] = [h] and [g] = [−h], i.e., 8f − h8 = 8g + h8 = 0. So
0 6 8f + g8 6 8f − h 8 + 8 g + h8 = 0. By (i) we know 8f8 = 0, which means
[h] = [f ] = [0]. Therefore, D+ is pointed at [0]. �

Finally, each probability amplitude p(ā) ∈ P (and hence each stochastic process
P (ā) = p2(ā)) has a representation [p] in the set DP. This actually can be seen as a
map that sends each process P (ā) to a member [

√
P ] of DP. To establish the reverse

map (from DP to stochastic processes), we need

Theorem 5 For any f, g ∈ P, if [f ] = [g], i.e., if 8f − g8 = 0, then f = g.

Proof: Since f, g ∈ P, we have 8f8 = 8g8 = 1 and it follows from 0 = 8f − g82 =
8f 82 + 8 g 82 −2Lf, gM that Lf, gM = 1. For f, g ∈ P ⊆ B+, (Qn(f, g))n=0,1,2,... (see
(9) for the definition of Qn) is a decreasing sequence with Q0(f, g) = f(ǫ)g(ǫ) = 1
and limn→∞ Qn(f, g) = Lf, gM = 1. So Qn(f, g) =

∑

ā∈On f(ā)g(ā) = 1 for all n. But
f, g ∈ P implies that

∑

ā∈On f 2(ā) =
∑

ā∈On g2(ā) = 1. Thus,

∑

ā∈On

[f(ā)− g(ā)]2 =
∑

ā∈On

f 2(ā)− 2
∑

ā∈On

f(ā)g(ā) +
∑

ā∈On

g2(ā) = 0 ,

which means f(ā) = g(ā) for all ā ∈ On (n = 0, 1, 2, . . .) and therefore f = g. �

Now for each [f ] ∈ DP, by the definition of DP and Theorem 5, there is a unique
pf ∈ P such that [pf ] = [f ]. We therefore find a (unique) process P (ā) = p2

f(ā) that
is decribed by [f ].

The above three theorems give us a clear insight into the relationship between
the family of stochastic processes and the families P and DP; and the structure of
the subsets DP and D+ in the space D:

• The family P is isomorphic (one-to-one corresponding) to DP via the map [·];
and both P and DP can be identified with the family of stochastic processes.

• DP is the intersection of the unit sphere DS and the convex cone D+ in the
space D. This means the family of stochastic processes can be embedded into
the inner product space D, with each process represented (uniquely) by a point
on the unit sphere DS and in the “positive orthant” D+.

3.2 Constructing NOOMs in the space D
Since all left-appending operators La leave the subspace B invariant (cf. Theorem
2), we can restrict the operation of La’s on the space B. Moreover, from 8Laf8 =
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limn

√
∑

x̄∈On f 2(ax̄) 6 limn

√
∑

x̄∈On+1 f 2(x̄) = 8f8 we know La also leaves the
subspace N invariant. Thus, as is well known, it induces naturally a linear operator
[La] on the quotient space D = B/N , via

[La][f ] := [Laf ] , (∀ f ∈ B) . (18)

We see now an important property of the linear operators [La], which ensures that
a standard NOOM can be constructed for any stochastic process.

Theorem 6 For any f, g ∈ B, it holds that
∑

a∈OLLaf, LagM = Lf, gM; or, equiva-
lently,

∑

a∈O〈[La][f ], [La][g]〉 = 〈[f ], [g]〉 for any [f ], [g] ∈ D.

Proof: Direct computation shows that

∑

a∈O

LLaf, LagM =
∑

a∈O

lim
n→∞

∑

x̄∈On

f(ax̄)g(ax̄) = lim
n→∞

∑

x̄∈On+1

f(x̄)g(x̄) = Lf, gM . �

Iteratively using definition (18), we get, for any ā = a1a2 . . . an and f ∈ B,

[Lāf ] = [Lan
· · ·La1

f ] = [Lan
][Lan−1

· · ·La1
f ] = . . . = [Lan

] · · · [La1
][f ] . (19)

Writing [L]ā for the composition [Lan
] · · · [La1

], then (19) can be shortly written as
[Lāf ] = [L]ā[f ]. It should be noted that trivially [La] = [L]a for all a ∈ O, and
furthermore [Lā] = [L]ā, since [Lā][f ] = [Lāf ] = [L]ā[f ] for all [f ] ∈ D.

Theorem 7 For any p ∈ P and ā ∈ O∗, p(ā) = ‖[Lā][p]‖ = ‖[L]ā[p]‖.
Proof: By (6) and induction on n, we obtain, for all n ∈ N,

p2(ā) =
∑

x̄∈On p2(āx̄) =
∑

x̄∈On [(Lāp)(x̄)]2 .

Letting n→∞ in the above equality, we get p2(ā) = 8Lāp8
2 = ‖[Lāp]‖2. It follows

from (19) that p(ā) = ‖[Lāp]‖ = ‖[L]ā[p]‖. �

Theorem 7 gives rise to a “universal” system (D, {[La]}a∈O) for representing any
probability amplitude p(ā), which plays the same role for NOOMs as the previously
introduced system (F , {La}a∈O, σ) (see page 7) plays for OOMs. Starting from
(D, {[La]}a∈O) we can construct abstract NOOMs for any process P (ā) = p2(ā),
by a procedure similar to the one presented in Subsection 2.1 for deriving abstract
OOMs for a given LDF from the system (F , {La}a∈O, σ).

For any p ∈ P, define Dp to be the subspace of D spanned by the vectors [L]ā[p]
(ā ∈ O∗), i.e., Dp := span{[L]ā[p] : ā ∈ O∗}. It is clear that the operators [La]
all leave the space Dp invariant and hence can be seen as operators on Dp. We
thus get an abstract NOOM (Dp, {[La]}a∈O, [p]) of the process P (ā) = p2(ā), which,
according to Theorem 7, computes the values of P (ā) via P (ā) = ‖[L]ā[p]‖2.

Thus far we have almost finished the proof to the first part of Theorem 1: the
system (Dp, {[L]a}a∈O, [p]) constructed above fulfills all the conditions asserted in
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the theorem, provided that we can define the adjoint operator [L]∗a of [L]a — so one
gets

∑

a∈O[L]∗a[L]a = idDp from Theorem 6. This amounts, in general, to proving
that Dp is complete, which is a nonissue for the finite-dimensional case. For the
general case where Dp is of infinite dimension, we currently do not know the proof
or disproof of the completeness of Dp. However, for the special case here, we can
directly define an operator L∗

a on F (for each a ∈ O), which naturally induces the
adjoint operator [L]∗a on the space D, as follows:

(L∗
af)(ǫ) = f(ǫ) ; (L∗

af)(a1a2 . . . an) =

{

0 if a1 6= a
f(a2 . . . an) if a1 = a

.

One should have no difficulty to see that (1) all L∗
a are linear operators on F ; (2) all

L∗
a leave the set B+, and hence the subspace B, invariant; (3) 8L∗

af8 6 8f8 for all
f ∈ B and so L∗

a also leaves the space N invariant; (4) Qn(f, Lag) = Qn+1(L
∗
af, g)

for all n ∈ N and f, g ∈ B; so the induced operator [L]∗a on D satisfies

〈[L]∗a[f ], [g]〉 = LL∗
af, gM = Lf, LagM = 〈[f ], [L]a[g]〉 , (∀ [f ], [g] ∈ D) . (20)

Equation (20) indicates that [L]∗a is the adjoint operator of [L]a in the vector
space D, whereas what we want is the adjoint of [L]a in the space Dp (Dp is not
necessary invariant under the operation of [L]∗a). To this end, we need further to
(orthogonally) project the images of [L]∗a onto the space Dp, yielding the composed
operator [Lprj]∗a := prjDp ◦[L]∗a, where prjDp is the projection operator from D onto
Dp. It is clear that [Lprj]∗a leaves the space Dp invariant and that for any [f ] ∈ D,
[L]∗a[f ] − [Lprj]∗a[f ] is orthogonal to Dp, i.e., 〈[L]∗a[f ] − [Lprj]∗a[f ], [g]〉 = 0 for all
[g] ∈ Dp. Thus,

〈[Lprj]∗a[f ], [g]〉 = 〈[L]∗a[f ], [g]〉 = 〈[f ], [L]a[g]〉 , (∀ [f ], [g] ∈ Dp)

which means [Lprj]∗a is the adjoint of [L]a in the space Dp and completes the proof
of Theorem 1.

We now consider finite-dimensional NOOMs and their matrix representations.
Assume the space Dp is of finite dimension m and select an orthonormal basis of
Dp, i.e., a basis {[g1], [g2], . . . , [gm]} with the property 〈[gi], [gj]〉 = δij , where δij

is the Kronecker symbol defined as δij = 1 if i = j and δij = 0 otherwise. As is
well known, each [f ] ∈ Dp can be uniquely represented as a linear combination of
{[g1], [g2], . . . , [gm]} (with coefficients αi(f) = 〈[f ], [gi]〉):

[f ] =
∑m

i=1 αi(f)[gi] , (∀ [f ] ∈ Dp) .

This defines a linear map π : Dp → R
m which sends each [f ] to the vector π[f ] =

[α1(f), α2(f), . . . , αm(f)]T. Since the basis {[gi]}mi=1 is orthonormal, by the linearity
of the inner product 〈·, ·〉 we get, for any [f ], [h] ∈ Dp,

〈[f ], [h]〉 =
∑

i,j

αi(f)αj(h)〈[gi], [gj]〉 =
∑

i,j

αi(f)αj(h)δij =

m
∑

i=1

αi(f)αi(h) , (21)
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i.e., 〈[f ], [h]〉 = {π[f ]}T{π[h]} =: 〈π[f ], π[h]〉. It follows from Theorem 6 that
∑

a∈O〈π[La][f ], π[La][h]〉 = 〈π[f ], π[h]〉 for any [f ], [h] ∈ Dp. Now let ϕa ∈ R
m×m

be the matrix representation of the linear operator π ◦ [La] ◦ π−1 : R
m → R

m under
the standard basis of R

m and u0 := π[p] ∈ R
m the initial state. Then, since p ∈ P,

uT

0 u0 = {π[p]}T{π[p]} = 〈[p], [p]〉 = 1. Furthermore,

eT

i (
∑

a∈O ϕT

a ϕa)ej =
∑

a∈O{π[La][gi]}T{π[La][gj ]} (by the definetion of ϕa)
=

∑

a∈O〈[La][gi], [La][gj ]〉
= 〈[gi], [gj]〉 (by Theorem 6)
= δij ,

where ei denotes the i-th unit vector in R
m. We thus conclude

∑

a∈O ϕT

a ϕa = Im.
Furthermore, for any ā = a1a2 . . . an ∈ O∗ it holds that

π[L]ā[p] = (π[Lan
]π−1) · · · (π[La1

]π−1)(π[p]) = ϕan
· · ·ϕa1

u0 = ϕāu0 .

This identity, together with Theorem 7, implies that

P (ā) = p2(ā) = 〈[L]ā[p], [L]ā[p]〉 = {π[L]ā[p]}T{π[L]ā[p]} = (ϕāu0)
T(ϕāu0) .

We thus have already constructed a NOOM (Rm, {ϕa}a∈O, u0) for the process P (ā)
that is standard: it satisfies ‖u0‖ = 1 and

∑

a∈O ϕT

a ϕa = Im.
Clearly, the abstract system (Dp, {[La]}a∈O, [p]) has (infinitely) many matrix

representations (under different orhtonormal bases of Dp). They are all standard
concrete NOOMs that represent exactly the same process and are related to each
other by a unitary matrix (the basis transition matrix). We shall utilize this fact to
derive a constructive algorithm for learning NOOMs in Section 6.

4 NOOMs as Generators and Predictors

After having established the mathematical foundation for a theory of NOOMs, we
explain in this section how to generate and predict the paths of a process (Xt)
modelled by a standard, finite-dimensional NOOM (Rm, {ϕa}a∈O, u0) via P (ā) =
‖ϕāu0‖2; and at the same time introduce some notations for later use.

The generation task requires one to randomly produce, at time steps t = 1, 2, . . .,
outcomes a1, a2, . . . ∈ O, such that (i) at time t = 1, the probability that the symbol
b is emitted is P (b) = ‖ϕbu0‖2, and (ii) at each time t = n + 1 (n = 1, 2, . . .), the
probability of producing b (assuming that ā := a1a2 . . . an has already been created)
is

P (b|ā) :=
P (āb)

P (ā)
=
‖ϕbϕāu0‖2
‖ϕāu0‖2

=: ‖ϕbuā‖2 , (22)

where uā = ϕāu0/‖ϕāu0‖ is the state vector of the NOOM on ā. Note that all state
vectors have norm 1 and can be recursively calculated by

uǫ = u0 , ua1a2...an
=

ϕan
ua1a2...an−1

‖ϕan
ua1a2...an−1

‖ . (23)
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Therefore, the procedure for generating sample paths of a process from its NOOM
(Rm, {ϕa}a∈O, u0) can be outlined as follows: at each time t = 1, 2, . . ., generate at

according to the probability distribution P (b) = ‖ϕbut−1‖2 and compute the state
vector ut = ϕat

ut−1/‖ϕat
ut−1‖.

NOOMs can also be used as predictors: given an initial path ā = a1a2 . . . an of the
process up to time t = n, we want to predict the probability that the next outcome
is b. This amounts to the computation of the conditional probability P (b|ā); and
equations (22)(23) can be employed here. But note that now the initial path ā is
not generated by the NOOM itself but is externally given.

In the next section we will show that any NOOM can be converted to an equiva-
lent OOM. So one can also first convert a given NOOM to its equivalent OOM; and
then use this OOM as the generator/predictor to create/predict the next outcome
b. See Section 3 of Jaeger (2000) for a detailed explanation.

Equations (22)(23) also provide a way for evaluating the probabilities P (ā). Note
that, here we cannot directly use the formular P (ā) = ‖ϕāu0‖2, for the decrease of
P (ā) with the increase of the length n of ā is on the average exponentially fast, which
would run us into numerical underflow problems. So instead of directly calculating
P (ā), one should evaluate the log-likelihood LL(ā) := log P (ā). This can be done
as follows: (1) for t = 1, 2, . . . , n compute xt = ϕat

ut−1, ct = ‖xt‖ and ut = c−1
t xt;

(2) calculate LL(ā) = 2
∑n

t=1 log ct.

5 On the Expressiveness of NOOMs

The previous section proved that any stochastic process admits a possibly infinite-
dimensional NOOM. We now consider the class of processes that can be modelled
by finite-dimensional NOOMs, which is of more practical interest in the machine
learning context. We also present in this section a general procedure for creating
(all) finite-dimensional NOOMs.

We first present a simple example (the NOOM version of the probability clock,
see Section 6 of Jaeger (2000)) to illustrate that NOOMs, like OOMs, can describe
some processes that cannot be modelled by HMMs. This is a 2-dimensional NOOM
over the alphabet O = {a, b}, with the observable operators and initial state defined
by

ϕa =

[

.6c −s

.6s c

]

, ϕb =

[

.8 0
0 0

]

; and u0 =

[

1
0

]

, (24)

where c = cos(0.6) and s = sin(0.6). It follows from (23) and (24) that

ux̄b = ϕbux̄/‖ϕbux̄‖ = [±1, 0]T = ±u0 , (∀ x̄ ∈ O∗) .

Note that, any ā ∈ O∗ is either ā = aa . . . a =: an (if b does not occur in ā) or
ā = x̄ban (if b occurs at least once in ā). For the latter case, we compute

P (b|x̄ban) =
P (anb|x̄b)

P (an|x̄b)
=
‖ϕanbux̄b‖2
‖ϕanux̄b‖2

=
‖ϕanbu0‖2
‖ϕanu0‖2

=
P (anb)

P (an)
= P (b|an) ;
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which is same as in the first case: ā = an. As P (a|ā)+P (b|ā) = 1 for all ā ∈ O∗, the
process modelled by the NOOM (24) is completely described by the family of the
conditional probabilities {P (b|an)}n=0,1,.... Iteratively using equations (22)(23), we
computed the values of P (b|an), and plotted them in Fig. 1 versus n. One observes
that the behavior of the NOOM given by equation (24) is very similar to that of
the probability clock. As explained in Jaeger (2000), such non-rational-periodic
behavior of P (b|an) cannot be captured by (finite) HMMs.
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Figure 1: The conditional probabilities P (b|an).

Although NOOMs are capable of capturing some non-HMM processes, they pro-
vide no more than OOMs, because each NOOM can be equivalently converted to
an OOM, as shown next.

Definition 2 For two matrices A ∈ R
m×n and B ∈ R

p×q, the Kronecker product
of A and B, denoted A ⊗ B, is the (blocked) matrix of size mp × nq with aijB as
its (i, j)-th block, where aij is the element of A at position (i, j). Furthermore, we
write vec(A) for the mn-dimensional column vector formed by stacking the columns
of A one below another.

We mention two well-known properties of the Kronecker product ⊗ and the stacking
operator vec(·). See, e.g., Hom and Johnson (1989); Brewer (1978) for more detail.

Theorem 8 When dimensions are appropriate, (1) (A⊗C)(B ⊗D) = AB ⊗ CD;
and (2) xTAy = [vec(A)]T(x ⊗ y). In particular, for x ∈ R

m, it holds that (3)
‖x‖2 = xTx = [vec(Im)]T(x⊗ x).

Now let (Rm, {ϕa}a∈O, u0) be a NOOM of the process P (ā). Then by Theorem
8 the probabilities P (ā) for ā = a1a2 . . . an can be calculated as

P (ā) = ‖ϕan
. . . ϕa2

ϕa1
u0‖2

= [vec(Im)]T(ϕan
. . . ϕa2

ϕa1
u0 ⊗ ϕan

. . . ϕa2
ϕa1

u0)
= [vec(Im)]T(ϕan

⊗ ϕan
) . . . (ϕa2

⊗ ϕa2
)(ϕa1

⊗ ϕa1
)(u0 ⊗ u0) .

Writing σ = [vec(Im)]T, τa = ϕa ⊗ ϕa and w0 = u0 ⊗ u0, we get a nonstandard
OOM (Rm2

, {τa}a∈O, w0, σ) for the process P (ā), which can be easily converted to
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an equivalent standard OOM (Rm2

, {̺τa̺
−1}a∈O, ̺w0), via a basis transition matrix

̺ ∈ R
m2×m2

satisfying 1T

m2̺ = σ, e.g., ̺ = Im2 + 1
m2 1m2(σ − 1T

m2); which can be
further converted to a minimal-dimensional OOM of the same process P (ā), see
Jaeger et al. (2005) for the procedure in detail.

For instance, the NOOM defined by (24) is equivalent to a 3-dimensional OOM
with initial state w0 = [0.933,−0.170, 0.237]T and observable operators

τa = 0.6





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 , τb = 0.4w0

[

1 0.483 3.157
]

;

where θ = 1.1005. One sees that the above OOM has the same structure as the
probability clock given in Jaeger (2000) (cf. equation (6.1) therein). This proves
the NOOM (24) indeed represents a probability clock and cannot be captured by
any HMMs.

The fact that every NOOM has an equivalent OOM reveals the class of NOOMs
as a subclass of OOMs. Now we consider the reverse problem: which OOMs have
equivalent NOOMs? So far only little is known concerning this question, except the
following sufficient condition.

Theorem 9 Any OOM (Rm, {τa}a∈O, w0) with nonnegative parameters in which
each row of each operator τa has at most one nonzero element has an equivalent
NOOM (Rm, {ϕa}a∈O, u0) defined by ϕa =

√
τa and u0 =

√
w0, where the square

root is defined entry-wise.

Proof: Assume [τa]ik is the only (possibly) nonzero element in the i-th row of τa.
Then for any x = [x1, x2, . . . , xm]T ∈ R

m with all elements xj being nonnegative, the

i-th element of τax is [τa]ik ·xk; and its square root
√

[τa]ik
√

xk is just the i-th element
of
√

τa

√
x = ϕa

√
x. So

√
τax = ϕa

√
x for any a ∈ O and any nonnegative x ∈ R

m.
By induction on the length of ā ∈ O∗, we can prove

√
τāw0 = ϕā

√
w0 = ϕāu0. Now

it is clear that ‖ϕāu0‖2 = ‖√τāw0‖2 = 1τāw0 and the assertion follows. �

Any Markov chain (MC) of m states can be equivalently represented as an m-
dimensional OOM with each operator τa consisting of zero columns except the a-th
column, which is equal to the corresponding column of the transition matrix of the
MC. So by Theorem 9 we know any m-state Markov chain can be converted to an
equivalent m-dimensional NOOM.

The currently known relationships between stochastic processes that can be cap-
tured by (finite) MCs, HMMs, NOOMs and OOMs can be summarized as follows:

NOOMs 6⊆ HMMs , MCs ⊂ HMMs ⊂ OOMs , MCs ⊂ NOOMs ⊆ OOMs .

Thus far it remains unclear whether NOOMs also (like OOMs) contains HMMs as
a subclass (i.e., HMMs ⊆ NOOMs).
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We now present a random construction of NOOMs matrices that is guaranteed to
yield all NOOMs. According to Definition 1, to create a NOOM (Rm, {ϕa}a∈O, u0),
one needs only to make sure that

∑

a∈O ϕT

a ϕa = Im and ‖u0‖ = 1. Let ϕ be
the mℓ by m matrix created by stacking the matrices ϕa below one another, i.e.,
ϕ := [ϕT

1 , ϕT

2 , . . . , ϕT

ℓ ]T. Then the condition
∑

a∈O ϕT

a ϕa = Im can be rewritten as
ϕTϕ = Im, which means the columns of ϕ form an orthonormal set in R

mℓ. In sum,
we get the general procedure for constructing arbitrary NOOMs of dimension m as
described in Algorithm 1.

Algorithm 1: A general procedure for creating random NOOMs

Given: the model dimension m
Want: a standard NOOM (Rm, {ϕa}a∈O, u0)
Procedure:

1. Randomly create m vectors in R
mℓ.

2. Make them an orthonormal set by using the Gram-Schmidt procedure.
This gives us an mℓ×m matrix ϕ with the property ϕTϕ = Im.

3. Divide the ϕ into ℓ blocks ϕa (a ∈ O) of equal size. These are the
observable operators of the desired NOOM.

4. Finally, the initial state u0 can be any vector in R
m with norm 1.

One therefore obtains an efficient way to construct OOMs (which usually have
no HMM equivalents): first create a random NOOM (by Algorithm 1) and then
convert it to an equivalent OOM.

Thus far we have seen two methods to create concrete NOOMs:

Method-A: either from a process via the routine presented in Section 3;

Method-B: or from scratch by employing Algorithm 1.

We would however point out that the two methods do not procure the same set
of NOOMs: Method-B is much more “productive” than Method-A. In fact, any
concrete NOOM (Rm, {τa}a∈O, u0) created by Method-A is a matrix representation
of some abstract NOOM (Dp, {[La]}a∈O, [p]) under some orthonormal basis of the
space Dp, in which it holds that 〈[f ], [h]〉 = {π[f ]}T{π[h]} for any [f ], [h] ∈ Dp (see
equation (21)). In particular, for ā, b̄ ∈ O∗, we have

(ϕāu0)
T(ϕb̄u0) = 〈[L]ā[p], [L]b̄[p]〉 = LLāp, Lb̄pM > 0 , (25)

since Lāp(x̄) = p(āx̄) > 0 and Lb̄p(x̄) = p(b̄x̄) > 0 for all x̄ ∈ O∗. Note that,
equation (25) by no means indicates that the NOOM theory also suffers from the
NPP; it just says that any NOOM created by Method-A has this special property,
which is not necessarily true for NOOMs generated by Algorithm 1, as one can
arbitrarily and independently change the sign of the observable operators and the
initial state of a NOOM (so (25) is violated) but still get the same process.

We conclude this section with three comments:
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• What we have presented in Section 3 is not the only way to construct NOOMs
from stochastic processes. There are many other possibilities to consider, e.g.,
one may define a different semidefinite inner product on the space B; or embed
the family P of probability amplitudes into another subspace of F rather than
the space B as we do in this paper.

• Consequently, dimDp = ∞ does not imply that the associated process P (ā)
admits no finite-dimensional NOOM.

• The randomized construction of NOOMs fills a gap in OOM research. In the
past, it was difficult to created non-HMM OOMs. In fact, the only (and widely
used) example appears to be the “probability clock” (Jaeger, 2000). According
to our experience, if a NOOM is randomly created and then transformed to
an OOM, the resulting OOM will typically be non-HMM. In this way, OOM
research will benefit from a richer zoo of examples, always a booster for research.

6 Toward a Constructive Learning Algorithm for

NOOMs

The first author has developed an iterative algorithm for learning NOOMs, on which
a separate paper is being prepared. While revising the current paper, the principles
of a constructive learning algorithm of NOOMs were found, which will be outlined
in this section.

This constructive algorithm is based on (25). In more detail, as the probability
P̂ (ā) of a given string ā can be asymptotically correctly estimated by simply counting
the number of its occurrences in the training dataset, in principle we are able to
estimate the value of the semidefinite inner product LLāp, Lb̄pM from its definition
(see equation (10)):

LLāp, Lb̄pM ≈
∑

x̄∈ON

√

P̂ (āx̄) ·
√

P̂ (b̄x̄) . (N sufficiently large) (26)

Equation (25) then allows us to estimate the system states of the form ϕāu0 (up to
a unitary transform, as we will prove soon), from which we compute the observable
operator estimations ϕ̂a by solving a set of linear equations.

We now describe the basic procedure of the NOOM learning algorithm. For
simplicity we would assume the training dataset is large enough so that one can
estimate the probability of any string ā ∈ O∗ with sufficient accuracy; or, there is
an oracle who would, whenever we asked, tell us the true probability P (ā). We also
assume the model dimension m is already known.

We first select a subset {c̄1, . . . , c̄m} of m finite strings in O∗; and estimate the
value of LLāp, Lb̄pM by (26), where ā and b̄ run over the strings c̄i and c̄ia with
i = 1, 2, . . . , m and a ∈ O. These estimated quantities are then collected in a
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symmetric square matrix Q of order (1 + ℓ)m (recall that O = {a1, a2, · · · , aℓ}),
which can be naturally divided into (1 + ℓ)× (1 + ℓ) blocks of equal size m×m:

Q = [Qab]a,b∈{ǫ}∪O , [Qab]ij = LLc̄iap, Lc̄jbpM , (i, j = 1, 2, . . . , m) . (27)

As the matrix Q defined as above plays a central role in the learning algorithm, we
will give it a special name: the kernel matrix.

In the following we would fix c̄1 = ǫ (to simplify the estimating of the initial
state, see below) and assume that the choice of {c̄1, . . . , c̄m} makes the matrix Qǫǫ

nonsingular.
By (25), it is easy to see that Qab = UT

a Ub (a, b ∈ {ǫ} ∪ O), where the Ua’s are
m×m matrices defined by

Ua = [ϕc̄1au0, . . . , ϕc̄mau0] = ϕa · [ϕc̄1u0, . . . , ϕc̄m
u0] . (28)

It then follows that Ua = ϕaUǫ for a ∈ O. Moreover, the kernel matrix Q has the
decompostion Q = UTU with U := [Uǫ, Ua1 , . . . , Uaℓ ].

Lemma 3 Let A1, A2 ∈ R
m×N (m 6 N) be two full rank matrices and assume that

AT

1 A1 = AT

2 A2. Then there is a unitary matrix µ ∈ R
m×m such that A1 = µA2.

Proof: For i = 1, 2, let Ai = LiDiR
T

i be the compact SVD of Ai, where Li ∈ R
m×m

are unitary, Di ∈ R
m×m diagonal and Ri ∈ R

N×m. From AT

1 A1 = AT

2 A2, we see the
symmetric matrix AT

1 A1 has eigenvalue decomposition AT

1 A1 = R1D
2
1R

T

1 = R2D
2
2R

T

2

(here the eigenvalue 0 and its associated eigenvectors are not presented). It follows
from the uniqueness of eigenvalues that D2

1 = D2
2 = diag{σ2

1Im1
, . . . , σ2

kImk
} =: D2,

where σ1 > . . . > σk > 0 and mj is the multiplicity of the eigenvalue σ2
j of AT

1 A1

(j = 1, . . . , k). Now, for i = 1, 2, we have Ri = [R
(1)
i , . . . , R

(k)
i ], where R

(j)
i ∈ R

N×mj

has orthonormal columns that form a basis of the eigenspace of AT

1 A1 with respect

to the eigenvalue σ2
j . Since the eigenspace is unique, the two matrices R

(j)
1 and R

(j)
2

are connected by some unitary matrix Uj of size mj×mj : R
(j)
1 = R

(j)
2 Uj . Therefore,

R1 = R2 · diag{U1, . . . , Uk} =: R2U , where U ∈ R
m×m is a unitary matrix which,

obviously, satisfies UD = diag{σ1U1, . . . , σkUk} = DU and hence DUT = UTD. We
thus get A1 = L1DRT

1 = L1DUTRT

2 = L1U
TDRT

2 = L1U
TLT

2 L2DRT

2 = µA2, where
µ := L1U

TLT

2 ∈ R
m×m is a unitary matrix. �

Now let Q = RDRT be the (compact) SVD of the kernel matrix Q and define

W := D
1

2 RT, then Q = WTW . Were everything in its place, we would have
W ∈ R

m×(1+ℓ)m and UTU = WTW — in practice, the matrix W usually contains
more than m rows and one should use the first m rows of W to replace the matrix
W here. Therefore, by Lemma 3, there exists a unitary matrix µ ∈ R

m×m such that
U = µW . Writing W = [Wǫ, Wa1 , . . . , Waℓ ] with each Wa ∈ R

m×m (a ∈ {ǫ}∪O), we
know from Ua = ϕa · Uǫ (see equation (28)) that µWa = ϕaµWǫ. Therefore,

µTϕaµ = Wa ·W−1
ǫ , (a ∈ O) . (29)
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Note that, since the matrix Qǫǫ is nonsingular (assured by the selection of {c̄1, . . . , c̄m}),
one should have no difficulty to see that Uǫ, and hence Wǫ, is invertible. So the above
equation is well defined. Moreover, as we have set c̄1 = ǫ, the first column the matrix
U is U(:, 1) = u0 (in MatLab’s notation). So by the equality U = µW we know

µTu0 = W (:, 1) . (30)

The above two equations give rise to a NOOM estimation (Rm, {µTϕaµ}a∈O, µTu0)
that is obviously equivalent to the “true” model (Rm, {ϕa}a∈O, u0).

In practice, only an estimate Q̂ of the kernel matrix is available. Consequently,
the model estimated by ϕ̂a = ŴaŴ

−1
ǫ and û0 = Ŵ (:, 1) (here the symbols Ŵa, Ŵǫ

and Ŵ have obvious meaning) is usually not a valid NOOM — the two conditions
from Definition 1 might be violated. One possible way to overcome this problem is
to calculate a valid NOOM that is closest to the learnt model under some distance
measure. For instance, we can compute a new NOOM (Rm, {ϕ∗

a}a∈O, u∗
0) from the

estimated model by solving the following optimization problem:

minimze
ϕ∗

a,u∗

0

∑

a∈O ‖ϕ∗
a − ϕ̂a‖2F + ‖u∗

0 − û0‖2 ,

subject to
∑

a∈O(ϕ∗
a)

T(ϕ∗
a) = Im , ‖u∗

0‖ = 1 ;
(31)

where ‖X‖F :=
√

tr(XTX) denotes Frobenius norm of matrices. This problem
can be analytically solved as follows. As before, write ϕ̂ (resp. ϕ∗) for the mℓ by
m matrix created by stacking the matrices ϕ̂a (resp. ϕ∗

a) below one another. Let
ϕ̂ = LDRT be the SVD of ϕ̂a, then ϕ∗ = LRT and u∗

0 = û0/‖û0‖ is the (unique)
minimizer of (31). See Appendix B for the proof.

We now briefly illustrate the asymptotical correctness of the presented algorithm.
When the size of training dataset and the value of N in (26) both go to infinity,
the probability estimation {P̂ (ā)}ā∈O∗ , and hence the kernel matrix Q̂ estimated by
(26) and (27), tend to their true value. This implies that the matrix Ŵ defined
above is asymptotically correct, so is the NOOM estimation calculated by (29)(30).

We should however point out that, while being mathematically clear and simple,
the above basic algorithm for learning NOOMs is still far from a practical method.
There are technical problems that have to be solved before it can be utilized in
practice. Especially, the estimation of the kernel matrix Q by equations (26) and
(27) is a challenge: the summation in (26) contains ℓN items and would become
computationally prohibitive even for modest values of N . To work out an efficient
way to estimate the kernel matrix Q is therefore a main goal for future work, for
which two (heuristic) methods are currently being investigated by the first author.

• To use variable-length strings x̄ in the summation (26): the idea behind is that

if for some x̄ the product

√

P̂ (āx̄) ·
√

P̂ (b̄x̄) =: Πā,b̄(x̄) is already very small,

we need not to compute further the values of Πā,b̄(x̄a) (a ∈ O) since in this case
it holds that Πā,b̄(x̄) ≈ ∑

a∈O Πā,b̄(x̄a). We therefore get a greedy method to
estimate the quantity LLāp, Lb̄pM, as outlined below.
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1. let k = 0, Ak := {ǫ} and compute vk =
∑

x̄∈Ak
Πā,b̄(x̄);

2. set Ak+1 := (Ak \ {y}) ∪ {ȳa : a ∈ O}, where ȳ = arg maxx̄∈Ak
Πā,b̄(x̄);

3. let k ← k + 1 and compute vk as in step 1;

4. stop (and output LLāp, Lb̄pM ≈ vk) if vk−1 − vk is less than some threshold
θ, otherwise goto step 2.

• To use Monte Carlo sampling. In fact, by its definition we know that

LLāp, Lb̄pM = lim
N→∞

∑

x̄∈ON

P (āx̄) ·
√

P (b̄x̄)/P (āx̄) .

Therefore, letting {x̄1, . . . , x̄K} be a aubset of O∗ sampled from the distribution
P (·|ā), we get the following approximation:

LLāp, Lb̄pM ≈
P (ā)

K

K
∑

k=1

√

P (b̄x̄k)/P (āx̄k) .

The efficiency and accuracy of these two methods remains to be investigated in
detail.

7 Conclusion

In this paper we first briefly reviewed the basic OOM theory, with a special emphasis
on the negative probability problem (NPP). To avoid this NPP of OOMs, we pro-
posed a novel variant of OOMs, called norm observable operator models (NOOMs).
Although NOOMs look structurally similar to OOMs, the mathematical ground of
NOOMs is actually quite different from that of OOMs. Specifically, the system
states and operators of the two models are defined in entirely different spaces.

NOOMs avoid the NPP by design, while still being powerful enough to capture
all MC-describable processes and some stochastic processes that cannot be modelled
by HMMs. Furthermore, it is rather easy to construct NOOMs from scratch and
convert an arbitrary NOOM to the equivalent OOM, which gives rise to an efficient
way for creating non-trivial OOMs. Studying such non-HMM OOMs is helpful
for further exploring the standard OOM theory, especially for finding nontrivial
sufficient conditions that allow us to check whether a given collection of matrices
form a valid OOM.

We outlined a constructive algorithm for learning NOOMs from data, proved
its asymptotical correctness, and proposed two possible ways to estimate the kernel
matrix Q without the need of an exponential size sample. Although a practical
algorithm has not been completely worked out, it is a noteworthy initial result
that NOOMs can in principle be learnt from data constructively and asymptotically
correctly.
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Although research on NOOMs is still in its initial stage, we perceive NOOMs as
a model class of significant theoretical and practical interest. From the theoretical
aspect, the NOOM approach embeds the family of stochastic processes into an
inner product space, enabling us to describe and analyze stochastic processes with
methods from not only linear algebra but also real analysis. Furthermore, NOOMs
exhibit striking analogies to the formalism of quantum mechanics, a topic that the
first author pursues in a separate line of investigations. From a practical perspective,
NOOMs have the potential to develop into a viable alternative to HMMs and OOMs,
possibly capturing the same class of processes as OOMs do, while avoiding the non-
negativity problem: the original motif that started NOOM research.

We end the paper by pointing out some open theoretical problems which we
deem to be of particular relevance for further progress.

• As we mentioned in the discussion at the end of Section 5, there may be other
methods besides the one presented in Section 3 to construct standard NOOMs
from a given process. Finding these NOOM constructions will shed more light
on the relationship between NOOMs and the associated processes; and further-
more help to develop new learning algorithms (note the relation between the
learning algorithm introduced in Section 6 and the construction of NOOMs in
Section 3).

• Due to the fact that there are various methods to construct NOOMs from a
process, currently we do not know how to check whether a given NOOM has
minimal dimension in its equivalence class, which is an easy task for OOMs.
But to check whether two NOOMs are equivalent to each other is relatively
easy: one first converts them into equivalent OOMs, then check the equivalence
of these with the methods known for OOMs.

• There are processes that can be described by NOOMs more compactly than by
OOMs, such as the probability clock presented in this paper. To characterize
these processes would also be an interesting reseach topic. — In general, if
one creates a NOOM by, e.g., Algorithm 1, and converts it into the equivalent
minimal-dimensional OOM, one typically obtains a model with higher dimen-
sion. We thus conjecture that, if a process can be modelled by NOOMs, its
NOOM representation is usually more compact than its OOM representation.
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A Kolmogorov Extension Theorem

We first give a mathematically rigorous statement of the KET for the general case, then
use it to prove the “converse” part of Theorem 1.

Theorem 10 (the Kolmogorov Extension Theorem)
Let I be an arbitrary (possibly continuous) index set and (B,B) a measurable space.

For each finite subset J of I, let PJ : BJ → [0, 1] be a probability measure on the product
measurable space (BJ , σ(BJ)). For J ⊆ K ⊆ I, let πJK be the natural projection from
BK onto BJ . For example, if J = {1, 2} and K = {1, 2, 3}, then πJK maps each point
bK = (b1, b2, b3) in BK to the point bJ = (b1, b2) ∈ BJ .

Assume now that the following consistency condition:

PJ(A) = PK(π−1
JK(A)) , (∀A ∈ σ(BJ), J ⊆ K are finite subsets of I) (32)

is met, then there is a unique measure P on the measurable space (Ω, E) = (B,B)I —
Ω is the collection of all functions from I to B, and H is the σ-algebra generated by the
finite-dimensional measurable rectangles, such that

PJ(A) = P (π−1
JI (A)) , (∀A ∈ σ(BJ), J ⊆ I finite) .

In particular, for the special case of the paper, B = O = {a1, a2, . . . , aℓ}, B is the
power set of O, and I = {0, 1, 2, . . .}. The consistency condition (32) is then reduced
to the summation constraint P (ā) =

∑

b∈O P (āb), which is warranted by the property
∑

a∈O ϕ∗
aϕa = idE in standard NOOM representations. We thus proved the “converse”

part of Theorem 1.
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B The Analytical Solution to the Problem (31)

As mentioned before, let ϕ̂ (resp. ϕ∗) be the mℓ by m matrix created by stacking the
matrices ϕ̂a (resp. ϕ∗

a) below one another. Then the optimization problem (31) can be
equivalently written as (after some simple computation)

maximize tr{ϕ̂Tϕ∗}+ ûT
0 u∗

0 ,
subject to (ϕ∗)T(ϕ∗) = Im , ‖u∗

0‖ = 1 .

It is obvious that we can compute the optimal ϕ∗ and u∗
0 separately, as in

(ϕ∗)opt = arg maxϕ∗{tr{ϕ̂Tϕ∗} : (ϕ∗)T(ϕ∗) = Im} ,
(u∗

0)opt = arg maxu
∗

0
{ûT

0 u∗
0 : ‖u∗

0‖ = 1} ,

from which we immediately see (u∗
0)opt = û0/‖û0‖. To obtain (ϕ∗)opt, we take the SVD

ϕ̂ = LDRT of ϕ̂, where L ∈ R
mℓ×m and R ∈ R

m×m. The target function tr{ϕ̂Tϕ∗}
can then be written as tr{ϕ̂Tϕ∗} = tr{RDLTϕ∗} = tr{DLTϕ∗R} = tr{DLTV }, where
V := ϕ∗R ∈ R

mℓ×m satisfies V TV = Im and so has orthonormal columns. Writing

D = diag{d1, d2, . . . , dm} , L = [l1, l2, . . . , lm] , V = [v1,v2, . . . ,vm] ,

we get tr{ϕ̂Tϕ∗} =
∑m

i=1 di · (lTi vi), which, obviously, reaches its maximum
∑m

i=1 di when
vi = li for all i = 1, 2, . . . ,m, that is, L = V = ϕ∗R. We thus get (ϕ∗)opt = LRT.
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