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Characterization of ergodic hidden Markov sources
Alexander Schönhuth, Member, IEEE and Herbert Jaeger, Member, IEEE

Abstract—An algebraic criterion for the ergodicity of discrete
random sources is presented. For finite-dimensional sources,
which contain hidden Markov sources as a subclass, the criterion
can be effectively computed. This result is obtained on the
background of a novel, elementary theory of discrete random
sources, which is based on linear spaces spanned by word
functions, and linear operators on these spaces. An outline of
basic elements of this theory is provided.

Index Terms—Asymptotic mean stationarity, dimension, en-
tropy, ergodic, evolution operator, hidden Markov model, linearly
dependent process, Markov chain, observable operator model,
random source, stable, state generating function, stationary

I. INTRODUCTION

THE theory of finite-valued Markov chains is fundamental

for probability and information theory. By identifying

states with the vertices of a graph and edge weights with

transition probabilities one can conveniently infer a variety

of statistical properties by inspecting combinatorial properties

of the graph. A prevalent example is that (a special form

of) ergodicity is equivalent to the underlying graph being

irreducible and aperiodic (e.g. th. 6.4.17, [7]).

However, in case of hidden Markov chains (HMCs)—we

subsequently speak of hidden Markov sources (HMSs) when

we want to address the random source associated to an HMC—

the inspection of combinatorial properties of the underlying

Markov chain is of limited use to demonstrate ergodicity. In

the general case, only sufficient, but not necessary conditions

could be established, namely, the hidden Markov chain inherits

ergodicity from the underlying Markov chain. For related

work see [6], [15], [16] and also the excellent review [14]

and citations therein. The main result of this paper is a

novel—and to the best of our knowledge, the first—sufficient

and necessary condition for the ergodicity of an arbitrary

hidden Markov chain. The inherent criterion can be tested

in polynomial runtime, as facilitated by a subroutine of an

efficient algorithm for determining the equivalence of two

HMMs [20], and therefore is highly suitable for practical

purposes.

The criterion can be naturally established within a general

theory of discrete-time, discrete-valued stochastic processes,

which interprets processes as vectors in certain functional

vector spaces. The first author has developed this theory in

[17]. Since this work was written in German, the present paper

also serves to make this line of research more accessible to an

English-reading audience, while at the same time simplifying

some aspects of the original theory as given in [17].
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In sum, the original contributions of this paper are

(i) making accessible basic parts of the general algebraic

theory of random sources given in [17], with improve-

ments in simplicity and clarity of the theoretical account,

including and up to a general algebraic criterion for

ergodicity of discrete random sources,

(ii) to provide a criterion that characterizes ergodicity for

the class of finite-dimensional sources (which include

HMCs), which is based on standard spectral properties

of a matrix and can be efficiently tested

(iii) and, as a minor contribution, to sketch a general theory

of classification of ergodic random sources.

The general framework within which we work branches

from the theory of observable operator models (OOMs) which

has been developed in the field of machine learning by the

second author as a generalization of HMMs [12]. OOMs,

in turn, can be seen as the culmination of a long series of

investigations into the equivalence of HMMs (e.g., [4] [9]

[11], [20], survey in [12]), which has led to a generalization of

hidden Markov sources termed linearly dependent processes

[4] or finitary sources [9].

II. RANDOM SOURCES AND WORD FUNCTIONS

As usual, Σ∗ = ∪k≥0Σk denotes the set of all strings

of finite length over the finite alphabet Σ together with the

concatenation operation:

w ∈ Σt, v ∈ Σk =⇒ wv ∈ Σt+k

where the word ! ∈ Σ0 of length |!| = 0 is the empty string.
We denote the length of w ∈ Σt by |w| = t and write at ∈ St

for the concatenation of t times the letter a. Given a random
source (Xt) we write

pX(v = v0...vt) = Pr({X0 = v0, ..., Xt = vt})

for the probability that the associated random source emits the

string v0v1...vt at periods s = 0, ..., t. Accordingly, we think
of random sources (Xt) as being specified by word functions

pX : Σ∗ → [0, 1] ⊆ R such that
∑

a∈Σ

p(wa) = p(w) for all w ∈ Σ∗, (1)

assuming p(!) = 1, which implies
∑

w∈Σt

p(w) = 1 for all t = 0, 1, . . .. (2)

Note that this class of word functions fully describe the class of

one-sided random processes with values in Σ. To discern them
from arbitrary word functions we refer to them as stochastic

word functions (SWFs) in the following.
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If convenient from a technical point of view, we identify

one-sided random sources and the associated SWFs with

probability measures on the measurable space of one-sided

sequences

Ω = ΣN =
∞
⊗

t=0

Σ

equipped with the σ-algebra B generated by the cylinder sets.
In this vein, we sometimes identify subsets of words A ⊂ Σt

with cylinder sets C[A] ∈ B with where C[A] is the set of all
sequences whose prefixes are strings from A. In the special
case of A = {v} for a single word v = v0...vt we have that

C[v] := C[{v}] = {X0 = v0, ..., Xt = vt}. In this vein, if p
is an SWF and P is the probability measure associated with

p then
P (C[A]) = p(A) :=

∑

v∈A

p(v)

for A a subset of words of equal length.

A. Operators

Upon having seen the string w = w0...wt at time t, we think
of the random source (Xt) as being in a state that depends
only on w and completely describes the probabilities for the

symbols to be produced at times t+1, t+2, .... This is reflected
by a transformation of the SWF p into an SWF pw where

pw(v) := p(v|w)

= Pr{Xt+1 = v1, . . . , Xt+k = vk|w} = p(wv)/p(w). (3)

for v = v1...vk ∈ Σk.

This transformation can be described by an observable

operator [12] τw which, in a more general fashion, acts

as a linear operator on the linear space of word functions

RΣ∗

= {f : Σ∗ → R} and is defined by

(τwf)(v) := f(wv)

for all v ∈ Σ∗. Note further that

τw1...wt = τwt ◦ ... ◦ τw1 . (4)

If τw is applied to an SWF p with p(w) > 0 then 1/p(w)τwp =
pw and τwp = 0 in case of p(w) = 0. Accordingly, we define
pw = 0 in case of p(w) = 0. We call pw a predictor function

of p. We extend the definitions of observable operators and
predictor functions from words w to subsets of words of equal

length A ⊂ Σt by setting

τAf :=
∑

w∈A

τwf

that is, (τAf)(v) =
∑

w∈A f(wv), and (p(A) :=
∑

v∈A p(v))
pA := 1/p(A)τAp
We further introduce the evolution operator µ on RΣ∗

which

is defined by

(µf)(v) :=
∑

a∈Σ

(τaf)(v) =
∑

a∈Σ

f(av).

By multinomial expansion we obtain

µtf = τΣtf =
∑

v∈Σt

τvf. (5)

B. Spaces and norms

We consider the set of word functions RΣ∗

as a vector space

and define

S := span {f ∈ RΣ∗

| f is stochastic}

which is the linear subspace of finite linear combinations of

SWFs. Note that S can be identified with the linear space of

finite, signed measures on (Ω,B). Therefore, we can make
it a normed space by equipping it with the norm of total

variation which we denote by ||.|| (see appendix A for a

brief compilation of the theory of finite, signed measures).

Furthermore, in [19] it was shown that

||p|| = sup
t∈N

∑

v∈Σt

|p(v)| = lim
t∈N

∑

v∈Σt

|p(v)| (6)

for p ∈ S which is a more handy characterisation of the norm
of total variation in case of the measurable space at hand.

Clearly, τw(S) ⊂ S for all w ∈ Σ∗. Hence τA(S) ⊂ S as

well as µ(S) ⊂ S.

Lemma 2.1: Let A ⊂ Σt be a subset of words of equal

length. Then it holds that

||µ|| = ||τA|| = 1 (7)

where here ||.|| refers to the operator norm of endomorphisms
on S.

Proof. ¿From
∑

v∈Σs

|τAp(v)| =
∑

v∈Σs

|
∑

w∈A

p(wv)| ≤
∑

w∈Σt

∑

v∈Σs

|p(wv)|

=
∑

u∈Σt+s

|p(u)| ≤ ||p||
(8)

we obtain ||τA|| ≤ 1. Further choose a sequence ω ∈ Ω =
⊗∞

t=0 Σ such that w is a prefix of ω for a w ∈ A. Let pω

be the SWF associated with the random source that emits the

sequence ω with probability one, that is

pω(v) =

{

1 v is a prefix of ω

0 else
.

It follows that both ||pω|| = 1 and ||τApω|| = 1 from which

we obtain ||τA|| = 1. From µ = τΣ we infer the left equation

of (7). )

C. Dimension

Given an SWF p, we consider the predictor space

Vp := span {pw | w ∈ Σ∗}

= span {τwp | w ∈ Σ∗} ⊂ S ⊂ RΣ∗

(9)

that is, the linear subspace of finite linear combinations of

predictor functions. This subspace can be identified with the

column space of the infinite prediction matrix

Pp = [p(v|w)v,w∈Σ∗ ] ∈ RΣ∗×Σ∗

. (10)

Analogously we define the evolution space

Ep := span {µtp | t ∈ N} ⊂ S ⊂ RΣ∗
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which, because of (5), is a subspace of Vp.

The dimension of Vp for an SWF p is referred to as the
dimension of p resp. as the dimension of the random source

associated with p. Accordingly, a random source is said

to be finite-dimensional iff dimVp < ∞. Analogously, the
dimension of Ep is referred to as the evolution dimension of

p resp. of the random source associated with p and p is said
to be finite-evolutiondimensional iff dim Ep < ∞.

As finite dimension implies finite evolution dimension,

the class of finite-dimensional sources is contained in that

of the finite-evolutiondimensional sources. It can be shown

that there are infinite-dimensional sources of finite evolution

dimension [3].

If the dimension of an SWF p is finite there is a practicable
way for reading it off the prediction matrix. Therefore, we set

S≤t to be the set of strings of length at most t and define

Vt
p := span {pw |w ∈ S≤t}.

Obviously Vt
p ⊂ Vt+1

p for all t ∈ N.

Lemma 2.2:

∀t ∈ N : Vt
p = Vt+1

p ⇒ dim p = dimVt
p. (11)

Proof. It suffices to show that Vt+n
p = Vt

p for all n ∈ N.
We will do that by induction on n where n = 0 is trivial. Let
n > 0. Note that, because of (4),

Vt+n
p = span Vt+n−1

p ∪ (
⋃

a∈S

τa(Vt+n−1
p )). (12)

Therefore, the left hand side of (11) translates to

τa(Vt
p) ⊂ Vt

p (13)

for all a ∈ S. To finish the proof we compute

Vt+n
p

(12)
= span (Vt+n−1

p ∪ (
⋃

a∈S

τa(Vt+n−1
p ))

(∗)
= span (Vt

p ∪ (
⋃

a∈S

τa(Vt
p))

(13)
= Vt

p.

where (∗) follows from the induction hypothesis. )

Corollary 2.1:

dim p = n ⇒ Vp = Vn−1
p . (14)

Proof. Consider

span {p} = V0
p ⊂ V1

p ⊂ ... ⊂ Vn−1
p ⊂ Vn

p

which is a chain of vector spaces of length n + 1. Because of
(11) any equality in this chain will establish the desired result.

Because of n being the dimension of Vp we will not find more

than n − 1 proper inclusions in this chain. So, at the latest,
Vn−1

p = Vn
p . )

In an analogous fashion we study the row space of the

predictor matrix. Therefore we set

Pp,t := [p(v|w)]v∈S≤t,w∈S∗ ∈ RS
≤t×S

∗

that is, the rows of Pp which refer to strings of length at most

t. We further write

fv := [p(v|w)]w∈S∗

for the v-row of P . Note that for u, v, w ∈ S∗

fu(wv) = p(u|wv) =
1

p(wv)
p(wvu)

=
p(w)

p(wv)
p(vu|w) =

p(w)

p(wv)
fvu(w). (15)

Lemma 2.3:

∀t ∈ N : rk Pp,t = rk Pp,t+1 ⇒ dim p = rk Pp,t.
(16)

Proof. We show that rk Pp,t+2 = rk Pp,t+1 from which

the claim follows by induction on t. By assumption, for each
v ∈ St+1

fv =
∑

u∈S≤t

αv,ufu

that is, the v-row is a linear combination of u-rows where
|u| ≤ t. Let now v = v1...vt+2 ∈ St+2. Writing v′ =
v2...vt+2 ∈ St+1 we find that

fv(w) = p(v|w) =
1

p(w)
p(wv) =

1

p(w)
p(wv1v

′)

=
p(wv1)

p(w)
fv′(wv1) =

∑

u∈S≤r

p(wv1)

p(w)
αv′,ufu(wv1)

(15)
=

∑

u∈S≤r

αv′,ufuv1(w)

which shows that fv is a linear combination of vectors from

Pp,t+1. )

Corollary 2.2:

dim p = n =⇒ rk Pp = rk Pp,n−1. (17)

Proof. This follows from considerations which are com-

pletely analogous to that of corollary 2.1. )

Gathering the results from corollaries 2.1,2.2 the following

lemma is obvious.

Lemma 2.4: Let p be an SWF such that dim p ≤ n. Then

dim p = rk [p(v|w)]v,w∈S≤n−1 = rk [p(wv)]v,w∈S≤n−1 .

That is, n is the rank of the finite submatrix of Pp whose

entries refer to words up to length n − 1 only.

Proof. The left equation follows straightforwardly from

corollaries 2.1,2.2 and the right one comes from p(wv) =
p(w)p(v|w). )
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D. Conditional SWFs

If p is an SWF of a random source (Xt) associated with a
probability measure P on (Ω,B) and B ∈ B is an event for

which P (B) > 0 we define an SWF pB by

pB(v = v0...vt) :=
1

P (B)
P (C[v] ∩ B)

=
1

P (B)
P ({X0 = v0, ..., Xt = vt} ∩ B) (18)

that is pB(v) reflects our knowledge about seeing the word v
when we already know that B is to happen. We refer to pB as

a conditional SWF. We can establish the following relationship

between conditional SWFs and predictor functions.

Lemma 2.5: Let p be an SWF and A ⊂ Σt where

P (C[A]) = p(A) =
∑

v∈A p(v) > 0 for the probability

measure P associated with p. It holds that

τApC[A] = µtpC[A] = pA =
1

p(A)
τAp. (19)

Proof. Let v ∈ Σ∗. We compute

(µtpC[A])(v) =
∑

w∈Σt

pC[A](wv)

pC[A](wv)=0,w )∈A
=

∑

w∈A

pC[A](wv) = (τApC[A])(v) (20)

which establishes the first equation of (19). Furthermore,

(τApC[A])(v) =
∑

w∈A

pC[A](wv)

=
∑

w∈A

1

P (C[A])
P (C[A] ∩ C[wv])

=
∑

w∈A

1

P (C[A])
P (C[wv])

=
∑

w∈A

1

p(A)
p(wv) =

1

p(A)
(τAp)(v)

where the third equation follows from C[wv] ⊂ C[A] which
in turn is implied by w ∈ A. )
Lemma 2.6: Let p be an SWF and B ∈ B such that P (B) >

0 for the probability measure P associated to p. There is a
sequence of subsets of words Fn ⊂ Sn such that

lim
n→∞

||pC[Fn] − pB|| = 0. (21)

Proof. ¿From the approximation theorem ( [8]) we obtain

a sequence of cylinder sets C[Fn] such that

P (C[Fn] / B) −→
n→∞

0

where A/B is the symmetric set difference of two events

A, B. Without loss of generality, these cylinder sets can be
chosen such that Fn ⊂ Sn. Because of |P (Fn) − P (B)| ≤
P (Fn /B) this in particular yields P (Fn) →n→∞ P (B).
Therefore without loss of generality, P (Fn) > 0 for all n. It
is well known (e.g. [6],?) that

||P − Q|| = 2 sup
B∈B

|P (B) − Q(B)| (22)

for arbitrary probability measures P, Q. Therefore

||pFn − pB|| = 2 sup
C∈B

|P (C|Fn) − P (C|B)|

= |
1

P (Fn)
P (Fn ∩ C) −

1

P (B)
P (B ∩ C)|. (23)

Knowing on one hand that 1/P (Fn) →n→∞ 1/P (B) and on
the other hand, by standard arguments from measure theory,

that |P (Fn ∩ C) − P (B ∩ C)| ≤ P ((Fn ∩ C)/ (B ∩ C)) ≤
P (Fn /B) →n→∞ 0 we obtain the claim of the lemma. )

III. ERGODIC PROPERTIES

A. Stationarity

We call p ∈ S stationary if µp = p. For an SWF p
this is equivalent to dim Ep = 1, that is, p has evolution

dimension 1. This straightforwardly translates to stationarity
of the associated random source P as stationarity needs to be

checked on generating events alone (here we immediately get

P (T−1C[v]) = P (C[v]) for all strings v ∈ S∗, where T is

the familiar shift operator). Vice versa, µp = p for the SWF p
of a stationary random source P . As eigenvectors of a linear
operator, the stationary random sources span a linear subspace

Sµ := span {p SWF |µp = p} = {p ∈ S |µp = p}.

B. Asymptotic Mean Stationarity

A random source P is called asymptotically mean stationary

(AMS) if there is a stationary P̄ such that

∀B ∈ B : lim
n→∞

1

n

n−1
∑

i=0

P (T−iB) = P̄ (B). (24)

P̄ is called the stationary mean of P . A SWF p is called

asymptotically mean stationary (AMS) if its associated ran-

dom source P is. Furthermore, we denote an SWF p for which
there is a stationary SWF p̄ ∈ Sµ such that

lim
n→∞

||
1

n

n−1
∑

i=0

µip − p̄|| = 0 (25)

as strongly asymptotically mean stationary (strongly AMS).

It can be shown that strong asymptotic mean stationarity

is equivalent to asymptotic mean stationarity [18]. Here,

we restrict ourselves to noting that strong asymptotic mean

stationarity straightforwardly implies asymptotic mean

stationarity as (25) translates to that the convergence of

(24) is uniform in B ∈ B, see (22). However, the reverse
implication requires an involved ergodic theorem.

As it was shown in [3], finite evolution dimension implies

asymptotic mean stationarity.

Theorem 3.1: Let p be an SWF with dim Ep < ∞. Then it
holds that

lim
n→∞

||
1

n

n−1
∑

i=0

µip − p̄|| = 0

for a stationary SWF p̄. Hence p is (strongly) AMS.

Proof. See [3], cor. 3.3. )



5

As finite dimension implies finite evolution dimension this

implies that finite-dimensional random sources are AMS. Note

further the following lemma.

Lemma 3.1: Let p be a strongly AMS SWF. Then it holds
that

dim(Ep ∩ Sµ) = 1 (26)

where Ep is the closure of the evolution space of p in S.

Proof. The definition of the stationary mean p̄ as the limit
of the 1/n

∑n−1
i=0 µip ∈ Ep immediately implies that p̄ ∈ Ep.

Hence dim(Ep ∩ Sµ) ≥ 1. Let p∗ ∈ Ep ∩ Sµ. We will show

that

dist (p∗, span {p̄}) = inf
q ∈ span {p̄}

||p∗ − q|| = 0

from which the assertion follows. Therefore let ε ∈ R+ and

(qk)k∈N be a sequence from Ep which converges to p∗. By
definition of Ep we can write

qk =
∑

j∈Jk

αj,kµjp

for suitable finite Jk ⊂ N and αj,k ∈ R. Therefore

1

n

∑

i=0

µiqk =
∑

j∈Jk

αj,k(
1

n

n−1
∑

i=0

µi+jp)

−→
n→∞

∑

j∈Jk

αj,kp̄ ∈ span {p̄}. (27)

Choose K ∈ N such that

||p∗ − qK || <
ε

2
(28)

and, according to the considerations from above, NK ∈ N
such that for q∗ :=

∑

j∈JK
αj,K p̄ ∈ span {p̄}

||
1

NK

NK−1
∑

i=0

µiqK − q∗|| <
ε

2
. (29)

It follows that

dist (p∗, span {p̄}) ≤ ||p∗ − q∗||

= ||p∗ −
1

NK

NK−1
∑

i=0

µiqK +
1

NK

NK−1
∑

i=0

µiqK − q∗||

≤ ||p∗ −
1

NK

NK−1
∑

i=0

µiqK || + ||
1

NK

NK−1
∑

i=0

µiqK − q∗||

µp∗=p∗,(29)
< ||

1

NK

NK−1
∑

i=0

µip∗ −
1

NK

NK−1
∑

i=0

µiqK || +
ε

2

≤
1

NK

NK−1
∑

i=0

||µi|| · ||p∗ − qK || +
ε

2

(7)
≤ ||p∗ − qK || +

ε

2

(28)
< ε.

)

C. Invariant Events

An event I ∈ B is called invariant if T−1I = I . The set
of invariant events I is a sub-σ-algebra of B.

Stationary probability measures can be identified by their

values on invariant events alone. This is a consequence of the

following lemma.

Lemma 3.2: Let P be a stationary finite signed measure on

(Ω,B), that is

∀B ∈ B : P (T−1B) = P (B).

Then

P = 0 ⇐⇒ ∀I ∈ I : P (I) = 0.

Proof. We have deferred the measure-theoretical proof to

appendix A. )

Note further that for SWFs p

µp = p ⇒ ∀I ∈ I : µpI = pI (30)

meaning that conditioning stationary SWFs on invariant events

results in stationary SWFs which, when translated back to

random sources, is a well-known result.

The following lemma is a key insight of this paper.

Lemma 3.3: Let p be a stationary SWF and I ∈ I be an
invariant event. Then it holds that

pI ∈ Vp. (31)

That is, pI lies in the closure of p’s predictor space in S.

Proof. For technical convenience, we subsequently identify

p with its associated probability measure P . The case p(I) =
0 is trivial. For p(I) > 0 choose a sequence of subsets of
strings Fn ⊂ Sn such that ||pC[Fn] − pI || −→ 0 according to
lemma 2.6. Without loss of generality p(C[Fn]) > 0 for all n.
We compute

||τFnp − pI ||
(19),(30)

= ||µnpC[Fn] − µnpI ||

≤ ||µn|| · ||pC[Fn] − pI ||TV

(7)
≤ ||pC[Fn] − pI ||.

Therefore, the τFn ∈ Vp converge to pI . Hence pI ∈ Vp. )

D. Ergodicity

A SWF p is said to be ergodic if its associated probability
measure P is. That is,

∀I ∈ I : P (I) ∈ {0, 1}. (32)

For technical convenience, we will identify p with P and

write p(I) in the following.

REMARK If p is induced by a Markov chain then ergodicity,
as given by this definition, is, in terms of the Markov chain,

characterized by that there is only one closed, irreducible set

of states (see th. 6.3.4, [7]).
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Clearly, if p is AMS then p is ergodic if and only if its
stationary mean p̄ is. Moreover, if A ∈ St is a subset of words

and p is ergodic, then

pA(I)
(19)
= µtpA(I) = pA(T−tI) = pA(I)

=
1

p(A)
p(A ∩ I) =

{

1 p(I) = 1

0 p(I) = 0
. (33)

Hence, pA is itself ergodic as it agrees on the invariant sets

with p. The main result of this paper is that in case of AMS
SWFs p the concepts of ergodicity and predictor space can be
coupled.

Theorem 3.2: Let p be an AMS SWF and Vp be the closure

of its predictor space in S. Then the following statements are
equivalent:

(i) p is ergodic.
(ii) Vp ∩ Sµ = span {p̄}.
(iii) dim(Vp ∩ Sµ) = 1.

Roughly speaking, the theorem tells that there is only one

stationary word function in the boundary of the predictor space

of an ergodic AMS SWF p and that is the stationary mean of
p.

Proof. The equivalence of (ii) and (iii) is immediate as,
by definition of the stationary mean p̄, it always holds that

p̄ ∈ Ep ⊂ Vp (34)

(i) ⇒ (ii): Let p be ergodic. Because of (34), we have
span {p̄} ⊂ Vp ∩ Sµ for any choice of AMS p. Therefore it
suffices to show

Vp ∩ Sµ ⊂ span {p̄}.

Assume the contrary, that is the existence of a q ∈ Vp with

µq = q which is linearly independent of p̄. Let pn be a

sequence in Vp that converges to q. Choose a basis of predictor
functions (pvi) and represent pn over this basis:

pn =
∑

i

αi,npvi .

Because of (33) we know that the pvi agree with p on the
invariant sets. Therefore pn(I) ∈ {0,

∑

αi,n} for all invariant
I . Convergence of the pn to q in norm of total variation further
implies

∀I ∈ I : pn(I) −→
n→∞

q(I).

Hence the limes

K := lim
n→∞

∑

i

αi,n

exists and

q(I) =

{

K if p(I) = p̄(I) = 1

0 if p(I) = p̄(I) = 0
.

Assuming K = 0 would mean that q(I) = 0 for all invariant
I . As a consequence of lemma 3.2 we would obtain q = 0 in
this case which is a contradiction to the linear independence

of q. In case of K 2= 0 we obtain that (1/K)q is a stationary
finite signed measure which agrees with p̄ on the invariant
sets. Hence (again because of lemma 3.2)

(1/K)q = p̄

which again is a contradiction to the linear independence of q.

(iii) ⇒ (i): Let p be not ergodic. Hence there is an invariant
I with

p̄(I) = p(I) = α ∈]0, 1[. (35)

As p̄ ∈ Vp we know from the definition of predictor space

that

Vp̄ ⊂ Vp.

¿From lemma 3.3 we further know that

p̄I , p̄!I ∈ Vp̄.

Because of (35)

p̄I(I) = 1 2= 0 = p̄!I(I)

p̄I("I) = 0 2= 1 = p̄!I("I)

which implies that p̄I , p̄!I are linearly independent as finite

signed measures. This immediately reveals them as linearly

independent word functions. )

This theorem becomes particularly useful in case of finite-

dimensional SWFs p.

Corollary 3.1: Let p be a finite-dimensional SWF. Then p
is ergodic if and only if

dim(Vp ∩ Sµ) = 1. (36)

Proof. As p is AMS (see th. 3.1) theorem 3.2 applies for

p. It remains to notice that Vp = Vp for finite-dimensional Vp.

)

It is this corollary that the algorithm for deciding ergodicity

of hidden Markov sources is based on. We will expand on this

issue in section V-A.

IV. CLASSIFICATION OF ERGODIC SOURCES

We conclude our general treatment of ergodic sources this

section with some remarks on how the different classes of

such sources, as introduced by this wor,k are related to one

another. Writing Se,AMS resp. Se,edim resp. Se,dim resp.

Se, µ for the classes of ergodic AMS resp. ergodic finite-

evolutiondimensional resp. ergodic finite-dimensional resp.

ergodic stationary sources it holds that

Se,AMS ⊃ Se,edim ⊃

{

Se,dim

Se,µ

(37)

where the first inclusion is theorem 3.1 and the second

one immediately follows from the definitions of stationarity,

dimension and evolution dimension. We also know that

Se,dim 2⊂ Se,µ
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as, for example, it is known that hidden Markov sources

are finite-dimensional (see [3], [9], [11]) and there are non-

stationary ergodic hidden Markov sources. Furthermore,

Se,AMS ! Se,edim

because of the following lemma.

Lemma 4.1: There is an ergodic AMS source of infinite

evolution dimension.

Proof. Let S = {a, b} and α ∈]0, 1[. We consider the SWF
p which is recursively defined by

p(v) =











1 v = !

α|w|+1p(w) ∃w ∈ S∗ : v = wa

(1 − α|w|+1)p(w) ∃w ∈ S∗ : v = wb

. (38)

For example, p(abab) = α(1 − α2)α3(1 − α4). It is straight-
forward to show that p is indeed an SWF. It encodes the

independent process (Xt)t∈N with values in S given by

P (Xt = a) = αt+1, P (Xt = b) = 1 − αt+1

and

P (X0 = a0, · · · , Xt−1 = at−1)

= P (X0 = a0) × · · ·× P (Xt−1 = at−1). (39)

Note first that (v ∈ Σ∗)

µkp(v) =











1 v = !

α|v|+kµkp(w) ∃w ∈ S∗ : v = wa

(1 − α|v|+k)µkp(w) ∃w ∈ S∗ : v = wb

,

(40)

which can straightforwardly inferred by induction on k.

Infinite evolution dimension: For showing that dim Ep = ∞
we consider the matrices

An := (µk−1p(ai))1≤i,k≤n ∈ Rn×n.

¿From (40) we infer

µkp(ai) = α
∑

i

t=1
(k+t).

Hence

det(An) = det









α α2 ... αn

α1+2 α2+3 ... αn+n+1

...
...

. . .
...

α1+...+n−1 α2+...+n . . . αn+...+2n−1









=
n
∏

k=1

α2n−1det









1 α . . . αn−1

1 α2 . . . α2(n−1)

...
...

. . .
...

1 αn . . . αn(n−1)









=
n
∏

k=1

α2n−1
∏

1≤i,j≤n,i<j

(αi − αj) 2= 0,

where the last equation follows from that the matrix is a

Vandermonde matrix (see [10], sec. 6.1). Therefore, the rank

of the infinite set (p, µp..., µn−1p, ...) is not bounded which
translates to dim Ep = ∞.

Asymptotic mean stationarity: We define a vector p̄ by

p̄(v) =

{

1 if v = b|v| = b...b ∈ S|v|

0 else
(41)

and prove that

lim
n→∞

||µnp − p̄||TV
(6)
= lim

n→∞
sup
t∈N

∑

v∈St

|µnp(v) − p̄(v)| = 0

(42)

from which we can clearly infer that p is AMS. Consider
∑

v∈Σt

|µnp(v)− p̄(v)| = 1−µnp(bt)+
∑

v∈Σt\{bt}

µnp(v). (43)

To order to show (42) we will show that µnp(bt) converges
to 1 uniformly in t. Therefore, we will prove that (let log be
the natural logarithm)

log
1

µnp(bt)
≤

αn+1

(1 − α)2
, (44)

as this implies

1 ≥ µnp(bt) ≥ (exp(
αn+1

(1 − α)2
))−1 −→

n→∞
1

and with it the assertion. To do this we first note that, because

of the mean value theorem, for all r > 1 there is ξ ∈ [r−1, r]
such that

log(r) − log(r − 1) =
log(r) − log(r − 1)

r − (r − 1)

= (log)′(ξ) =
1

ξ
≤

1

r
. (45)

In order to establish (44) we finally compute

log
1

µnp(bt)

(40)
= log(

t∏

l=1

1

1 − αl+n
)

= log(
t

∏

l=1

(1/α)l+n

(1/α)l+n − 1
)

=
t

∑

l=1

log((1/α)l+n) − log((1/α)l+n − 1)

(45)
≤

t
∑

l=1

1

(1/α)l+n − 1
=

t
∑

l=1

αl+n

1 − αl+n
≤

t
∑

l=1

αl+n

1 − α

= (1 − α)
t

∑

l=1

αl+n = (1 − α)αn+1
t

∑

l=1

αl−1

≤
αn+1

(1 − α)2
.

Therefore, p is AMS.
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Ergodicity: As a preparation, we consider that for v ∈ S∗

τaµkp(v) = µkp(av) = αk+1 · µk+1p(v),

τbµ
kp(v) = µkp(bv) = (1 − αk+1) · µk+1p(v)

(46)

where the equations on the left are just the definition of τa, τb

and the equations on the right follow by induction on the word

length |v|. This implies

τaµkp, τbµ
kp ∈ span {µk+1p} ⊂ Ep.

from which we immediately get τa(Ep) ⊂ Ep, τb(Ep) ⊂ Ep.

Hence, because of (4),

τw(Ep) ⊂ Ep

for all w ∈ S∗ which further translates to Vp ⊂ Ep. As always

Ep ⊂ Vp we finally obtain

dim (Vp ∩ Sµ) = dim (Ep ∩ Sµ)
(26)
= 1

and theorem 3.2 implies the ergodicity of p. )

FINAL REMARK: The relationship between the classes

of stationary and finite-dimensional ergodic sources has

not been fully explored yet. Unlike in the case of arbitrary

non-ergodic sources, the question of existence of an infinite-

dimensional, stationary source has not been answered for

the class of ergodic sources. As is easily checked, the

aforementioned example source p (see [3], lemma 6) has the
remarkable property that Vp ⊂ Sµ which further translates

to dim(Vp ∩ Sµ) = ∞. This is quite the opposite of being
ergodic according to theorem 3.2.

V. OBSERVABLE OPERATOR MODELS

Finite-dimensional random sources p can be parameterized
by identifying the finite-dimensional Vp with an Rn where

n = dimVp and providing matrix representations Tv for the

observable operators τv . The crucial point is that such a pa-

rameterization is finite as, by providing matrix representations

Ta for a ∈ S only we obtain the remaining matrices by

Tv=vt...v1 = Tvt · ... · Tv1

which holds because of (4). To put it more concrete, we

choose a basis of predictor functions pwj , j = 1, ..., n that

are identified with ei = (0, .., 0, 1
i
, 0, ..., 0) ∈ Rn and set ep to

be the coordinate representation of p according to this basis. If
∑n

j=0 αa,i,jej is a representation of τapwi on this basis then

corresponding matrix representations Ta of τa are obtained by

setting

(Ta)ij := αa,i,j .

Observe further that probabilities p(v = v1...vt) can be read
off the coefficients of Tvep ∈ Rn (which represents τvp) the
following way:

ev =
n

∑

i=1

βiei ⇒ p(v) =
n

∑

i=1

βi.

This follows from the translation

p(v) = τvp(!) =
n

∑

i=1

βipwi(!)
︸ ︷︷ ︸

=1

back to the world of word functions. These observations are

summarized within the following theorem.

Theorem 5.1: A SWF p is finite-dimensional if and only
if there is n ∈ N such that on Rn there are ep ∈ Rn and

Ta ∈ Rn×n, a ∈ S for which

p(v = v1...vt) = 1
T
nTvt ...Tv1ep (47)

where 1n := (1, ..., 1)T ∈ Rn is the (column) vector having

ones as entries.

Proof. See [3], [12] for variants of the following. By iden-

tifying Vp with Rn for n = dimVp and, accordingly, ep with

a coordinate vector of p and Ta with matrix representations

of the observable operators τa : Vp → Vp, the first direction

follows from the considerations from above. For the inverse

direction define

gv := 1
T
v = 1

T Tvt ...Tv1

for all v = v1...vt ∈ S∗. Define word functions pi, i = 1, ..., n
by

pi(v) := gvei

for all v ∈ S∗. Now consider the w-row of the prediction

matrix P , that is

Pw := (p(v|w))w∈S∗

in case of p(w) 2= 0, see (10). Let Twep =
∑

i αiei. According

to (47) we compute

p(v|w) =
1

p(w)
p(wv)

=
1

p(w)
1

T Twvep =
1

p(w)
1

T TvTwep =
1

p(w)
fvTwep

=
n

∑

i=1

1

p(w)
αifvei =

n
∑

i=1

1

p(w)
αipi(v).

This translates to that Pw is a linear combination of the pi.

Hence

dim p = rk P = dim span {Pw |w ∈ S∗}

≤ dim span {pi | i = 1, ..., n} ≤ n. (48)

)

Note immediately that for an SWF p given by a repre-

sentation from the theorem, the SWF’s dimension does not

necessarily have to coincide with that of the underlying Rn.

Indeed it is easy to come up with examples where n > dim p.

Definition 5.1 ( [12]): Tuples (Rn, (Ta)a∈S, ep) encoding
finite-dimensional SWFs p have been termed Observable Op-
erator Models (OOMs). If n = dim p we speak of a minimal-
dimensional OOM:

The investigation of OOMs has led to a class of learning

algorithms which, on a variety of natural instances, outperform
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their classical counterpart, the EM algorithm, for HMCs [13].

Therefore note that HMCs can be canonically transformed to

OOMs which, above all, reveals them as finite-dimensional.

We will draw the connection between HMCs and OOMs in

subsection V-A.

A. HMCs to OOMs

In its most prevalent form, a finite-valued HMM is given

by a set of hidden states Q = {1, ..., n} and a finite set S of
output symbols. The hidden states form a Markov chain and

corresponding transition probabilities aij of changing from

state i to state j are collected in a matrix A = (aij) ∈ Rn×n.

We further have an emission probability distribution for each

hidden state over the output symbols which are given by an

emission matrix E = (eia)1≤i≤n,a∈S where eia is the proba-

bility that symbol a ∈ S is emitted from state i ∈ Q. Finally,
there is an initial probability distribution π = (π1, ..., πn) over
the hidden states. The probability that the HMM emits a string

of symbols v = v1...vt ∈ St is then computed as

PHMM (v = v1...vt)

=
∑

i1...it∈Qt

πi1ei1v1ai1i2ei2v2 ...ait−1iteitvt . (49)

To identify the HMM as finite-dimensional, we define matrices

Oa ∈ Rn×n for each output symbol a ∈ S through

(Oa)ij =

{

eia i = j

0 i 2= j

and further

Ta := AT Oa ∈ Rn×n.

It then turns out that

PHMM (v) = 1
T
nTvt ...Tv1π

which, because of theorem 5.1, shows that the random source

encoded by the HMM has dimension of at most n.

B. Ergodicity of OOMs

If an OOM is minimal-dimensional the theorems from

earlier sections can be applied to it by identifying the OOM

as a coordinate representation of the finite-dimensional

SWF encoded by it. This provides us with a way to check

minimal-dimensional OOMs for ergodicity.

Theorem 5.2: Let (Ta ∈ Rn×n)a∈S, ep ∈ Rn be a minimal-

dimensional OOM. Let M :=
∑

a∈S
Ta be the sum of the

matrices Ta. Then the finite-dimensional SWF p encoded by
the OOM is ergodic if and only if

dimEig (M ; 1) = 1

that is,M ’s eigenspace of the eigenvalue 1 is one-dimensional.

Proof. This is straightforwardly established by identifying

the parameterization with a coordinate representation of the

finite-dimensional SWF p where it turns out that M is a

matrix representation of the evolution operator µ. Subsequent
application of corollary 3.1 yields the result. )

VI. COMPUTATIONALLY TESTING HMCS FOR

ERGODICITY

Based on the insights from section V we can come up with

an algorithm for checking HMCs for ergodicity.

1) Produce a matrix representation M of the evolution

operator in an equivalent minimal-dimensional OOM.

2) Check the dimension d of the eigenspace of the matrix
M =

∑

a∈S
T̃a for the eigenvalue 1.

3) Output yes, if d = 1 and no else.

As checking the dimension of eigenspaces is routine, the

second point poses no major problems. The first point, though,

needs to be illustrated.

We cast the first point’s problem in a more general fashion

and consider arbitrary SWFs p such that dim p ≤ n. According
to lemma 2.4

m := dim p = rk [p(wv)]v,w∈S≤n−1 ≤ n.

We choose words vi, wj ∈ S≤n−1, i, j = 1, ..., m such that

the matrix

V := [p(vi|wj)]i,j=1,...,m

is regular. As a consequence we know that pwj , j = 1, ..., m
is a basis of Vp.

Lemma 6.1: Let p be an SWF of finite dimension. Let

wj , vi, i, j = 1, ..., m and V be chosen by the procedure from

above. Define matrices

Wa := [p(avi|wj)]i,j=1,...,m

for all a ∈ S. Then (pwj ) is a basis of Vp and

Ta := V −1Wa

is a matrix representation corresponding to the coordinate

representation

Φ : Vp −→ Rm

pwj 6→ ej

.

Hence M :=
∑

a∈S
Ta is a matrix representation of the

evolution operator.

Proof. Consider the alternative coordinate representation

Φ′ : Vp −→ Rm

pwj 6→ V j

where V j := (p(v1|wj), ..., p(vm|wj)) is the j-th column of
V . From τapwj (vi) = p(avi|wj) we know that for a matrix

representation T ′
a of τa according to Φ′

T ′
a(V j) = W j

a (50)

whereW j
a is the j-th column ofWa. Note that Φ′◦Φ−1(ej) =

V j . So Φ′ ◦ Φ is precisely described by the matrix represen-

tation V . Therefore we obtain a commutative diagram

Rm Ta−→ Rm


7V


7V

Rm T ′
a−→ Rm

.
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which translates to V Ta = T ′
aV . Because of (50) T ′

aV = Wa

from which the lemma’s assertion follows. )

REMARK As spectra of linear operators do not change

under similarity transformations we could have directly chosen

M ′ :=
∑

a∈S
T ′

a as a choice for the evolution operator where

T ′
a would have been defined by the equations T ′

a(V
j) = W j

a .

However we wanted to provide a basis such that the matrix

representations give rise to an OOM.

A. Runtime considerations

Clearly, an obvious putative computational bottleneck of the

above procedure is to find words vi, wj ∈ S≤n−1, 1 ≤ i, j ≤
m (where m = dim p and n is the number of hidden states of
the HMC giving rise to p) such that V := [p(vi|wj)]i,j=1,...,m

is regular. Naive approaches to the problem result in algo-

rithms that are exponential in the number of the hidden states

since one has to possibly examine all words of length up to

n−1. However, note that a subroutine for computation of V is

also needed for the solution of the identifiabiliy problem [11].

An efficient solution of the identifiability problem, including

a subroutine for computation of V that has runtime linear in

the number of hidden states of the HMCs, has recently been

presented [20]. Furthermore, note that efficient computation of

the probabilities p(vi|wj) is facilitated by the Forward algo-
rithm [14]. Collecting pieces, we obtain polynomial runtime

for computation of V as well as the matrices Wa.

Beyond these considerations, the efficiency of the presented

test depends on the efficiency of subroutines for matrix inver-

sion as well as for determination of the rank of M − Id (in
order to determine the dimension of the eigenspace of the

eigenvalue 1). Both these subroutines depend on the runtime
needed for Gaussian elimination which is well known to be

efficient and can be performed by highly optimized procedures

[5]. In our case, it results in an algorithm which has runtime

cubic in the dimension of the HMC hence cubic in the number

of hidden states of the HMCs. In summary, we obtain a test

for ergodicity which is cubic in the number of hidden states

of the HMCs where the subroutines requiring cubic runtime

are popular, highly optimized procedures. Therefore, our test

is of great practicability.

B. Example

We conclude with an example of an ergodic HMM whose

underlying Markov chain is not ergodic. Let M be a 3-state
HMM over the alphabet {0, 1} parameterized by

A =






1
2

1
4

1
4

0 1 0

0 0 1




 and E =






1 0

0 1

0 1






where A is the transition matrix of the underlying Markov

chain and E is the emission matrix of the hidden states over

the symbols {0.1}. At the beginning, state no. 1 is entered with
probability one. The underlying Markov chain has two closed,

irreducible sets of states (states no. 2 and 3 each make up
one of them) hence is not ergodic. Indeed, a somewhat closer

second look immediately reveals the ergodicity of the HMC

as a stochastic process that almost surely generates sequences

with only finitely many 0s.
According to the procedure above, we find that the dimen-

sion is 2 and that

V =

[

p(!) p(!|0)

p(0) p(0|0)

]

=

[

1 1

1 1
2

]

is regular. Further

W0 =

[

p(0) p(0|0)

p(00) p(00|0)

]

=

[

1 1
2

1
2

1
4

]

and

W1 =

[

p(1) p(1|0)

p(10) p(10|0)

]

=

[

0 1
2

0 0

]

According to lemma 6.1 a matrix representation of the evolu-

tion operator is

M = V −1(W0 + W1) =

[

−1 2

2 −2

] [

1 1
1
2

1
4

]

=

[

0 − 1
2

1 3
2

]

.

One can then straightforwardly check thatM ’s eigenvalues are

1 and 1/2, from which dimEig(M ; 1) = 1 follows. Hence
the HMC M is ergodic.

VII. DISCUSSION

In this paper, we have presented a necessary and sufficient

criterion of an HMC to be ergodic, which, to the best of our

knowledge, has been done for the first time. The criterion

is based on a novel, vector space based theory for random

sources and is of elementary, linear algebraic nature. Beyond

closing an important gap in the related theories of classifcation

for HMCs, the criterion can be tested by means of an efficient

algorithm. Therefore, the criterion can readily be used for

practical purposes.

In a subsequent paper, we intend to explore the spectrum of

the evolution operator to expand on the issue of classification

of finite-dimensional sources. Note that finite-dimensional

sources do not only include HMCs, but also quantum random

walks, a statistical model that serves the emulation of Markov

chain Monte Carlo methods on quantum computers which

has been attracted recent attention (see [1] for a seminal

paper and [2] for preliminary work on the relationship with

finite-dimensional sources). It is currently an open problem

how to appropriately classify quantum random walks.
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APPENDIX

A finite, signed measure on (Ω,B(Σ)) is a σ-additive but
not necesarily positive, finite set function on B(Σ). The most
relevant properties of finite signed measures are summarized

in the following theorem (see [8], ch. VI for proofs).
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Theorem A.1:

(i) The Jordan decomposition theorem tells that for every

P ∈ P there are finite measures P+, P− such that

P = P+ − P−

and for every other decomposition P = P1 − P2 with

measures P1, P2 it holds that P1 = P+ + δ, P2 = P− + δ
for another measure δ. In this sense, P+ and P− are

unique and called positive resp. negative variation. The

measure |P | := P+ + P− is called total variation.

(ii) In parallel to the Jordan decomposition we have the Hahn

decomposition of Ω into two disjoint events Ω+, Ω−

Ω = Ω+ ∪̇ Ω−

such that P−(Ω+) = 0 and P+(Ω−) = 0. Ω+, Ω− are

uniquely determined up to |P |-null-sets.
(iii) The norm of total variation ||.||TV on P is given by

||P ||TV := |P |(Ω) = P+(Ω)+P−(Ω) = P+(Ω+)+P−(Ω−).

Obviously || |P | ||TV = ||P ||TV .

A. Proof of lemma 3.2

Before it comes to proving the lemma, we provide us with

a preparatory result.

Lemma A.1: Let P be a finite, signed measure on (Ω,B).
Then P ◦ T−1 = P if and only if both P+ ◦ T−1 = P+ and

P− ◦ T−1 = P− are.

Proof. The inverse direction is obvious as P = P+ − P−.

For the other direction first note that for an arbitrary measure

Q, by definition of the norm of total variation (th. A.1, (iii))

||Q ◦ T−1|| = Q(T−1Ω) = Q(Ω) = ||Q||. (51)

Further observe that P = P ◦ T−1 = P+ ◦ T−1 − P− ◦ T−1.

Hence

||P || = ||P ◦ T−1|| = ||(P+ − P−) ◦ T−1||

≤ ||P+ ◦ T−1|| + ||P− ◦ T−1||
(51)
= ||P+|| + ||P−|| = ||P ||.

Therefore ||P || = ||P+ ◦ T−1|| + ||P− ◦ T−1||. As P =
P+ ◦ T−1 − P− ◦ T−1 the lemma’s claim follows from

the uniqueness property of the Jordan deocmposition (see

th. A.1, (i)). )

We are now in position to prove lemma 3.2.

Proof. “=⇒” is trivial. For the inverse direction we assume
the existence of a finite signed measure P 2= 0 with P (I) = 0
for I ∈ I. Because of lemma A.1 P+, P− are stationary and

so, without loss of generality P+ 2= 0. Let Ω+, Ω− the Hahn

decomposition of P , that is, Ω = Ω+ ∪̇Ω− and P+(Ω+) =
P+(Ω), P−(Ω−) = P−(Ω). As P+ > 0 we obtain P+(Ω+) >
0. We now define

I+ := lim sup
n

T−nΩ+ =
⋂

n≥0

⋃

m≥n

T−mΩ+ ⊂
⋃

n≥0

T−nΩ+.

Clearly, I+ is invariant. Further

P−(I+) ≤ P−(
⋃

n≥0

T−nΩ+)

≤
∑

n≥0

P−(T−nΩ+)
(∗)
=

∑

n≥0

P−(Ω+) = 0

as well as

P+(I+) = P+(lim sup
n

T−nΩ+)

(∗∗)
≥ lim sup

n→∞
P+(T−nΩ+)

(∗)
= P+(Ω+) > 0,

where (∗) follows from lemma A.1 and (∗∗) is a consequence
of Fatou’s lemma Herewith

P (I+) = P+(I+) − P−(I+) = P+(I+) > 0.

which is a contradiction to that P vanishes on the invariant

events. )
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