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Abstract

Observable operator models (OOMs) are a class of models for stochastic pro-

cesses which properly subsumes the class that can be modelled by finite-dimensional

hidden Markov models (HMMs). One of the main advantages of OOMs over

HMMs is that they admit asymptotically correct learning algorithms. A series of

learning algorithms has been developed, with increasing computational and statis-

tical efficiency, whose recent culmination was the error controlling (EC) algorithm

developed by the first author. The EC algorithm is an iterative, asymptotically

correct algorithm which yields (and minimizes) an assured upper bound on the

modelling error. The runtime is faster by at least one order of magnitude than EM-

based HMM learning algorithms, and yields significantly more accurate models

than the latter. Here we present yet a significant improvement of the EC algo-

rithm, the constructive error controlling (CEC) algorithm. CEC inherits from EC

the main idea of minimizing an upper bound on the modelling error, but is con-

structive where EC needs iterations. As a consequence, we obtain further gains in

learning speed without loss in modelling accuracy.
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1 Introduction

Observable operator models (Jaeger, 2000b) are a mathematical model class for stochas-

tic processes which generalizes hiddenMarkov models (HMMs) (Bengio, 1999) and can

be represented in a structually similar matrix formalism, with the crucial difference that

the range of model parameters is extended from nonnegative to arbitrary real numbers.

This relaxation on the parameter range endows OOMs with linear algebraic properties

that are not available for HMMs. These properties engender a basic scheme for learning

OOMs that is constructive and asymptotically correct. The statistical efficiency of this

basic scheme, however, depends crucially on the design of two auxiliary matrices which

are now named the characterizer and the indicator (Zhao and Jaeger, 2009) and will be

denoted by C and Q, respectively, throughout this paper.

To optimize the design of the matrices C and Q is one of the major streams in

OOM research. The early learning algorithms (Jaeger, 1998, 2000a,b) relied on simple

heuristics for creating C andQ; and the ensuing poor statistical efficiency made OOMs

learnt in this way no match for HMMs trained with the expectation-maximization (EM)

algorithm (Dempster et al., 1977). In (Kretzschmar, 2003), the author identified the

crucial role of the matrices C and Q in the basic scheme and provided a first learning

algorithm whose rationale was to optimize their design. Since then, the importance and

the challenge of optimizing C and Q became increasingly better understood.

After Kretzschmar’s lead work, two theoretically justified and computationally ac-

cessible optimality criteria for designing C and Q have been worked out, resulting in

the two current state-of-the-art instantiations of the basic learning scheme of OOMs,

the efficiency sharpening (ES) algorithm (Jaeger et al., 2005) and the error controlling

(EC) algorithm (Zhao and Jaeger, 2009). Both ES and EC implement iterative schemes

to optimize C and Q. Their computational and statistical efficiencies are by and large

similar (and outperform EM-based HMM learning), with maybe a small advantage for

EC (Zhao and Jaeger, 2009). The underlying ideas for the two are, however, interest-

ingly and fundamentally different.

The perspective of ES is statistical. This algorithm aims at minimizing the effects of

stochastic variation in C and Q. An algebraic characterization of minimal variance of

the estimator is exploited to iteratively improve C andQ toward the goal of minimizing
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the variance of the overall algorithm.

The EC algorithm, adopting a complementary view, concentrates on algebraic prop-

erties of the learning equations. This algorithm optimizes C and Q by exploiting alge-

braic laws characterizing the condition of matrices, which in turn is related to an upper

bound of the relative error in model parameters (or, for short, modeling error). As a

side effect, this focus on matrix conditions affords a much improved numerical stability

of EC over ES.

Although the basic OOM learning scheme is constructive, neither ES nor EC have

this attractive property, for both of them employ an iterative procedure to compute the

auxiliary matrices C and Q. In this article, following the road of EC, we derive a new

upper bound of modeling error which is tighter than the one utilized by the EC algo-

rithm; and we propose a constructive method for minimizing this upper bound. More-

over, this constructive algorithm for optimizing C and Q is globally optimal, whereas

the iterative methods employed by EC and ES are only locally optimal. Inserting this

analytical minimizer into the basic learning scheme, we obtain an improved version of

EC. The resulting constructive error controlling (CEC) algorithm is the first learning

algorithm for OOMs which is (i) constructive (hence, fast); (ii) asymptotically correct

(the hallmark of all OOM learning algorithms); and (iii) statistically efficient. This

combination of properties recommends CEC, in our view, as a potentially eminently

useful technique.

We perceive this work as a follow-up to (Zhao and Jaeger, 2009). While self-

contained, this paper is therefore more condensed in some expository parts than its

precursor, and it may be helpful to consult the latter when more background or detail

is desired. We shall first briefly re-introduce the EC algorithm in Section 2, clarifying

the problem to be addressed and fixing notation. Section 3 describes the derivation of

CEC in detail, which includes a novel (tighter) upper bound of modeling error, an ana-

lytical minimizer of this error bound and the overall CEC algorithm. We then assess the

performance of the CEC algorithm in comparison with EC and ES on the same model-

ing tasks as those from (Zhao and Jaeger, 2009) and document the empirical results in

Section 4. Finally, we summarize the paper and draw some conclusions in Section 5.
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2 The Error Controlling Algorithm

Let O = {a1, a2, . . . , a!} be a finite set of observable values (an alphabet) and let

(Xn)n∈N be a stochastic process with all Xn ∈ O and initial joint probabilities:

{Pr(X1 = a1, . . . , Xn = an) =: P (a1a2 . . . an) : n ∈ N, ai ∈ O} .

Following the notation convention of (Zhao and Jaeger, 2009), we use small letters with

a bar to denote finite-length sequences of symbols from O, e.g., ā = a1 . . . an; and O∗

to denote the set of all such finite sequences, including the empty sequence ε. The

above family of joint probabilities can then be shortly rewritten as {P (ā)}ā∈O∗ , with

the agreement that P (ε) = 1.

A (finite-dimensional) OOM for the process (Xn) is a triple (Rm, {τa}a∈O, w0) of

them-dimensional Euclidean space Rm, an O-indexed family {τa}a∈O of square matri-

ces of order m, called observable operators, and an initial vector w0 ∈ Rm such that,

for any finite sequence ā = a1a2 . . . an ∈ O∗, it holds that

P (ā) = 1
T

mτan
· · · τa2

τa1
w0 =: 1

T

mτāw0 , (1)

where 1m denotes them-dimensional column vector of units and τā the product τan
· · · τa2

τa1

of observable operators associated with the sequence ā (notice the reversal of order in

indexing!).

We consider the following OOM learning task: assuming the process (Xn) is sta-

tionary, ergodic and has initial distribution P (ā) determined by (1), the objective is to

estimate an OOM (Rm, {τ̂a}a∈O, ŵ0) of (Xn) from one of its finite initial realizations

(say s̄ = s1s2 . . . sT ) which can be used to approximately reproduce the distribution of

(Xn), i.e., P (ā) ≈ 1
T
mτ̂āŵ0. A general constructive algorithm (i.e., the basic scheme)

for this learning task is outlined as follows (Jaeger, 2000b; Jaeger et al., 2005).

1. For some sufficiently large k ∈ N take two sets {āj}K
j=1 and {b̄i}K

i=1 of basic

strings (āj’s are called indicative strings and b̄i’s chararcteristic strings) which

enumerate Ok, the set of all sequences over O of length k — so K = #k; and

construct the K × K normalized counting matrices V and W a (∀a ∈ O) with

their (i, j)-th entry determined by

[V ]ij =
#but last(āj b̄i)

T − 2k
; [W a]ij =

#(ājab̄i)

T − 2k
, (2)
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where (T − 2k) is the normalization factor and āj b̄i (ājab̄i, respectively) is the

concatenation of āj (and a, resp.) and b̄i; for any ā ∈ O∗, #(ā) denotes the

occurrence number of ā in s̄ = s1s2 . . . sT and #but last(ā) its occurrence number

in s1s2 . . . sT−1.

2. Design two auxiliary matrices: the characterizer C ∈ Rm×K and the indicator

Q ∈ RK×m, such that 1T
mC = 1

T
K and them × m matrix CV Q is invertible.

3. Obtain an (asymptotically correct) estimate of an OOM for the process (Xn) by

computing observable operators by τ̂a = (CW aQ)(CV Q)−1 and an initial vector

by solving the equations 1T
mŵ0 = 1 and (

∑

a∈O τ̂a)ŵ0 = ŵ0.

A historical remark: In (Kretzschmar, 2003), Kretzschmar derived the learning

equations τ̂a = (CW aQ)(CV Q)−1 and, noting the importance of the matrix (CV Q) in

the above basic learning scheme, suggested that the design of C andQ should make the

condition number κ = ‖CV Q‖2 ·‖(CV Q)−1‖2 minimal, where, for any matrix A, ‖A‖2

denotes its spectral norm, i.e., the largest singular value of A. However, this algebraic

criterion, while seeming to be reasonable at first glance, is actually misguided in the

sense that it is always possible to obtain κ = 1, the smallest possible value of κ, by first

creating an arbitrary C ∈ Rm×K such that 1T
mC = 1

T
K and that CV has full rank m,

and then putting Q = (CV )†, the pseudo-inverse of (CV ): with C and Q constructed

in this way, we know CV Q = Im (the identity matrix of order m) and hence κ = 1.

An alternative algebraic criterion for optimizing the matrices C and Q, which falls

not prey to this fallacy on this direction, has been developed in previous work of the

authors. It is based on the following two findings: firstly, if the probability matrices

(the “true” normalized counting matrices) V ∗ andW ∗
a’s:

[V ∗]ij = P (āj b̄i) ; [W ∗
a]ij = P (ājab̄i) , (i, j = 1, 2, . . . , K)

are known, then the true OOM of the underlying process can be reconstructed via the

equations τa = (CW ∗
aQ)(CV ∗Q)−1 (Jaeger et al., 2005); secondly, as proven in Propo-

sition 3 of (Zhao and Jaeger, 2009), the relative error in estimated observable operators

τ̂a and the statistical error in counting matrices V andW a are governed by the inequality

‖τ−τ̂‖
‖τ‖ ! ‖C‖ · ‖Q(CV Q)−1‖ · (‖EV ‖ + # · ‖EW‖) , (3)
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where, for any matrix A, ‖A‖ denotes its Frobenius norm ‖A‖ :=
√

tr(ATA); τ is

the tall matrix formed by stacking all τa’s one above another: τ = [τa1 ; . . . ; τa! ] (in

Matlab’s notation); and τ̂ , W and W ∗ are tall matrices constructed respectively from

τ̂a’s,W a’s andW ∗
a’s by the same stacking scheme; EV := V −V ∗ andEW := W −W ∗

are the error matrices of V andW , respectively; and (recall that) # is the alphabet size.

Inequality (3) is the theoretical foundation of the EC algorithm, from which one im-

mediately sees that one possible way to control the modeling error ‖τ−τ̂‖
‖τ‖ is to minimize

the quantity κ1 = ‖C‖ · ‖Q(CV Q)−1‖. This criterion, together with the previously

mentioned constraint 1T
mC = 1

T
K , forms the optimization problem

min
C∈Rm×K ,Q∈RK×m

{κ1 = ‖C‖ · ‖Q(CV Q)−1‖ : 1
T

mC = 1
T

K} (4)

for obtaining optimal C andQ. In the EC algorithm, this problem is solved by a simple

numerical method: one randomly creates anm×K matrix C = C(0) with column sums

1, and iteratively updates Q and C by

Q(t) = (C(t−1)V )† ; C(t) = (Im − 1
m
1m1

T

m)(V Q(t))† + 1
m
1m1

T

K , (5)

until some stopping criterion is met, say, κ(t−1)
1 − κ(t)

1 < δ for some predefined number

δ > 0. It was shown in (Zhao and Jaeger, 2009) that {κ(t)
1 }t=1,2,... forms a decreasing

sequence with κ(t)
1 " 0; and so the convergence of (C(t), Q(t)) to a local optimum is

guaranteed.

In sum, the error controlling algorithm presented in (Zhao and Jaeger, 2009) is

actually an instantiation of the basic learning scheme in which the auxiliary matrices

C and Q are optimized by the iterative procedure specified by (5). In the next section

we derive an improved version of EC in which the iterative procedure (5) is replaced by

a globally optimal analytical solution to an optimization problem that is very similar to

(4).

3 The Constructive Error Controlling Algorithm

Although the basic learning scheme is constructive, the EC algorithm is not, since it in-

volves an iterative procedure to optimize C andQ. In this section a constructive method

for computing the matrices C and Q will be described, yielding an improved version
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of EC which, to the authors’ knowledge, is the first constructive learning algorithm of

OOMs. To this end, we introduce another upper bound of the relative error ‖τ−τ̂‖
‖τ‖ , which

is tighter than (3). We state this upper bound as a proposition.

Proposition 1 Following the notations that have been introduced, we have

‖τ−τ̂‖
‖τ‖ ! ‖C‖ · ‖Q(CV Q)−1‖2 · (‖EV ‖2 + # · ‖EW‖2) . (6)

Proof: From the proof to Proposition 3 of (Zhao and Jaeger, 2009), we get

τ − τ̂ = (τCEV − CbigEW ) · Q(CV Q)−1 , (7)

where Cbig := diag{C, . . . , C} (# copies of C); — using (3) and the definition of EV

and EW , one can also directly verify this identity. To establish (6), we invoke a well-

known matrix inequality (see, e.g., (Golub and Loan, 1996)):

‖AB‖ ! min{‖A‖ · ‖B‖2, ‖A‖2 · ‖B‖} , (8)

It follows from (7) and (8) that

‖τ − τ̂‖ ! (‖τ‖ · ‖C‖ · ‖EV ‖2 + ‖Cbig‖ · ‖EW‖2) · ‖Q(CV Q)−1‖2 .

But in Proposition 3 of (Zhao and Jaeger, 2009) we have already proven ‖τ‖ " 1√
!
and

‖Cbig‖ =
√
# · ‖C‖; so the inequality (6) follows. #

Note that, for any matrix A, ‖A‖2 equals to the largest singular value of A; and ‖A‖

is the square root of square sum of all singular values of A. So ‖A‖2 ! ‖A‖ and (6)

indeed provides a tighter upper bound of ‖τ−τ̂‖
‖τ‖ than (3).

Inequality (6) provides us with another algebraic criterion for computing the optimal

C and Q that is very similar to (4), namely,

min
C∈Rm×K ,Q∈RK×m

{κ2 = ‖C‖ · ‖Q(CV Q)−1‖2 : 1
T

mC = 1
T

K} . (9)

In (Zhao and Jaeger, 2009), the authors have demonstrated that adding the extra con-

straint CV Q = Im to problem (4) will not change its minimizer. Similarly, here we can

prove the optimization problem (9) is essentially equivalent to

min
C∈Rm×K ,Q∈RK×m

{κ2 = ‖C‖‖Q‖2 : 1
T

mC = 1
T

K , CV Q = Im} , (10)
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where the expression of κ2 has been simplified by using the fact CV Q = Im. To see

this, for any minimizer (C, Q) of (9) we put C0 = C and Q0 = Q(CV Q)−1, then

C0V Q0 = Im and κ2(C, Q) = κ2(C0, Q0); which means (C0, Q0) also minimizes (9)

and, additionally, satisfies the constraint CV Q = Im.

Before introducing the constructive method for minimizing (10), we make some

remarks on the problem (10) itself and the normalized counting matrices V and W a

obtained from the training sequence s̄ = s1s2 . . . sT via (2). Note that some of these

remarks have already been presented in (Zhao and Jaeger, 2009), here we restate them

in a clearer way to clarify the meaning of some notations that will be used later.

- It is easy to see that, in the learning equations τ̂a = (CW aQ)(CV Q)−1, the

normalized counting matrices can be replaced by the raw counting matrices V raw

andW raw
a ’s, i.e., τ̂a = (CW raw

a Q)(CV rawQ)−1, where

[V raw]ij = #but last(āj b̄i) ; [W raw
a ]ij = #(ājab̄i) . (11)

It is also clear that replacing V by V raw in problem (10) does not change its

minimizer (C, Q), although the minimal value of κ2 is now reduced by a factor

of (T − 2k).

- The order of the above raw counting matrices, K = #k, increases exponentially

with k; which at first glance “results in” that (i) only small values of k are fea-

sible in the basic learning scheme and hence only short-term history context ef-

fects of the target process can be learnt and (ii) the optimization problem (10)

becomes computationally inaccessible quickly. Nevertheless, firstly, (11) reveals

that, given the sequence s̄ = s1s2 . . . sT , the element sum of V raw and
∑

a∈O W raw
a

are (T − 2k), so for large k, the matrices V raw andW raw
a are actually very sparse;

secondly, the learning equations reveals that, discarding zero-rows (columns) in

V raw, the corresponding rows (columns) in W raw
a ’s — we call the resulting ma-

trices the compressed counting matrices and denote them by V cmp and W cmp
a —

and the corresponding columns in C (rows in Q) will not change the estima-

tion τ̂a; thirdly, those “undiscarded” columns of C (rows of Q) can be efficiently

optimized by solving a compressed version of (10), which will be introduced

presently. Therefore, in practice we can set the length k of basic strings to be

large enough to capture long-term properties of the underlying process.
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- As has been pointed out in (Zhao and Jaeger, 2009), in a variant method to fix the

basic strings {āj} and {b̄i}, one can admit them to have different length k. The

only condition that has to be observed when selecting basic strings is that {b̄i}

should form a “cover” of some set Ok, in the sense that for each string c̄ from

Ok there is a unique b̄i which is a prefix of c̄. Moreover, by using compact suffix

trees (Gusfield, 1997) we can construct the compressed counting matrices V and

W a from the training sequence s̄ = s1s2 . . . sT in linear time, i.e., O(T ) flops

(Ukkonen, 1995).

Now assume the compressed counting matrices V cmp andW cmp
a are of size N × M

(note that typically N, M ) K). By the above discussion we know

τ̂a = (CcmpW cmp
a Qcmp) · (CcmpV cmpQcmp)−1 , (12)

where, as mentioned above, Ccmp ∈ Rm×N (resp. Qcmp ∈ RM×m) is formed from

C ∈ Rm×K (resp. Q ∈ RK×m) by discarding its columns (resp. rows) at positions

corresponding to zero-rows (resp. zero-columns) in V raw. It remains to find a way to

compute Ccmp and Qcmp which is efficient in memory-space — (10) is certainly too

inefficient to be directly used to compute C and Q and then extract Ccmp and Qcmp.

To simplify the notation, we move V cmp to the upper-left area of V raw (see (11)) by

re-ordering the basic strings {āj} and {b̄i}, making the other entries of V raw all be

zero. Correspondingly, the matrices C, Q can now be written as C = [Ccmp, C0] and

Q = [Qcmp; Q0] (in Matlab’s notation), respectively, with C0 ∈ Rm×(K−N) and Q0 ∈

R(K−M)×m. The optimization problem (10) is therefore equivalent to 1

min κ2
2 = (‖Ccmp‖2 + ‖C0‖2) · ‖[Qcmp; Q0]‖2

2

s. t. 1
T
mCcmp = 1

T
N , 1

T
mC0 = 1

T
K−N , CcmpV cmpQcmp = Im .

(13)

By Proposition 2 (see below), we know C0 = 1
m
1m1

T
K−N and Q0 = 0, which immedi-

ately follows that ‖C0‖2 = K−N
m

and that ‖[Qcmp; Q0]‖2
2 = ‖Qcmp‖2

2. We thus get the

desired compressed version of (10):

min κ2
2 = (‖Ccmp‖2 + K−N

m
) · ‖Qcmp‖2

2

s. t. 1
T
mCcmp = 1

T
N , CcmpV cmpQcmp = Im .

(14)

1For any matrix A, ‖A‖2 is the square sum of its entries, so ‖[Ccmp, C0]‖2 = ‖Ccmp‖2 + ‖C0‖2.

9



An analytical solution to the problem (14). To simplify the notations we first rewrite

the problem but with the superscript cmp dropped:

min
C,Q

{κ2
2 = (‖C‖2 + K−N

m
) · ‖Q‖2

2 : 1
T

mC = 1
T

N , CV Q = Im} , (15)

where V ∈ RN×M is just seen as some known matrix; and C ∈ Rm×N , Q ∈ RM×m.

Taking the (full-size) SVD of V , say V = L · D · RT, and putting C = CL and

Q = RTQ, we get a simplified form (the matrix V now becomes the diagonal one D)

of (15):

min
C,Q

{κ2
2 = (‖C‖2 + K−N

m
) · ‖Q‖2

2 : 1
T

mC = 1
T

NL, C · D · Q = Im} ,

as applying a unitary transformation on a matrix will not change its spectral norm and

Frobenius norm. Now assume that V has rank r, i.e., D = diag{D, 0}, where D =

diag{d1, d2, . . . , dr} with d1 " d2 " . . . " dr > 0. Then V has the compact SVD

V = L1DRT
1 , where L1 andR1 are tall matrices formed by extracting the first r columns

from L and R, respectively. Writing L = [L1, L2] and R = [R1, R2], and utilizing the

fact that ‖[A, B]‖2 = ‖A‖2 + ‖B‖2, we expand the above optimization problem to

min κ2
2 = (K−N

m
+ ‖C1‖2 + ‖C2‖2) · ‖[Q1; Q2]‖2

2

s. t. 1
T
mC1 = 1

T
NL1 , 1

T
mC2 = 1

T
NL2 , C1DQ1 = Im ,

(16)

where Ci := CLi and Qi := RT
i Q (i = 1, 2).

Proposition 2 In (16) let the matrices C1 and Q1 be fixed, then C2 = 1
m
1m1

T
NL2 and

Q2 = 0 form a minimizer of the target κ2
2.

See Appendix A.1 for the proof. According to the above proposition, we can rewrite

the problem (16) as

min κ2
2 = (‖C1‖2 + φ) · ‖Q1‖2

2

s. t. 1
T
mC1 = lT , C1DQ1 = Im ,

(17)

where lT := 1
T
NL1 and φ := K−N

m
+ ‖ 1

m
1m1

T
NL2‖2 = K−N

m
+ 1

m
1

T
NL2LT

2 1N . Here

we should point out that, to get the problem (17) from (15), one actually needs only to

compute the compact SVD V = L1DRT
1 . This is because we can compute the quantity

φ from L1 by

φ = K−N
m

+ 1
m
1

T

NL2L
T

2 1N = K−N
m

+ 1
m
1

T

N (IN − L1L
T

1 )1N = 1
m

(K − lTl) ;
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and retrieve the optimal C and Q from a solution (C1, Q1) to (17) via

C = [C1, C2][L1, L2]T = (C1 − 1
m
1mlT)LT

1 + 1
m
1m1

T
N ,

Q = [R1, R2][Q1; Q2] = R1Q1 .

Proposition 3 In the optimization problem (17), if C1 is fixed, then Q1 = (C1D)† is a

minimizer of κ2
2.

See Appendix A.2 for the proof. Assume C1D has the compact SVDC1D = LSRT,

then C1 = LSRTD−1 and, by Proposition 3, Q1 = RS−1LT. For this setting of

(C1, Q1), the second constraint C1DQ1 = Im is automatically fulfilled; and the first

constraint 1
T
mC1 = lT now becomes 1

T
mLSRT = lTD, which implies that, (1) the

subspace (in Rr) spanned by columns of R (the range space of R) contains the vector

Dl, i.e., Rx = Dl for some x ∈ Rm; (2) by multiplyingR on the right to this equality,

1
T
mLS = lTDR.

Furthermore, in the compact SVD C1D = LSRT let ri be the i-th column of R and

βi = rT
i D−2ri; and write S = diag{s1, s2, . . . , sm} with s1 " s2 " . . . " sm > 0.

Then, by brute-force computation, we obtain

‖C1‖2 =
∑m

i=1 βis2
i ; ‖Q1‖2

2 = s−2
m ; κ2

2 = s−2
m (φ+

∑m
i=1 βis2

i ) .

Now assume the matrix R ∈ Rr×m, which satisfies RTR = Im and 1
T
mLSRT = lTD,

is already known, then the vector lTDR =: vT = [v1, v2, . . . , vm] and the scalars βi =

rT
i D−2ri are also known. Moreover, by the equality 1

T
mLS = lTDR, the vector v has

the property
∑m

i=1 v2
i = vTv = lTDRRTDl = 1

T
mLSRTDl = lTD2l , (18)

which is a constant independent of the choice of the matrix R.

Writing 1
T
mL =: uT = [u1, u2, . . . , um], we get uisi = vi and so ui = vi/si from

the constraint 1T
mLS = lTDR = v. Since L is an orthogonal matrix, we know

∑m
i=1(vi/si)2 =

∑m
i=1 u2

i = uTu = 1
T
mLLT

1m = 1
T
m1m = m . (19)

Note that, this is the only condition u should satisfy since we can choose L freely.

Summing up the above discussion, we get the expanded “scalar” version of (17):

min κ2
2 = s−2

m (φ+
∑m

i=1 βis2
i )

s. t.
∑m

i=1(vi/si)2 = m , s1 " s2 " . . . " sm > 0 .
(20)
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For each i, let αi = si/sm, then si = αism and α1 " α2 " . . . " αm = 1. From the

equality
∑m

i=1(vi/si)2 = m we know s2
m = 1

m

∑m
i=1(vi/αi)2. Therefore,

κ2
2 = φs−2

m +
∑m

i=1 βiα2
i = mφ · (

∑m
i=1 v2

i α
−2
i )−1 +

∑m
i=1 βiα2

i ,

from which we immediately see that κ2
2 reaches its minimal value

(κ2
2)min = mφ · (

∑m
i=1 v2

i )
−1 +

∑m
i=1 βi = mφ · (lTD2l)−1 +

∑m
i=1 βi (21)

when αi = 1, i.e., si = sm for all i. It then follows from (18) and (19) that

si =
√

m−1 · (lTD2l) = 1√
m
‖Dl‖ , (i = 1, 2, . . . , m) . (22)

As the value of lTD2l is independent of the matrix R, (21) indicates that, to mini-

mize the target κ2
2, the choice of R should make the sum

∑m
i=1 βi as small as possible.

By the definition of βi, we know
∑m

i=1 βi = tr(RTD−2R). We therefore get the follow-

ing optimization problem to determine the matrix R:

min
∑m

i=1 βi = tr(RTD−2R) where R ∈ Rr×m

s. t. RTR = Im , ∃ x ∈ Rm (Rx = Dl) .
(23)

Note that, if R is a minimizer of (23), so is RU , where U can be any orthogonal matrix

of order m. We thus assume, without loss of generality, that the last column of R is

rm = Dl/‖Dl‖— the unit vector on the direction of Dl (for vectors, their Frobenius

norm equals to their Euclidean norm, so we can abuse our notation of ‖ · ‖) — sinceDl

lies in the range space of R. Thus, the matrix R has the form R = [HX, rm], where

H ∈ Rr×(r−1) is fixed and has columns forming a basis of the null space of rm, i.e.,

H can be any matrix with the properties HTH = Ir−1 and rT
mH = 0 — see Appendix

A.3 for a simple construction of such a matrix H; and X is a some (r − 1) by (m − 1)

matrix satisfying XTX = Im−1. Substituting the expression R = [HX, rm] into (23),

we get

min{tr(XTHTD−2HX) : XTX = Im−1} .

As is well known, this optimization problem has an analytical solution: the i-th column

ofX , denoted xi, is exactly the eigenvector ofHTD−2H with respect to its i-th smallest

eigenvalue λi, which, surprisingly, is equal to βi — this can be proven in one line:

βi = rT
i D−2ri = xT

i HTD−2Hxi = λix
T
i xi = λi.

12



It now remains only to find an orthogonal matrix L such that 1T
mL = uT. With the

matrix R constructed as above, we find that

vT = lTDR = ‖Dl‖ · rT

m[HX, rm] = ‖Dl‖ · [0, . . . , 0, 1] ,

i.e., vi = 0 for i < m and vm = ‖Dl‖. By the relation uisi = vi and (22) we know

uT = [0, . . . , 0,
√

m], so L can be any orthogonal matrix with 1√
m
1m as its last column.

For instance, we can set

L =
1√
m





(1 +
√

m)−1
1m−11

T
m−1 −

√
mIm−1 1m−1

1
T
m−1 1



 . (24)

A more general construction of such matrices L is presented in Appendix A.3.

The constructive error controlling algorithm. All the above discussion on the prob-

lem (14) sums up to a constructive procedure for evaluating the optimal Ccmp and Qcmp

that minimizes the modeling error bound presented in the inequality (6). Inserting this

procedure into the basic learning scheme, we get the constructive error controlling

(CEC) algorithm, as shown in Algorithm 1, in which some Matlab-style notation is

employed.

The time complexity of the CEC algorithm is dominated by (1) the collection of

the compressed counting matrices, which, as discussed above, costs O(T ) flops; and

(2) the computation of the compact SVD V cmp = L1DRT
1 , which, in the worst case

where the matrix V cmp has full rank r = N (assume that M = N), amounts to O(N3)

flops (Golub and Loan, 1996). Thus, the total time complexity of CEC is about O(T +

N3). Here we recall that the EM algorithm for training HMMs and the ES algorithm

both have time complexity O(nm2T ), where n is the number of EM- or ES-iterations.

We therefore conclude that the CEC algorithm is faster than EM and ES, since N )

T is the typical case. The comparision between EC and CEC is more sophisticated.

As analyzed in (Zhao and Jaeger, 2009), the time complexity of EC is about O(T +

2nmN2), which is typically higher than that of CEC; and so EC is slower than CEC, as

shown by our simulations. However, in cases where large (full-rank) counting matrices

V cmp are obtained, CEC may need more CPU time (mainly due to the SVD of V cmp)

than EC.

13



Algorithm 1: The constructive error controlling (CEC) algorithm

Input: - the training sequence s̄ = s1s2 . . . sT ;

- the model dimensionm;

- the length k of basic strings.

Procedure:

1. Extract the compressed counting matrices V cmp andW cmp
a from s̄.

2. Evaluate the optimal Ccmp and Qcmp as follows.

a. compute the compact SVD of V cmp: V cmp = L1DRT
1 ;

b. let lT = 1
T
NL1, vm = ‖Dl‖, sm = vm/

√
m;

c. let rm = Dl/vm, H = null (rT
m)— or, cf. Appendix A.3;

d. let [βi, xi] = i th-smallest-eigenpair (HTD−2H)i=1,2,...,m−1;

e. let R = [Hx1, . . . , Hxm−1, rm], L be as in (24) or (29);

f. let Ccmp = (smLRTD−1 − 1
m
1mlT)LT

1 + 1
m
1m1

T
N , Qcmp = s−1

m R1RLT;

3. Estimate all τ̂a’s by (12) and ŵ0 as in step 3. of the basic scheme.

Output: - the learnt model (Rm, {τ̂a}a∈O, ŵ0).

An efficient variant to CEC. We now introduce an efficient variant to the CEC al-

gorithm. The time complexityO(T + N3) of the above CEC algorithm can be reduced

to O(T + mN2) if we compute only the first m (the model dimension) singular triples

of the matrix V cmp. That is, instead of the compact SVD V cmp = L1DRT
1 , we use the

first (largest) m singular values and left- (right-) singular vectors of V cmp to form the

matrix D, L1 and R1, respectively; and then estimate the OOM as in Algorithm 1. To

distinguish the two versions of CEC we shall call the efficient variant presented here the

CEC-B algrithm and the original one described by Algorithm 1 the CEC-A algorithm

in the sequel.

The basic idea behind CEC-B is rather simple: the counting matrix V cmp is in fact

the statistical approximation of the probability matrix V ∗ (up to a counting factor),

which should have rank m — recall that we have already assumed that the underlying

process can be modelled by some m-dimensional OOM. Therefore, we can (and it is

quite natural) first estimate V ∗ (the “true” counting matrix) from V cmp; then use V ∗ to

design the optimal C and Q—which is what CEC-B does.

By the above discussion, one immediately sees that CEC-A and CEC-B should
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have approximately the same performance, especially when the training dataset is large

(since then V cmp ≈ V ∗). We would however emphasize again that CEC-B is computa-

tionally cheaper than CEC-A.

We finish this section with an important remark on a painful issue in OOM theory,

namely, the negative probability problem (Jaeger, 2000b). It refers to the fact that the

model (Rm, {τ̂a}a∈O, ŵ0) learnt by existing OOM learning algorithms, including the

CEC algorithm presented in this article, can produce “negative probabilities” P̂ (ā) =

1
T
mτ̂āŵ0 < 0 for some sequence ā ∈ O∗. For a long time, the authors and others

attempted to find ways to eliminate this problem. Very recently, it was proven that it is

undecidable to determine whether a given candidate set of observable operators leads

to negative values on some strings (Wiewiora, 2008). This finding does not preclude

the possibility to find nontrivial and practically useful sufficient conditions for non-

negativity. In practice, the current state of the art relies on heuristic methods which

essentially “repair” the OOM state vector by small correction terms when it would give

negative “probability” values. These work well, e.g., the one presented in Appendix J

of (Jaeger et al., 2005).

4 Empirical Results

In this section, we assess the performance of CEC-A,B in comparison with the EC

and ES algorithms on three sets of symbolic sequence modeling tasks: the first two

are repeated from (Zhao and Jaeger, 2009), namely, learning models for a quantized

logistic system and a suite of seven partially observable Markovian decision processes

(POMDPs) that have been used frequently as benchmark tasks in the literature; the third

one is taken from (Jaeger et al., 2005): to train OOMs on Mark Twain’s short story “The

One Million Pound Bank-Note”.

Modeling the symbolic logistic system. In this experiment we consider the task of

modeling a dynamical system that consists of a continuous-valued iterated map fol-

lowed by a quantizer which maps real numbers to discrete symbols. The dynam-

ics of the continuous-valued procedure is governed by the logistic mapping xn+1 =
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4xn(1 − xn), with initial values x0 arbitrary selected from the initerval (0, 1). As is

well known, in its attractor set (0, 1), this system shows strong chaotic behavior (with

Lyapunov exponent λ = ln 2). The attractor set (0, 1) is divided into # = 16 equidis-

tant sub-intervals, yielding an alphabet of 16 symbols and a 16-output quantizer that

converts the continuous-valued sequence (xn) into a symbolic process (Xn).

We follow the experimental settings of (Zhao and Jaeger, 2009): (1) 20 sequences

each of which has length L = 30000 are created by running the above quantized logistic

system; (2) OOMs of dimension m ∈ {5, 10, . . . , 30, 40, . . . , 70} are then estimated

from each such sequence, using the EC, ES and CEC-A,B algorithms; (3) finally, we

compute the normalized log-likelihood (NLL) of these learnt models A on the other 19

sequences, as follows:

NLL(A, S) :=
1

S#

∑

ā∈S

log! P (ā|A)

length of ā
, (25)

where # is the alphabet size; S is the test dataset that consists of the other 19 (testing)

sequences; and S# is the number of sequences in S, which takes the value 19 in this

experiment. Here are the settings of our simulation:

- When evaluating test NLLs of learnt OOMs, the heuristic method described in

Appendix J of (Jaeger et al., 2005) is employed to address the negative probability

problem, from which each of the EC, ES and CEC-A,B algorithms suffers.

- The length of characteristic/indicative strings is set to be k = 5.

- As in (Zhao and Jaeger, 2009), the ES algorithm is terminated after 10 iterations;

and the estimated model with highest training NLL is selected as the final out-

put of ES. But unlike as in (Zhao and Jaeger, 2009), ES is now started with a

more carefully chosen initial model, so that it is numerically stable for all model

dimensions.

As has been pointed out in (Zhao and Jaeger, 2009), in practice the quantityNLL(A, S)

should assume values from −1 to −H(Xn), where (Xn) is the underlying stochastic

process that we want to model and H(Xn) is its entropy rate (under the base-# loga-

rithm), defined by the formula

H(Xn) := − lim
k→∞

1

k

∑

ā∈Ok

P (ā) log! P (ā) , (26)
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where, as introduced at the beginning of Section 2, P (ā) is the (initial) probability

distribution of the process (Xn). Specifically, it turns out that the quantized logistic

process described above has entropy rate H(Xn) = 0.25 (Zhao and Jaeger, 2009),

meaning that the quantized logistic process is indeed a stochastic process, although its

continuous space motion is rather simple and deterministic (in the sense that we can

accurately predict the next output xn+1 based on the current one xn). Thus, in this

experiment, a test NLL of −H(Xn) = −0.25 represents the upper limit that a learning

algorithm can reach.

In sum, here our dataset contains 20 sequences of length 30K, from each of which

four OOMs of dimensionsm ∈ {5, 10, . . . , 30, 40, . . . , 70} were estimated, by the EC,

ES and CEC-A,B algorithm, respectively; the test NLL of these learnt models was then

computed on the other 19 sequences. We therefore obtain

20(nr. of sequences) × 10(nr. of model dimensions) × 4(nr. of algorithms)

NLL-values after the simulation. We plotted in Fig. 1-a the average test NLLs of each

OOM learning algorithm versus model dimensions; in Fig. 1-b the standard deviation

of these test NLLs; and in Fig. 2 the total CPU-time needed for learning these models

— all algorithms are programmed in Matlab (with C-mex functions embedded) and

implemented on a Pentium-M 1.73 GHz laptop.

From the figures we see that (1) CEC yields slightly more accurate models than EC

and ES; (2) for large model dimensions CEC is significantly faster than EC and ES;

and (3) while CEC-B has nearly the same test NLLs as CEC-A (see the explanation

below Fig. 1 for more detail), it is 2–3 times faster than CEC-A. Another important

observation is that, for model dimensions m " 40, all models (under ES, EC, CEC)

level out in their NLLs, which reach ≈ −0.261, −0.257, −0.257, respectively, with a

small margin toward the theoretical optimum of −0.25.

POMDP benchmark suite. In the second experiment we compare the performance

of ES, EC, and CEC on the task of learning models of seven POMDPs that were fre-

quently used as benchmark tasks for assessing the performance of predictive state rep-

resentations (PSRs) (Littman and Sutton, 2001) in the literature.

First we would like to point out the relationship between OOMs and PSRs. PSRs are

a class of models for discrete, stochastic input-output systems, which generalizes par-
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Figure 1: The test NLLs of learnt OOMs on the quantized logistic system: (a.) the

average test NLLs — to make the difference more visible, here the y-axis is computed

by “y = −0.256 − average-NLL” and represented in logarithmic scale (note the num-

ber −0.256 is a little smaller than the previously introduced upper limit of test NLLs

−0.25); (b.) the standard deviation of the test NLLs. Note that, in this experiment (also

in the second and the third experiments), models learnt by CEC-A and CEC-B have

nearly the same quality — the relative difference in test NLL or one-step prediction er-

ror (see (27)) are less than 0.1% on all datasets. As a consequence, in Figures 1, 3 and

5 the curves for CEC-A and CEC-B are (almost) identical.

0 10 20 30 40 50 60 70
100

101

102

103

 

 

OOM−EC
OOM−CEC (A)
OOM−CEC (B)
OOM−ES

model dimension

to
ta
lt
ra
in
in
g
tim
e
(s
ec
)

Figure 2: The training CPU-time of the ES, EC and CEC-A,B algorithms on the quan-

tized logistic system.
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tially observableMarkov decision processes (POMDPs) like OOMs generalizes HMMs.

PSRs have been partly inspired by OOMs but have developed a representation format

for input-output processes which is different from the format of input-output OOMs

described in (Jaeger, 1998). Developing learning algorithms and specialized variants of

PSRs is an active area of research (McCracken and Bowling, 2005; Wolfe et al., 2005;

Bowling et al., 2006; Rudary and Singh, 2006; Wolfe, 2006; Wingate and Singh, 2007).

In (Zhao and Jaeger, 2009) we demonstrated that ES and EC strongly outperform known

PSR learning algorithms. These results are not repeated here. We remark furthermore

that extending the ES, EC, and CEC algorithms to input-output OOMs constitutes a

current line of research in our group 2 .

The seven target POMDPs are taken from a public web source 3 ; they include

“bridge”, “cheese”, “maze4x3”, “network”, “paint”, “shuttle” and “tiger”. We use the

same experimental settings as (Zhao and Jaeger, 2009), for more detail we refer the

reader to this precursor paper. We use notations that are common in the PSR literature.

- As is commonly done in the PSR field, the input policy is simply to choose, at

each time step, an action a from the input alphabet, say A, according to the uni-

form random distribution (over A). So the training/test sequences have the form

a1o1a2o2 . . . aNoN , a sequence of alternating actions ai ∈ A and observations

oi ∈ O.

- For each of the above mentioned POMDP domains, we train OOMs on (input-

output) training sequences of varying lengths N = 103–107.3 using the CEC-A

or B (or EC, ES) algorithm, as follows. We (naively) regard each combination

(aioi) of an action ai and its immediate observation oi as a single symbol si from

the alphabet S = A ×O; and learn an OOM from the sequence s1s2 . . . sN (with

the length of basic strings set to be k = 2).

- The quality of learnt models are measured by their average one-step prediction

error E on testing sequences of length N = 104 (the format that has been used
2Note to reviewers: by the time of a possible publication of this paper, we may be able to refer to a

publication here.
3Tony’s POMDP page, http://www.cs.brown.edu/research/ai/pomdp/, 1999.
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for assessing the main PSR algorithms):

E =
1

N

N−1
∑

i=0

1

|O|
∑

o∈O

[

P (o|hia
i+1) − P̂ (o|hia

i+1)
]2

, (27)

where P is the correct probability (computed using the known underlying POMDP)

and P̂ is the model prediction for the next observation given the testing history

hi = a1o1 . . . aioi and the action ai+1. For learnt OOMs (over S = A × O) we

compute the above predicting probabilities P̂ (o|hiai+1) by

P̂ (o|hia
i+1) =

P̂ (ai+1o|hi)

P̂ (ai+1|hi)
=

P̂ (ai+1o|hi)
∑

o′∈O P̂ (ai+1o′|hi)
. (28)

In Fig. 3 we plotted the average one-step prediction error E (y-axis) of the ES,

EC and CEC-A,B algorithms on the seven POMDP domains versus training sequence

length (x-axis); and in Fig. 4 the training CPU-time costed by these algorithms for each

training length. We collect the main findings in the following list.

- The four OOM learning algorithms all show a “near-log-linear” relationship be-

tween the length N of training sequences and the prediction error E — that is,

log E ≈ α − β log N , or, equivalently, E ≈ eαN−β = E0N−β (E0, β > 0) — in

all domains except for the “cheese” domain. This partly demonstrates that OOM

learning is (1) asymptotically correct (since E → 0 when N → ∞) and (2) sta-

tistically efficient (since the convergence of E to 0 is fast), as has been claimed in

our previous OOM references.

- In the “cheese” domain, the prediction error E does not decrease any more when

N " 105. One possible reason is that the basic string length k = 2 is too small

to capture all relevant statistics. We therefore increase the value of k by 1 and do

the simulation again. Figure 3-h shows the empirical results, from which we see

the desired property of OOM learning.

- The two CEC algorithms and the EC algorithm have nearly the same one-step

prediction error. But for small training dataset CEC is faster than EC; whereas

for large dataset the difference in speed becomes invisible. The reason is that,

when the training sequence length T is large (compared to the size N of counting

matrices), both CEC and EC have time complexity dominated byO(T ); and when
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T is small, CEC has the time complexity O(mN2) or O(N3), smaller than that

of EC which is O(2nmN2).

- Neither CEC nor EC outperforms ES in all domains: they win in the “network”,

“paint” and “tiger” domains, but are nomatch for ES in the “cheese” and “maze4x3”

domains; and the four algorithms show essentially the same performance in the

“shuttle” domain. But both CEC and EC are about 10 times faster than ES, espe-

cially for large training datasets.

- “Bridge” is an interesting domain, in which CEC/EC is inferior to ES when

N ! 105, but when N becomes larger (" 3 × 105), CEC/EC starts to yield a

smaller prediction error than ES (In fact, other domains also show the similar

phenomenon, which is however less obvious as in the “bridge” domain). This on

the one hand illustrates that, asymptotically, CEC/EC converges faster than ES

(βCEC > βES); and on the other hand reveals that in some domains CEC/EC might

be not so statistically efficient as ES when the training dataset is small.

- In the “bridge” domain, the prediction error of EC jumps to a high level at T =

107, and ES shows a similar jump in the “paint” domain when T = 106; whereas

CEC always get smoothly decreasing prediction error. This partially illustrates

that CEC are numerically more stable than EC and ES.

It should be noticed that, in the “maze4x3” domain (see Fig. 4-c), the training CPU-

time for EC and CEC-A,B show a significant drop when the training data size increases

from T = 105.67 to T = 106. — This is not a coincidence, because we repeated

the whole experiment for 10 times, with the matlab’s rand() function initialized by

different seeds; and always got similar results. As the authors can see, one possible

reason for this is that, for training sequences of length " 106, the counting matrices

are already very near to the “true” probability matrices and so have (numerical) rank

equaling to the model dimensionm = 11; this might speed up the SVD of the counting

matrix V cmp — only the first 11 singular values and vectors need to be computed, and

reduce the number of EC-iterations needed for optimizing the two auxiliary matrices C

andQ—one sees that in the ideal case where the counting matrix has rankm, only one

EC-iteration is needed.
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Figure 3: The average one-step prediction error of the ES, EC and CEC-A,B algorithms

on seven POMDP benchmark problems (x-axis: (log10 of) length of training sequences;

y-axis: average one-step predition error). Panel h. is re-run of b. with different param-

eter settings, see text.
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Figure 4: The training time costed by the ES, EC and CEC-A,B algorithms on seven

POMDP benchmark problems (x-axis: (log10 of) length of training sequences; y-axis:

training CPU-time). Panel h. is re-run of b. with different parameter settings, see text.
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Modeling text sources. In the third experiment OOMs will be taken to model a text

source, the short story “The 1,000,000 Pound Bank-Note” written by Mark Twain. To

simplify the task we first preprocessed the text string by deleting all special characters

except the blank, changing capital letters to small ones; which gave us an alphabet of 27

symbols: a, b, . . . , z plus the blank. We then sorted the resulting string sentence-wise,

obtaining two substrings of roughly equal length (21042 and 20569 symbols, respec-

tively) that were used as training and test sequences.

As before, we estimatedOOMs of dimensions {5, 10, . . . , 50, 60, . . . , 100, 120, 150}

from the training sequence by the EC, ES and CEC-A,B algorithms, respectively; and

then computed the training and test NLLs of each learnt OOM, as shown in Fig. 5-a,b.

Here the length of characteristic/indicative strings is set to be k = 2. We also plotted the

training time of each learning algorithm versus model dimension in Fig. 6. From these

figures we see that OOMs learnt by the four algorithms have nearly the same training

and test NLLs (ES is a litter better for low dimensional models, but becomes worse

when model dimension increases). Among the four algorithms CEC-B is the fastest

one: it is about 2 times faster than CEC-A, which is in turn 10–100 times faster than ES

and EC.
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Figure 5: The training (a.) and test (b.) NLLs of learnt OOMs on the short fiction “The

1,000,000 Pound Bank-Note”.
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Figure 6: The training time of the ES, EC and CEC-A,B algorithms on the short fiction

“The 1,000,000 Pound Bank-Note”.

5 Conclusions and Discussion

We have derived the constructive error controlling algorithm (CEC-A), the first con-

structive algorithm for learning OOMs. We also proposed an efficient variant of CEC-

A, called CEC-B. Our numerical experiments reveal that

- as expected, the two CEC algorithms indeed improve over their predecessor, the

EC algorithm, in most domains: CEC usually learn more accurate models (at

least not worse) than EC; when learning high dimensional models, CEC are much

faster than EC;

- compared with the ES algorithm, both CEC algorithms are very much faster (es-

pecially when learning models from large datasets), while still showing compa-

rable test accuracy;

- for large datasets, the two CEC algorithms have nearly the same performance; but

for small datasets, CEC-B is about 2–3 times faster than CEC-A.

We conclude with some open questions:

- Like the EC algorithm, currently the CEC algorithm is given the desired model

dimension and a (fixed) basic string length as parameters. This will have to be au-

tomated in the future; also, the CEC algorithm should be generalized to become,
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like the ES algorithm, based on variable-length subsequence counting statistics,

instead of the fixed-length statistics of the current version.

- As pointed out in (Zhao and Jaeger, 2009), a mathematical understanding of the

relationships between the algebraic and the statistical aspects of EC/CEC vs. ES,

or of the algebraic working principle vs. the statistical effects, is a theoretically

intriguing question.

- As mentioned at the end of Section 3, all OOM learning algorithms (and the OOM

theory itself) suffer from the negative probability problem. As the undecidability

result of (Wiewiora, 2008) shows, this is an intrinsically hard problem in the

current linear framework of OOMs. In response to this issue, the first author is

developing and investigating nonlinear variants of OOMs that are free from this

negativity problem by design (Zhao and Jaeger, 2007).

A Proofs and Algorithms

A.1 Proof of Proposition 2

If C1 and Q1 are fixed, then, as C2 and Q2 are independent of each other, we can split

the problem (16) into two simpler problems, namely,

min
C2

{‖C2‖2 : 1
T

mC2 = 1
T

NL2} and min
Q2

‖[Q1; Q2]‖2 .

Assume the i-th column of L2 is bi and denote by yi the i-th column of C2, then the

above first problem is equivalent tominyi
{‖yi‖ : 1

T
myi = 1

T
Nbi}, (∀ i), since ‖C2‖2 =

∑

i ‖yi‖2. By the Cauchy-Schwarz inequality, we know |1T
myi| ! ‖1m‖ · ‖yi‖, i.e.,

‖yi‖ " 1√
m
|1T

Nbi|; with equality if and only if yi = α1m, which, together with the

constraint 1T
myi = 1

T
Nbi, implies that yi = ( 1

m
1

T
Nbi)1m. It then follows that C2 =

1
m
1m1

T
NL2 is the unique minimizer of the first problem.

To prove that Q2 = 0 minimizes ‖[Q1; Q2]‖2, we will use an alternative definition

of spectral norm, viz ‖A‖2 = max{‖Ax‖ : ‖x‖ = 1}. Let x be such that ‖x‖ = 1

and ‖[Q1; 0]‖2 = ‖[Q1; 0]x‖, then ‖[Q1; Q2]‖2
2 " ‖[Q1; Q2]x‖2 = ‖[Q1x; Q2x]‖2 "

‖[Q1x; 0]‖2 = ‖[Q1; 0]x‖2 = ‖[Q1; 0]‖2
2 and so ‖[Q1; Q2]‖2 " ‖[Q1; 0]‖2, which is

what we want to prove. #
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A.2 Proof of Proposition 3

Assume C1D has the compact SVD C1D = LSRT, then LTL = Im and the constraint

C1DQ1 = Im now reads LSRTQ1 = Im. It follows that SRTQ1L = LTLSRTQ1L =

LTL = Im and soRTQ1L = S−1, which in turn implies thatRRTQ1LLT = RS−1LT =

(C1D)†. This identity, together with the facts that ‖L‖2 = ‖R‖2 = 1; ‖A‖2 = ‖AT‖2;

and ‖AB‖2 ! ‖A‖2 · ‖B‖2, implies that ‖(C1D)†‖2 ! ‖Q1‖2, which completes the

proof. #

A.3 Simple Construction of Two Othogonal Matrices

Here we consider the following simple problems in linear algebra: given two vectors

x, y ∈ Rn with unit norm, (1) how to (efficiently) construct an orthogonal matrix L ∈

Rn×n such that Lx = y? (2) how to find a basis of the null space of xT, i.e., to find a

matrix H ∈ Rn×(n−1) satisfying HTH = In−1 and xTH = 0? As one can easily see,

such L and H are not unique, so we add an extra condition on L, namely, it should be

as close to In as possible, in the sense that ‖L − In‖ is minimized. As LTL = In, we

have ‖L − In‖2 = 2 tr(In − L). Thus, by brute-force computation,

L =











In −
(y − x)(y − x)T

1 − xTy
if x -= y ,

In if x = y .
(29)

In the above formula, putting y = [0, . . . , 0, 1]T and extracting the first (n−1) columns

of L, we get the matrix H .
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