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Abstract—During the Spring term of 2007, the Machine
Learning seminar at Jacobs University Bremen tackled the NN3
Artificial Neural Network and Computational Intelligence Fore-
casting Competition. The objective was to forecast 111 monthly,
financial timeseries (of unknown origin) by 18 months. We im-
plemented a number of standard textbook prediction methods
(exponential smoothing, dampened exponential smoothing) as a
baseline; compared them with likewise standard methods from
computational intelligence (feedforward NNs, support vector
regression (SVR), local methods, wavelet-decomposition based
predictors) and found no convincing advantage; and finally
opted for recurrent neural networks of the Echo State Network
type, which we bundled in large voting collectives which were
trained on blocks of time series.

I. INTRODUCTION
Since people become aware of the movement of time, they

dreamed on knowing what will happen next. ”It is far better
to foresee even without certainty than not to foresee at all”
were the words of the French mathematician and physicist
Henri Poincaré. To us humans, it seems that knowing the
future can ameliorate it, or at least can prepare us to receive
it.
Across history, there have been diverse philosophical dis-

sertations on the idea that the future could be predicted
by the knowledge of the past. Nowadays, that thought is
reflected, among others, in the utilization of machine learning
methods for forecasting. In a similar way to the human mind,
mathematical models can be trained to detect rules in the
evolution in time of different variables, and then use such
rules to predict future events.
The NN3 Artificial Neural Network and Computational

Intelligence Forecasting Competition (www.
neural-forecasting-competition.com),
sponsored by the International Institute of Forecasters
(www.forecasters.org) and the statistical software
company SAS (www.sas.com), is a stage where this
ancient dream is put to a dire and very mundane test. One
hundred and eleven time series, of which not more is known
than that they come from the world of finance and that they
are monthly series, have to be predicted by 18 months.
Such a task seemed a perfect project for our Machine

Learning seminar at Jacobs University Bremen. On one hand,
it required an substantial amount of study, investigation, and
hands-on work, and on the other hand the challenge of
producing competitive results was the perfect motivational
“kick”. An additional spur was to take up the gauntled thrown
at our machine learner’s feed in [8], who essentially state
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that current methods of computational intelligence do not
consistently outperform the standard, much simpler methods
in the tradition of statistical forecasting, and who wonder
why this simple lesson seems so hard to accept...
We decided to work on the complete group of 111 time

series. We first implemented some of the standard textbook
[9] predictors which in [8] were presented as robust and
often competitive; here we will report only on (i) dampened
exponential smoothing and (ii) Theta prediction [1], based
on likewise standard decompositions of the series into a
trend, cycle, and residual components. This provided us
with a baseline. We then proceeded to try out methods of
computational intelligence, where each of the five seminar
participants was in charge of one of the following kinds
of methods: (iii) local methods (following [10]), (iv) multi-
layer perceptrons, (v) support vector machines, (vi) wavelet
decomposition based predictions (following [12]), and (vii)
Fourier decomposition based predictions. It turned out that
these methods indeed did not fare better than (dampened or
pure) exponential smoothing.
Finally, we adopted Echo State Networks (ESNs), a re-

current neural network (RNN) architecture which in the
past has been applied to other time series modelling tasks
([4] [5]). We devised a scheme where a collective of many
such networks is trained on an entire subset of the 111
competition series, and the predictions of the individual
ESNs are then combined to produce the ultimate predictions
for the competition. In this paper we focus on the ESN-based
prediction and mention the results which we obtained with
the other methods (i) – (vii) only for purposes of comparison.

II. ECHO STATE NETWORKS
Echo State Networks present an RNN architecture which

in its basic version is made of two main components:
• a large, randomly created, non-adaptive ”reservoir”
RNN, and

• a set of readout neurons (one per output signal dimen-
sion) connected to the reservoir.

Each readout neuron is connected to all (or a subset) of
the reservoir units; the reservoir-to-output connections are
the only trainable connections in an ESN. An ESN operates,
and is trained, as follows:

• The reservoir functions as a nonlinear excitable medium.
It is excited by input signals fed into it through external
input neurons and/or feedback connections from the
output neurons.

• When the reservoir is fed by input signals, each of the
reservoir units generates a nonlinear transform signal of



the driving input. Due to the recurrency of the reservoir,
information is integrated over time.

• The output neurons are, typically, simple linear readout
devices. Each output neuron computes its output sig-
nal by linearly combining the signals obtained at the
reservoir units; the linear combination weights are the
synaptic connection weights.

• An ESN is trained, in a supervised schema, by first
driving the reservoir with the teacher input (and/or
the fed-back teacher output); and then secondly by
computing the linear regression weights of the desired
output signals from the reservoir-internal signals.

A theoretical introduction to ESNs can be found in [2], a
practical guide and tutorial in [3]; an overview on current
ESN research is provided by a special issue of Neural
Networks [6]. The basic working principle of ESNs was
simultaneously discovered in computational neuroscience
as a biological information processing mechanism. In this
domain, the principle is known under the name of Liquid
State Machines [7].
The neurons used within the reservoir can be of any

type (sigmoid additive, leaky integrator, or spiking models
of various degrees of biological accuracy). We used leaky
integrator neurons for the NN3 competition. We defer a
complete formal specification to an eventual long version
of this paper.

III. APPROACH

In other work, H. Jaeger has found that ESNs can classify
stochastic (speech) time series very well when a large number
of very small ESNs are combined in a voting collective
[5]. Thus, one initial design decision was to employ such
collectives.
Preliminary investigations showed however no advantage

of such an ESN-based voting collective approach over the
other methods which we implemented. This motivated a
second basic design decision, namely, to combine the time
series into “blocks”, and train ESN predictors block-wise.
This approach was based on the observation that the 111
competition series come in six clearly discernible groups,
where each group contains series which are approximately
or perfectly co-temporal. Figure 1 illustrates this observation.
At this point we based our design on a bet: namely, that

the series within a block had been obtained from somehow
causally correlated sources. If this was indeed the case, then
in principle it should be possible to improve the prediction of
a given series from a block, by utilizing information from the
other series in the block. We carried out preparatory studies
where we used linear correlation measures to check whether
series within a block were systematically related; the findings
were mixed (some blocks had highly mutually correlated
subsets of series; some blocks hadn’t; finally, there were
correlations across blocks). However, our eventual results
supported the assumption of exploitable information transfer
within blocks.

We defined the blocks by visual inspection of figure 1.
The memberships of the blocks thus obtained are listed in
table I.
Three further series (nrs. 76 88 109) were not sufficiently

aligned in time with any of the blocks; these three series
were predicted individually using the SVR predictor.

A. Cross-validation scheme
In order to assess the performance of the comparison

methods and our ultimately used ESN method, we used a
simple cross-validation scheme. The last 12 points from each
of the competition series was used as a validation set. All
error figures reported in table I refer to mean errors on these
12 points, for models trained on the remaining points.
Since the competition submissions will be evaluated using

the SMAPE error measure, we used the same error measure
as a basis for optimizing, comparing, and selecting prediction
methods based on validation scores on the witheld 12 last
points. Table I gives an overview of the block-wise mean
SMAPEs for three of our baseline predictors and the ESN
predictors.

B. Decomposition
All the time series were decomposed into trend-

cycle, seasonal and residual multiplicative components us-
ing the X-12-ARIMA seasonal adjustment program de-
veloped at the United States Bureau of the Census
(//www.census.gov/srd/www/x12a/). We used the
automatic ARIMA model selection procedure that is imple-
mented in the program to find a suitable model for forecast-
ing and backcasting the time series. A moving average with
a window size of 39 for the trend estimation was used to
produce smoother trends that we found are better handled
by our prediction method.
Other decompositions (additive instead of multiplicative,

STL, other smoothing window sizes) were tested for valida-
tion set SMAPE with the ESN method and found inferior
(although often only by a small margin). The ESN method
was applied to these three components individually, and the
component predictions reconstituted to the original format
by multiplication.

C. Applying the ESN-based method block-wise
For each of the three component versions of each of the

six blocks, a collective of 500 ESNs was trained to predict
that particular block-component. More specifically, if a block
had N members, 500 reservoirs were randomly created, and
each of them was trained individually on the task to predict
the N -vector of time series one time step ahead. For training,
the competition series minus the last 12 points were used.
After training, the last 12 points were predicted by each
ESN, via iterated 1-step predictions; the trend/season/residual
component predictions of each ESN were recombined; these
500 12-step predictions were then averaged; and finally, the
mean SMAPE (across the N series of the block) on the
resulting mean-voted combination prediction of the 12 last
block steps was calculated.



Fig. 1. Time span of time series (sorted by end date). The grouping into 6 “blocks” is clearly discernible.

Block Members Theta Dampen SVR ESN
1 65 71 74 81 93 95 96 97 98 110 111 23.4 27.2 26.6 20.7
2 58 62 84 66 78 79 83 85 86 102 103 106 12.8 12.8 14.0 11.5
3 69 70 60 61 72 89 105 15.1 17.7 15.10 13.0
4 51-57 63 67 68 73 75 77 80 87 90 101 107 7.4 7.9 6.4 5.6
5 59 64 82 91 92 94 99 100 104 108 10.9 9.2 9.3 8.7
6 1-50 19.2 18.9 17.6 17.5

TABLE I
BLOCK MEMBERS AND MEAN SMAPE SCORES OF FOUR PREDICTORS ON THE VALIDATION SET OF THE LAST 12 POINTS (MODELS TRAINED ON

REMAINING INITIAL POINTS).

Each ESN was set up without external input, and with
feedback from the output units into the reservoir (identical to
the setup described in [4] for chaotic time series prediction).
In most blocks, some series were shorter or longer than

others by a few steps. This was dealt with by trimming all
series which had “too early” values to the latest beginning
time in the block. To cope with unequal end points, a two-
stage learning/prediction process was implemented that first
filled the “end-gaps” and then proceeded to generate the
requisite further prediction points.
An ESN reservoir is a random excitable medium, whose

dynamic response characteristics is crucial for the accuracy
in a given modelling task. This characteristics is shaped
by a small number of global scaling parameters (global
scaling of reservoir weights, output feedback weights, plus
a global leaking rate for the leaky integrator neurons which
were used), as well as the network size and the Tikhonov
regularizing constant which enters the linear regression (these
last two parameters affect not the dynamical properties of
the ESNs but the model capacity in the sense of statistical
learning theory). All in all, there were five global parameters
which had to be optimized per block and per decomposition
component. This was done by manual experimentation, us-
ing the validation set performance as a guide. Automated,
stochastic-gradient based optimization methods are an object
of current research [5] and were not robustly available at this
time.
The reservoir sizes that resulted from this manual tuning

ranged between 45 (for block 6 with its short series) and
110 (for the longest blocks). A more detailed survey will be

given in an eventual long paper.

IV. RESULTS
Of course, at the time of writing – a few minutes before the

submission deadline – this section must remain essentially
void. The validation set SMAPEs of the ESN method (see
table I) look encouraging, but ... “the future’s not ours to
see”.

REFERENCES
[1] V. Assimakopoulos and K. Nikolopoulos. The theta model: a decom-

position approach to forecasting. International Journal of Forecasting,
16:521–530, 2000.

[2] H. Jaeger. Short term memory in echo state networks. GMD-
Report 152, GMD - German National Research Institute for
Computer Science, 2002. http://www.faculty.iu-bremen.de/hjae-
ger/pubs/STMEchoStatesTechRep.pdf.

[3] H. Jaeger. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the echo state network approach. GMD
Report 159, Fraunhofer Institute AIS, 2002. http://www.faculty.iu-
bremen.de/hjaeger/pubs/ESNTutorial.pdf.

[4] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication.
Science, 304:78–80, 2004. http://www.faculty.iu-bremen.de/hjae-
ger/pubs/ESNScience04.pdf.
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