
A Bound on Modeling Error in Observable
Operator Models and an Associated Learning

Algorithm∗

Ming-Jie Zhao† Herbert Jaeger Michael Thon
{m.zhao, h.jaeger, m.thon}@jacobs-university.de

September 17, 2008

Abstract

Observable operator models (OOMs) generalize hidden Markov models
(HMMs) and can be represented in a structurally similar matrix formalism.
The mathematical theory of OOMs gives rise to a family of constructive, fast
and asymptotically correct learning algorithms, whose statistical efficiency
however depends crucially on the optimization of two auxiliary transforma-
tion matrices. This optimization task is non-trivial; indeed, even formulating
computationally accessible optimality criteria is not easy. Here we derive how
a bound on the modeling error of an OOM can be expressed in terms of these
auxiliary matrices, which in turn yields an optimization procedure for them,
which finally affords us with a complete learning algorithm, the error control-

ling algorithm. Models learnt by this algorithm have an assured error bound
on their parameters. The performance of this algorithm is illuminated by com-
parisons with two types of HMMs trained by the expectation-maximization
(EM) algorithm, with the efficiency sharpening algorithm, another recently
found learning algorithm for OOMs, and with predictive state representations
(PSRs) (Littman and Sutton, 2001) trained by methods representing the state
of the art in that field.

1 Introduction

Observable operator models are very general mathematical models of stochastic pro-
cesses. The key element in OOMs is to identify a sequence of observations (an)n=1,2,...

with a sequence of linear operators (τan
)n=1,2,..., called the observable operators of

∗The final version of the article will appear in Neural Computation.
†Corresponding author.

1

the process. Any stochastic process whose observation space admits a Polish topol-
ogy can be characterized as an OOM; this includes all discrete-time or continuous-
time, stationary or nonstationary processes with discrete or continuous, univariate
or multivariate observation spaces. The general mathematical theory of OOMs
has been established in (Jaeger, 1999); far-reaching generalizations into the theory
of ergodicity and quantum dynamics have been worked out in (Schönhuth, 2006;
Faigle and Schönhuth, 2006, 2007).

In a machine learning context, it is the specific subclass of discrete-time, finite-
valued OOMs — in other words, models of stochastic symbol sequences — that is of
particular interest. If these OOMs are finite-dimensional, they can be represented
by a matrix formalism which is structurally similar to hidden Markov model (HMM,
(Rabiner, 1989; Bengio, 1999)) matrix representations. However, while OOMs and
HMMs have deceptively similar-looking matrix formalisms, there is an important
difference: the matrix entries in OOMs can be negative, whereas the analog entries
in HMM matrix models must be non-negative. This has major consequences: first,
OOMs properly include HMMs (there exist processes that can be described by OOMs
but not by HMMs, but not vice versa (Jaeger, 2000b)); second, OOM matrix entries
cannot be interpreted as probabilities. This may seem a drawback at first sight,
but it is the key to a general treatment of OOMs by methods of linear algebra,
and leads to constructive learning algorithms which are unencumbered by the non-
negativity constraint in HMM representations. The theory of finite-dimensional
OOMs, their matrix representations and basic learning algorithms are explained in
detail in (Jaeger et al., 2005); a self-contained summary is given in Section 2 later
in this article.

The learning algorithms for OOMs — of which by now there exist quite a number
— all share the same basic structure:

1. Certain elementary counting statistics of the training sequence(s) are sorted
into certain counting matrices.

2. These counting matrices are joined with certain conditioning matrices into
linear matrix equations, called the learning equations.

3. Solving these equations yields estimates of the observable operators (as ma-
trices), and hence an estimate of an OOM.

If certain trivial normalization constraints on the conditioning matrices are ob-
served, this procedure implements an asymptotically correct estimator, whereas the
variants of EM (Dempster et al., 1977) which are used in most HMM estimators
do not have this property. Furthermore, steps 1 and 3 are computationally cheap;
more precisely, the first step costs O(length of training sequence) flops and the third
O(model dimension3). Steps 1 and 3 are simple and inevitable. Step 2, however,
offers much room for design alternatives and optimization strategies, and it is this
step which is responsible for the statistical efficiency of the overall algorithm. Specif-
ically, the conditioning matrices (of which there are two; let us start calling them by
the names by which they will later be formally introduced: the characterizer C and

2

the indicator Q) can be essentially freely chosen (up to obvious normalization and
non-degeneracy constraints). Variation in C and Q has dual effects on the algebraic
conditioning of the resulting learning equation, and on the statistical properties of
the estimator implemented by the procedure. Algebraic and statistical effects of C
and Q are intimately connected, but not in an easily analyzable way.

The early learning algorithms (Jaeger, 2000a,b) relied on all-too-simple heuristics
for creating C and Q; the ensuing poor statistical efficiency made OOMs learnt in
this way no match for EM-trained HMMs. However, starting with (Kretzschmar,
2003), the challenge of optimizing C and Q moved into the focus of investigations
and became increasingly better understood. One line of research culminated in the
efficiency sharpening (ES) algorithm (Jaeger et al., 2005), which concentrates on the
statistical effects of variation in C and Q. The ES algorithm exploits an algebraic
characterization of minimal variance of the estimator, and iteratively improves C and
Q toward the goal of minimizing the variance of the overall learning algorithm. While
the algebraic conditioning of the learning equation is not directly controlled by the
ES algorithm, and thus theoretically the attempts to improve statistical efficiency
could be annihilated by unwanted algebraic side-effects, in practice it turns out that
in the majority of cases, as the statistical efficiency is iteratively optimized, the
algebraic conditioning is likewise improving. On synthetic and real-life datasets, the
ES algorithm has starkly outperformed EM-trained HMMs in test error and speed.

In the present article, we follow the other road and concentrate on the alge-
braic properties of the learning equation. This approach has been explored in
(Kretzschmar, 2003) and (Jaeger et al., 2005) and reaches a certain degree of ma-
turity in this article. Our main theoretical result is a theorem which relates the
algebraic modeling error (a distance measure between the assumed true observable
operator matrices and the estimated ones) to algebraic properties of the conditioning
matrices C and Q, in the form of an upper bound (Proposition 3). This theoretical
insight gives rise to a learning strategy: optimize C and Q such that this bound is
minimized. We present a computationally efficient iterative method for this opti-
mization task; this is the main algorithmical contribution of this article. We have
named the new algorithm the error controlling (EC) algorithm. The performance of
the overall learning algorithm thus obtained is checked on some synthetic systems.
It turns out that the quality of the EC algorithm comparable to that of the ES al-
gorithm in test accuracy, but it is faster and, for high-dimensional models, appears
to possess, in addition, better numerical stability.

We want to emphasize that both the ES and the EC algorithm are not actually
learning algorithms per se, but rather learning algorithm optimizing algorithms.
Both algorithms iteratively optimize C and Q; but in each iteration, one could use
the current C and Q, plug them into the learning equation, and thereby implement
a complete, asymptotically correct learning algorithm.

The paper is organized as follows. We start with a review of the basic terminology
and theory of OOMs (Section 2). Section 3 is devoted to the EC algorithm, which
includes the derivation of an upper bound of estimation error; a numerical method

3

for minimizing this upper bound; and the overall procedure of EC. Numerical studies
to assess the performance of the new algorithm in comparison with existing ones
are documented in Section 4. Section 5 summarizes the paper and draws some
conclusions.

2 The Basics of OOM Theory

The fundamental OOM equation. Let us consider the class of discrete-time
stochastic processes with values from a finite set of observables (the alphabet) O =
{a1, a2, . . . , a!}. As is well known, each such process (Xn)n∈N is uniquely determined
and completely described by the family of all finite initial joint probabilities:

{Pr(X1 = a1, . . . , Xn = an) : n ∈ N, ai ∈ O} .

Since joint probabilities such as Pr(X1 = a1, . . . , Xn = an) and conditional proba-
bilities of the form Pr(Xn+1 = b1, . . . , Xn+k = bk|X1 = a1, . . . , Xn = an) will occur
very often in this paper, it is convenient to introduce some shorthand notations for
them and the related quantities. We shall use small letters with a bar to denote
finite sequences of symbols from O, e.g., ā = a1 . . . an. The set of all such finite
sequences ā will be denoted by O∗, including the empty sequence ε. For any se-
quences ā = a1 . . . an and b̄ = b1 . . . bk, we shall write P (ā) or P (a1 . . . an) for the
joint probability Pr(X1 = a1, . . . , Xn = an); and write P (b̄|ā) or P (b1 . . . bk|a1 . . . an)
for the conditional probability Pr(Xn+1 = b1, . . . , Xn+k = bk|X1 = a1, . . . , Xn = an).
With these shorthands, we can rewrite the above family of joint probabilities as
{P (ā) : ā ∈ O∗}, with the agreement that P (ε) = 1.

This paper only deals with a special class of discrete-time stochastic processes
over the alphabet O, namely, linearly dependent processes (LDPs). LDPs are a
proper superclass of the processes that can be characterized by finite-dimensional
HMMs. The reader is referred to (Jaeger, 2000b) and the references therein for a
detailed introduction to LDPs. According to OOM theory, any LDP (over the set
O) specified by the initial probabilities {P (ā) : ā ∈ O∗} can be described by some
OOM (Rm, {τa}a∈O, w0), a triple of the m-dimensional Euclidean space Rm, an O-
indexed family {τa}a∈O of square matrices of order m and an initial vector w0 ∈ Rm,
via the fundamental equation of OOMs:

P (ā) = 1T

mτan
· · · τa2

τa1
w0 =: 1T

mτāw0 , (∀ā = a1a2 . . . an ∈ O∗) (1)

where 1m denotes the m-dimensional column vector of units and τā the reversed
product τan

· · · τa2
τa1

for any sequence ā = a1a2 . . . an in O∗.

Equivalent OOMs and minimal OOMs. An LDP can be modeled by different
OOMs through (1). So the whole family of OOMs can be divided into a number of
equivalence classes such that OOMs in the same class describe the same process. An
OOM is said to be minimal if it has the least model dimension m in its equivalence

4

class. The following proposition gives us a complete algebraic characterization of
the class of minimal OOMs and stationary minimal OOMs (i.e., minimal OOMs for
stationary LDPs).

Proposition 1 A triple (Rm, {τa}a∈O, w0) is a minimal OOM of some LDP if, and
only if,

(a) the starting vector w0 has components sum 1, i.e., 1T
mw0 = 1;

(b) the sum of all τa’s has column sums 1, i.e., 1T
m

∑

a∈O τa = 1T
m;

(c) 1T
mτāw0 ! 0 for any sequence ā = a1 . . . an in O∗;

(d) the two sets of vectors {τāw0 : ā ∈ O∗} and {τT
ā 1m : ā ∈ O∗} both

span the space Rm.

Furthermore, a minimal OOM (Rm, {τa}a∈O, w0) describes a stationary LDP if and
only if

(e) µw0 = w0, where µ is the sum of all τa’s, µ :=
∑

a∈O τa.

The reader is referred to the discussion in Section 14.5 (pp.426–428) of (Jaeger et al.,
2005) for an indirect proof of this proposition and, more importantly, for an algebraic
procedure for converting a given OOM to its equivalent minimal OOM. So in the
sequel we may, and do, only consider minimal OOMs.

By definition, two OOMs are equivalent if they describe the same LDP. Here a
natural and basic mathematical problem is to determine whether or not two given
(minimal) OOMs are equivalent. By the definition of minimal OOMs, if two OOM
models are of different dimensions, they are not equivalent. We can therefore assume
the two OOMs whose equivalence we wish to ascertain both are minimal and have
the same dimension. For this case, the answer to the equivalence problem is given
in the following equivalence theorem.

Proposition 2 Two minimal OOMs (Rm, {τa}a∈O, w0) and (Rm, {φa}a∈O, u0) are
equivalent if and only if there exists a nonsingular matrix $ ∈ Rm×m, satisfying

(a) $w0 = u0;
(b) $τa$−1 = φa for all a ∈ O;
(c) 1T

m$ = 1T
m, i.e., the matrix $ has column sums 1.

See Section 5 of (Jaeger, 2000b) for the proof. This proposition plays a central role
in the derivation of the learning equation and the basic algorithm.

The learning equation. Equation (1) allows us to compute the probability dis-
tribution {P (ā) : ā ∈ O∗} of a LDP from its OOM (Rm, {τa}a∈O, w0). Next we
discuss the reverse problem, viz. reconstructing the model parameters in the matri-
ces τa and in the starting vector w0 from the distribution {P (ā) : ā ∈ O∗}. This
can be done as follows.

Assume (Xn) is a LDP with probability distribution specified, via (1), by the
minimal OOM (Rm, {τa}a∈O, w0). We select two sets of sequences from O∗, say
{ā1, ā2, . . . , ār} and {b̄1, b̄2, . . . , b̄r}, called indicative strings and characteristic strings,

5

respectively. In general, the number of indicative strings and of characteristic strings
can be different, but to simplify the notation here we assume both sets have r
(r $ m) members. This will not affect the generality of the discussion below.
Assume furthermore these strings are chosen such that the following two matrices

Π :=







1T
mτb̄1
...

1T
mτb̄r






, Φ :=

[

τā1
w0 . . . τār

w0

]

(2)

both are of rank m — the condition (d) from Proposition 1 makes this possible; and
such that Π has column sums 1: 1T

r Π = 1T
m. We further define the r × r probability

matrices V and W a with their (i, j)-th entry given by

V :=
[

P (āj b̄i)
]

i,j=1,2,...,r
, W a :=

[

P (ājab̄i)
]

i,j=1,2,...,r
, (3)

where the observable a runs over the alphabet O; and āj b̄i (ājab̄i) denotes the
concatenation of āj (and a) and b̄i. By (1) one easily verifies that the matrices
defined in (2) and (3) are related by V = ΠΦ and W a = ΠτaΦ. Since Π, Φ both are
of full rank m, we can construct C ∈ Rm×r and Q ∈ Rr×m, called the characterizer
and the indicator respectively, such that 1

(i) 1T
mC = 1T

r , i.e., C has column sums 1;
(ii) CΠ and ΦQ both are nonsingular matrices (of order m).

Now let $ = CΠ, then 1T
m$ = 1T

m (as 1T
mC = 1T

r and 1T
r Π = 1T

m) and

CW aQ = CΠτaΦQ = $τa$−1CΠΦQ = ($τa$−1)(CV Q) .

This equation together with the equivalence theorem (Proposition 2) allows us to
reconstruct the whole equivalence class of the original OOM (Rm, {τa}a∈O, w0) from
the underlying distribution, via the formula

τ̃a(C, Q) := $τa$−1 = (CW aQ)(CV Q)−1 (4)

by using different characterizer-indicator pairs (CIPs) (C, Q). The formula (4) is
called the learning equation.

The initial state w0 can be reconstructed in an analogous way. Let v0 be the
r-dimensional column vector with i-th component P (b̄i), then v0 = Πw0. By the
equivalence theorem, the initial state of the OOM with observable operators as in
(4) is given by w̃0(C, Q) = $w0 = CΠw0 = Cv0. But for stationary processes, one
should calculate the initial state from the conditions (a) and (e) of Proposition 1,
i.e., by solving the linear system {1T

mw0 = 1, (µ − Im)w0 = 0} 2 , where Im is the

1Our definition of characterizers is a little different from that of (Jaeger et al., 2005).
2This is not an overdetermined system and so has at least one solution w0 (which in general is

also unique), since the matrix µ − Im =
∑

a∈O
τa − Im has column sums 0 (see condition (b) of

Proposition 1) and hence is of rank less than m (usually m−1). If the solutions w0 are not unique
(very rarely), one may, e.g., pick one such w0 with minimal norm.

6

identity matrix of order m. To simplify the problem, in the following we always
assume that the process we want to model is stationary and ergodic.

We point out two facts concerning the learning equation (4).

1. In (Jaeger et al., 2005), the learning equation has a different form: τ̃a =
(CW a)(CV)†, where (·)† denotes matrix pseudo-inverse. This actually is a
special case of (4), for we can get the former by putting Q = (CV)† in the
latter.

2. In the derivation of (4), a condition on the characteristic strings b̄i is that they
should make the matrix Π have column sums 1. This means b̄i’s should “cover”
some Ok, the set of sequences of length k. For instance, assume O = {a, b},
then {a, ba, bba, bbb} covers O3 in the sense that a covers all strings {a ∗ ∗} =
{aaa, aab, aba, abb} and ba covers {ba∗} = {baa, bab}; thus {a, ba, bba, bbb} is
admissible as the set of characteristic strings. It is not necessary for indicative
strings to have this property.

The basic learning algorithm. In practical modeling tasks, the distribution
of the process is unknown. The typical situation is that we only know one (or
several) finite instantiations of the target process — the training sequence(s); and
are required to estimate an OOM that approximately models the process. In this
article, we will restrict ourselves to the following task: learn an OOM of known
dimension m from a finite sequence s̄ = s1s2 . . . sl which is assumed to be procured
by a stationary and ergodic process.

For ergodic processes, the probability P (ā) of a certain sequence ā can be (asymp-
totically) approximated by the following fraction:

P̂ (ā) =
number of occurrences of ā in s̄ = s1s2 . . . sl

l + 1 − the length of ā
. (5)

So one may approximate the probability matrices V and W a’s by

V ∗ =
[

P̂ (āj b̄i)
]

i,j=1,2,...,r
, W ∗

a =
[

P̂ (ājab̄i)
]

i,j=1,2,...,r
, (6)

respectively. The matrices V ∗ and W ∗
a are called (normalized) counting matrices,

since they are obtained by counting the number of occurrences of specific strings in
the training data.

The basic algorithm can now be summarized as follows.

1. Fix the indicative/characteristic strings {āj}j=1,2,...,r and {b̄i}i=1,2,...,r.

2. Estimate the probability matrices from the sequence s̄ as in (5) and (6).

3. Design an appropriate CIP (C, Q) in some way.

4. Evaluate an OOM by the learning equation (4) but with all probability ma-
trices replaced by their approximation (6), i.e.,

τ̂a = (CW ∗
aQ)(CV ∗Q)−1 . (7)

7

As is well known in statistics, the counting matrices given by (6) converge with
probability 1 to the corresponding probability matrices when the length of training
data tends to infinity. Thus, the basic algorithm is asymptotically correct provide
that the training sequence s̄ were indeed procured by an m-dimensional minimal
OOM in the first place. This means the target model can be perfectly recovered (up
to its equivalence class) almost surely in the limit of inifinite-size training data.
A note on the counting matrices. Step 1 of the basic algorithm (which de-
termines the counting matrices) leaves much freedom. For the selection of indica-
tive/characteristic strings, a natural brute-force way is to take the alphabetical
enumeration of Ok with k sufficiently large as {āj}j=1,...,r and {b̄i}i=1,...,r. This from
one point of view is also the best choice, for it collects the frequencies of all possible
sequences of length 2k (in V ∗) and 2k+1 (in W ∗

a’s). The major disadvantage of this
method is resource inefficiency: it leads to very large (r = %k) and very sparse count-
ing matrices, since most strings from {āj b̄i}i,j=1,2,...,r or {ājab̄i}i,j=1,2,...,r will never
occur in the training sequence(s). Nevertheless, this obstacle can be overcome by
using a compact suffix tree (CST) representation of the training sequence (Gusfield,
1997).

CSTs provide a compact representation of all sub-strings of a given sequence, say
s̄. They also serve as an efficient data structure for exposing the internal structure
of s̄. Moreover, given the sequence s̄, the CST of s̄ can be constructed in linear
time O(|s̄|), where |s̄| denotes the length of s̄ (Ukkonen, 1995). For our particular
case here, CSTs enable us to exploit characteristic/indicative strings of all possible
lengths simultaneously; and to construct the compressed counting matrices (i.e.,
the above mentioned large sparse counting matrices but with all zero-columns/rows
removed) efficiently.

An introduction to CSTs and how they are utilized to construct the counting
matrices falls outside the scope of this paper, for which the reader is referred to
(Jaeger et al., 2005). Here we only make two remarks to clarify the error controlling
learning procedure.

1. In the EC algorithm, CSTs are used only in the first step as an efficient tool
(linear time complexity) for constructing counting matrices.

2. The counting matrices obtained by CSTs are essentially identical to those
obtained by the brute-force method: one counts all strings of given length(s)
in the training sequence and then discards those zero columns/rows from the
resulting (extremely sparse) matrices.

3 The Error Controlling Algorithm

Now assume that we have gotten the counting matrices V ∗ and W ∗
a (from a finite

training sequence). The major problem that remains is how to design a proper CIP
(C, Q) for the estimation (7). An insightful choice should embody answers to the
following questions:

8

- What is the influence on the final model quality of the statistical errors in
counting matrices caused by finite training data?

- How can we control or minimize detrimental effects of statistical fluctuations
in the counting matrices?

We solve this problem in two steps: first an upper bound of the estimation error of
the basic algorithm is derived, then a numerical method for minimizing this error
bound is introduced.

3.1 Error Analysis of The Basic Algorithm

To investigate the influence of statistical errors in the counting matrices V ∗ and
W ∗

a on the estimated model parameters τa, we stack all τa’s one above another to
form the tall matrix τ = [τa1 ; . . . ; τa!] (in Matlab’s notation). In the same way we
construct three more matrices τ̂ , W and W ∗ from τ̂a’s, W a’s and W ∗

a’s, respectively.
Then the learning equation (4) and its perturbed version (7) can be rewritten as

τ = (CbigWQ)(CV Q)−1 , τ̂ = (CbigW
∗Q)(CV ∗Q)−1 , (8)

with Cbig := diag{C, . . . , C} (% copies of C). We further define EV := V − V ∗ and
EW := W −W ∗ to be the error matrices of V and W , respectively. We now address
the question of how we can quantify the influence of the perturbations EV and EW

on the estimation τ̂? The answer to this question is summarized in the following
proposition.

Proposition 3 For any matrix A we use ‖A‖ to denote its Frobenius norm ‖A‖ :=
√

tr(ATA). In (8) assume that ‖EV ‖ " δV , ‖EW‖ " δW and define the quantity
κ = ‖C‖ ·‖Q(CV ∗Q)−1‖. Then the estimation τ̂ obtained by the basic algorithm has
the relative error ‖τ−τ̂‖

‖τ‖ " κ(δV + %δW), where % is the alphabet size.

Proof: It follows from (8) and the definition of EV , EW that

τ = (CbigW
∗Q + CbigEW Q)(CV ∗Q + CEV Q)−1

= (CbigW
∗Q + CbigEW Q)(CV ∗Q)−1(Im + CEV Q(CV ∗Q)−1)−1

= [τ̂ + CbigEWQ(CV ∗Q)−1](Im + CEV Q(CV ∗Q)−1)−1 ,

which further implies τ + τCEV Q(CV ∗Q)−1 = τ̂ + CbigEW Q(CV ∗Q)−1.

It is now clear that ‖τ − τ̂‖ " κ(δV ‖τ‖ + δW ·
‖Cbig‖
‖C‖).

But by the definition of Cbig,
‖Cbig‖
‖C‖ =

√
%; and by the condition (b) from Proposition

1, τ has column sums 1 and hence ‖τ‖ ! 1√
!
, with equality if and only if all entries

of τ equal to 1
m!

. Thus, ‖τ−τ̂‖
‖τ‖ = κ(δV +

√
!

‖τ‖δW) " κ(δV + %δW). #

Proposition 3 is the main theoretical result of this paper. It offers a deep insight
into the relation between the error in counting matrices and the relative error in

9

estimated model parameters, which procures the theoretical foundation of our EC
algorithm. Intuitively, the error in counting matrices (measured by ‖δV + %δW‖)
will be magnified by a factor of at most κ in estimated models when the basic
algorithm is employed. Thus, the quantity κ measures the robustness or stability
of the learning algorithm and can be used as a criterion for choosing optimal CIPs.
More concretely, in the EC algorithm we design the optimal CIP (C0, Q0) by solving
the optimization problem

minimize κ = ‖C‖ · ‖Q(CV ∗Q)−1‖ subject to 1T

mC = 1T

r . (9)

As the quantity κ plays such an important role in the EC algorithm, we will give it
a special name: the robustness indicator. The problem is now reduced to how can
we minimize the robustness indicator efficiently, which will be discussed in the next
subsection.

3.2 Minimizing The Robustness Indicator

This subsection introduces a fast numerical method for the optimization problem (9).
First, we note that adding the extra constraint CV ∗Q = Im in (9) will not change
the minimal value of κ. To see this, assume that in the problem (9) κ obtains the
minimal value at the CIP (C1, Q1). Put C2 = C1 and Q2 = Q1(C1V

∗Q1)−1, then one
can easily verify that κ(C1, Q1) = κ(C2, Q2) and that C2V

∗Q2 = Im. So (C2, Q2) is
a minimizer of κ which satisfies the constraint CV ∗Q = Im. This means the problem
(9) is essentially equivalent to

min
C,Q

{

‖C‖ · ‖Q‖ : 1T

mC = 1T

r , CV ∗Q = Im

}

. (10)

We shall use a ping-pong method to solve this equivalent problem: alternatively fix
one of the matrices C and Q and calculate the other so that (10) is minimized.
This results in two optimization problems with quadratic target and linear equality
constraint(s), for either case (of C or Q being fixed). Such problems usually have a
unique analytical solution that can be easily obtained by solving the corresponding
Karush-Kuhn-Tucker (KKT) system (Kuhn and Tucker, 1951), as shown below.

If C is fixed such that 1T
mC = 1T

r , then the optimization problem (10) is reduced
to minQ{‖Q‖ : CV ∗Q = Im}, which is further equivalent to

min
Q

{

1
2 tr(QTQ) : CV ∗Q = Im

}

, (11)

since ‖Q‖ =
√

tr(QTQ). Similarly, when Q is fixed and satisfies 1T
r V ∗Q = 1T

m,
which is deduced from the facts 1T

r = 1T
mC and CV ∗Q = Im, we get

min
C

{

1
2 tr(CTC) : 1T

mC = 1T
r , CV ∗Q = Im

}

. (12)

10

Both (11) and (12) are convex quadratic programming problems, with their mini-
mizer Qmin and Cmin uniquely determined by the corresponding KKT system:

{

Q = (CV ∗)TΛ
Im = CV ∗Q

,







C = Λ(V ∗Q)T + 1mλT

Im = CV ∗Q
1T

r = 1T
mC

,

respectively, where Λ ∈ Rm×m and λ ∈ Rr are Lagrange multipliers. It follows from
the above equations that (by mechanical computation)

if C is fixed, Qmin = (CV ∗)† ;
if Q is fixed, Cmin = (Im − 1

m
1m1T

m)(V ∗Q)† + 1
m
1m1T

r .
(13)

We therefore get an iterative procedure for the problem (10), as outlined in Al-
gorithm 1. Intuitively, the algorithm starts with an arbitrary characterizer C and
iteratively calculates the new indicator Q and characterizer C by (13), until the
robustness indicator κ converges. From the above discussion one easily sees that
the sequence of κ’s obtained by Algorithm 1 is monotonically decreasing (and lower
bounded by 0), so the convergence of κ is guaranteed. Notice that, although each
of the two minimizations in (13) is globally optimal, the overall iterative procedure,
in general, converges only to a local minimum of κ. This, however, has no bearing
on the asymptotic correctness of the resulting OOM estimation.

Algorithm 1: An iterative method for minimizing (10)

Input: the counting matrix V ∗ ∈ Rr×r, an initial characterizer C(0) ∈ Rm×r,
the termination threshold δ (typical value: 10−6–10−4);

C = (Im − 1
m
1m1T

m)C(0) + 1
m
1m1T

r ; // force C to have column sums 11

Q = (CV ∗)†;2

κ = ‖C‖ · ‖Q‖;3

repeat4

κ0 = κ;5

C = (Im − 1
m
1m1T

m)(V ∗Q)† + 1
m
1m1T

r ;6

Q = (CV ∗)†;7

κ = ‖C‖ · ‖Q‖;8

until κ0 − κ < δ ;9

Output: the minimizer (C, Q) of the problem (10);

The computational complexity of Algorithm 1 is dominated by the evaluation
of the pseudo-inverse of CV ∗ and V ∗Q. By their construction — C is randomly
initialized and then Q, C are updated by (13), the two matrices CV ∗ and V ∗Q are
(typically) not too ill-conditioned; so here we can get the pseudo-inverses (CV ∗)†

and (V ∗Q)† by solving the well-known Wiener-Hopf equations

(CV ∗)†(CV ∗)(CV ∗)T = (CV ∗)T , (V ∗Q)T(V ∗Q)(V ∗Q)† = (V ∗Q)T ,

11

respectively, which is computationally much cheaper than calculating the pseudo-
inverse directly. As (CV ∗)(CV ∗)T and (V ∗Q)T(V ∗Q) both are positive-definite and
symmetric, we can use the Cholesky decomposition method to solve the above two
Wiener-Hopf equations. Therefore, the complexity of solving one such Wiener-Hopf
equation is O(mr2 + 5

6m
3 + m2r). In more detail, computing CV ∗, (CV ∗)(CV ∗)T,

the Cholesky decomposition (CV ∗)(CV ∗)T = LLT and (CV ∗)† = (CV ∗)T(LT)−1L−1

will cost O(mr2), O(1
2m

3) (the resulting matrix is symmetric), O(1
3m

3) and O(m2r)
flops, respectively. Noting the fact that r $ m, we conclude the total cost of
Algorithm 1 is about O(2Kmr2), where K is the number of iterations.

3.3 The Error Controlling Algorithm

Based upon the above discussion, we can now outline the EC algorithm for training
OOMs, as in Algorithm 2. One sees an efficient variant to the algorithm based on
the following two facts. First, as discussed at the end of Section 2, one may (and
is recommended to) use the compressed counting matrices obtained from the CST
of s̄ in place of the corresponding normalized matrices V ∗ and W ∗

a’s. Second, in (5)
the normalization of P̂ (ā) by the denominator l + 1 − |ā| is actually unnecessary,
provided that one keeps the same counting factor for all entries of V ∗ and W ∗

a. That
is, instead of counting a string ā in the whole training sequence s̄ = s1s2 . . . sl, we
would count it only in s1s2 . . . sl−d, where d is a variable integer determined by the
requirement that the denominator in (5) (now it becomes l + 1 − d − |ā|) are same
for all strings exploited by the counting matrices.

Algorithm 2: The error controlling algorithm
Input: the training sequence s̄ = s1s2 . . . sl, the model dimension m, the

length k of characteristic/indicative strings;
construct the normalized counting matrices V ∗ and W ∗

a’s as in (6) with1

{āj}r
j=1 and {b̄i}r

i=1 both being an enumeration of Ok;
design the optimal CIP (C, Q) using Algorithm 1;2

for each a ∈ O, compute τ̂a = (CW ∗
aQ)(CV ∗Q)−1 = CW ∗

aQ;3

// by Algorithm 1, we know CV ∗Q = Im

evaluate the initial state ŵ0 from the equations 1T
mŵ0 = 1 and4

(
∑

a∈O τ̂a)ŵ0 = ŵ0;
Output: the learnt OOM (Rm, {τ̂a}a∈O, ŵ0);

The major computational cost of the EC algorithm includes the design of the
optimal CIP (C, Q) and the estimation τ̂a = CW ∗

aQ. Hence, the overall complexity
of EC is O((2K + %)mr2), where K is the number of iterations in Algorithm 1 and
% the alphabet size.

We conclude with some important observations concerning the EC algorithm:

- In Algorithm 2, the length k of characteristic/indicative strings is fixed. This
might be suboptimal since it exploits only the statistics of substrings of length

12

2k (in V ∗) and 2k + 1 (in W ∗
a’s). To overcome this problem, one may either

employ variable-length characteristic/indicative strings or increase the value of
k. Note that using variable-length strings is essentially equivalent to increasing
k (for we can fix k to be the maximal length of āj ’s and b̄i’s).

- Larger values of k will not increase the complexity of the algorithm, for the
compressed counting matrices actually will not grow too much when the value
of k increases. So the efficiency of the EC algorithm is guaranteed. Moreover,
we found in our numerical experiments that small k (k should satisfy %k ! m or
%k−1 ! m) often works better. One possible reason for this is that for small k
we can collect more (counting) data from training sequences and get counting
matrices with smaller statistical error 3 .

- Like the ES algorithm, EC does not solve the so called negative probability
problem: the condition (c) from Proposition 1 might be violated by the esti-
mated model. In other words, the model learned by EC may assign “negative
probabilities” P̂ (ā) = 1T

mτ̂āŵ0 < 0 to some rare sequences ā ∈ O∗. How-
ever, this nuisance can be effectively avoided by using the heuristic method
presented in Appendix J of (Jaeger et al., 2005).

4 Numerical Experiments

This section is intended to test the performance of the EC algorithm as described
above through two sets of symbolic sequence modeling experiments: modeling a
quantized logistic system and modeling several partially observable Markov decision
processes (POMDPs) that have been extensively used as benchmark tasks in the
literature 4 .

Modeling the symbolic logistic system. In the first set of experiments we shall
learn OOMs from a complex dynamical system: the quantized logistic system, whose
continuous space dynamics is characterized by the mapping xn+1 = rxn(1 − xn).
For r = 4 and initial values x0 ∈ (0, 1), the continuous system shows strong chaotic
behavior (with Lyapunov exponent λ = ln 2) in the attractor set (0, 1) 5 . A partition
of the interval (0, 1) into 16 equidistant sub-intervals yields an alphabet of 16 symbols
and a 16-ary symbolization, converting the continuous-valued sequence (xn) into a
symbolic one.

The overall procedure of our simulation is as follows: (1) 20 sequences — each
of length 30000 — are procured from the above symbolic logistic system; (2) from

3Theoretically speaking, there is a trade-off here, for small values of k may fail to discover long-
term dependence in the process; and more investigations are needed to understand this problem
thoroughly.

4We got these POMDPs from http://www.cs.brown.edu/research/ai/pomdp/.
5See, e.g., http://tcode.tcs.auckland.ac.nz/~corpus/logistic.html

13

http://www.cs.brown.edu/research/ai/pomdp/
http://tcode.tcs.auckland.ac.nz/~corpus/logistic.html

each such sequence a matrix model (OOM or HMM) of dimension m is estimated;
(3) the quality of the learnt model is then examined on the other 19 sequences. Here
the quality of learnt models is measured by its normalized log-likelihood (NLL) on
the testing data, which is defined by

NLL(A, S) :=
1

S#

∑

ā∈S

log! P (ā|A)

length of ā
. (14)

In the above definition, % is the alphabet size; A represents the learnt model whose
quality we want the examine; S is the test dataset; and S# denotes the number of
sequences in S — for the specific case here we have S# = 19.

One easily sees that NLL(A, S) may assume values from −∞ to 0, and that
higher NLL-values indicate better estimated models. Intuitively, the quantity %NLL

represents the average probability that the learnt model predicts the next symbol
correctly, which for a randomly-guessing machine takes the value 1/% (corresponding
to NLL = −1). On the other hand, for the “true” model A∗ that produces the data
S, the quantity NLL(A∗, S) can be seen as a statistical approximation of the negative
entropy rate of A∗ (under the base-% logarithm):

−h(A∗) := lim
k→∞

1

k

∑

ā∈Ok

P (ā|A∗) log! P (ā|A∗). (15)

Thus, generally speaking, models estimated by a practical learning algorithm typi-
cally have NLL-values from −1 (a model worse than the randomly-guessing machine
is unacceptable) to −h(A∗) (one should not expect a model better than the true one).

In particular, here one should note that, while the continuous equation of the
logistic motion is rather simple, the symbolic dynamics are not, with deep serial
dependence among consequent symbols. In fact, according to Pesin’s identity (Pesin,
1977), the Kolmogorov-Sinai entropy of the logistic map is equal to its Lyapunov
exponent: hKS = ln 2 (nats) = 1 (bit). Intuitively, this means even when the entire
history of the process is known, there remains still on average 1 bit uncertainty in
the next output. Therefore, under the logarithm of base % = 16, the test NLL of
− log! 2 = −0.25 represents the upper limit that a learning algorithm can reach.

To assess the performance of the EC algorithm, we compared EC-learned OOMs
with HMMs of the same dimension trained by the EM algorithm from the same
dataset. There are two kinds of HMMs: the state-emission HMMs (SE-HMMs), in
which the symbol is “emitted” by the hidden states; and the transition-emission
HMMs (TE-HMMs), in which the symbol emitted at time t depends on the hidden
states at times t and t+1 (Bourlard and Bengio, 2002). Note that, a TE-HMM can
be seen as an OOM with nonnegative parameters; whereas a SE-HMM has fewer
parameters than an OOM of the same dimension. So, to be fair, we shall compare
the performance of OOMs with that of TE-HMMs. We also trained OOMs using the
basic algorithm (with the matrices C and Q randomly created) and the efficiency
sharpening algorithm, for comparison.

14

Before reporting the experimental results we need to clarify some universal set-
tings applied in all experiments.

- As mentioned before, EC and ES might learn an invalid OOM from data in
that it may produce “negative probabilities” P̂ (ā) = 1T

mτ̂āŵ0 < 0 on some
sequences ā ∈ O∗. So the heuristic method described in Appendix J of
(Jaeger et al., 2005) is employed to evaluate test NLLs of learnt OOMs in
all numerical experiments.

- For OOMs learning the length of characteristic/indicative strings is set to be
k = 5. For the estimation of HMMs, the EM algorithm is stopped when the
increasing of the training NLL-value between two subsequent EM-iterations is
less than δ = 10−4 for consecutive 5 times.

- As in (Jaeger et al., 2005), the ES algorithm is terminated after 10 iterations
(ES does not have an explicit termination condition); and the estimated model
with highest training NLL (each ES-iteration creates an optimal characterizer
C, which gives us the estimation τ̂a = (CW ∗

a)(CV ∗)†; so there are 10 such
models) is selected as the final output of ES.

In sum, in this set of experiments 20 sequences of length 30K were procured,
from each of which three OOMs, one SE-HMM and one TE-HMM of dimensions
m ∈ {5, 10, . . . , 30, 40, . . . , 70} were learned; and the test NLL of the learnt models
was then computed on the other 19 sequences. Collecting these test NLLs, we get
naturally five 20 × 10 matrices of NLL-values. Figure 1 shows the mean value and
the standard deviation of test NLLs of the learnt models. The total CPU-time (all
algorithms are programmed in Matlab and implemented on a Pentium-M 1.73 GHz
laptop) costed for learning these models is depicted in Fig. 2.

a.
0 10 20 30 40 50 60 70

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

model dimension

m
ea

n
va

lu
e

of
 te

st
 N

LL
s

OOM (basic)
OOM (EC)
OOM (ES)
SE−HMM (EM)
TE−HMM (EM)

b.
0 10 20 30 40 50 60 70

10−4

10−3

10−2

10−1

model dimension

st
an

da
rd

 d
ev

ia
tio

n
of

 te
st

 N
LL

s

OOM (basic)
OOM (EC)
OOM (ES)
SE−HMM (EM)
TE−HMM (EM)

Figure 1: The mean value (a.) and the standard deviation (b.) of test NLLs of
HMMs and OOMs on symbolic logistic sequences. The dotted black line in the left
figure represents the upper bound of test NLLs.

We collected observations obtained from the results in the following list.

15

0 10 20 30 40 50 60 70
100

101

102

103

104

105

model dimension

to
ta

l t
ra

in
in

g
tim

e
(s

ec
)

OOM (basic)
OOM (EC)
OOM (ES)
SE−HMM (EM)
TE−HMM (EM)

Figure 2: Total CPU-time for learning HMMs and OOMs.

- OOMs trained by EC and ES have nearly the same test NLLs (ES is slightly
better) on all datasets and for all model dimensions (except those for which
ES becomes instable, see below); which are significantly higher than that of
OOMs trained by the basic algorithm, indicating that to design a proper CIP
(C, Q) is indeed the key step of the OOM learning procedure and of crucial
importance to get an efficient and robust algorithm. This is also confirmed by
the considerable difference of the testing NLL-deviation between the EC/ES
trained models and those learnt by the basic algorithm.

- For high model dimensions (m ! 30), the ES algorithm becomes numerically
instable, due to the bad condition of OOM’s learning equation (4). This issue
might be overcome by using a carefully designed initial characterizer C (e.g.,
one may consider using EC to get a proper initial model), which however is
not the topic of this paper.

- OOMs trained by EC/ES show, compared to EM-trained HMMs, higher test
NLLs for all model dimensions, reflecting the fact that stochastic processes that
can be described by HMMs can also be captured by OOMs. Furthermore,
with the increase of model dimension m, the test NLLs of EC/ES-trained
OOMs quickly approaches (at m = 20) the best possible value −0.25, which is
obtained only for higher-dimensional (m ! 60) HMMs; reflecting the fact that
OOMs usually provide more compact representations of stochastic processes
than HMMs.

- While the NLL-deviation of EM-trained HMMs vary in a quite large range
(from 10−4 to about 0.1), the same quantity of OOMs trained by EC and ES

16

constantly remain at a low level (" 0.01) for most situations, demonstrating
the statistical efficiency of EC and ES.

- Compared to EC, for low dimensional models ES might be statistically more
efficient, as revealed by Fig. 1; however, as mentioned earlier, this slight
advantage of ES could be quickly annihilated by its numerical instability when
the model dimension m increases. In other words, EC is numerically more
stable than ES, while still showing comparable efficiency.

- After getting nearly the best testing NLL-value (−0.25) at model dimension
m = 20, the EC algorithm, contrary to most other machine learning algo-
rithms, does not overfit the training data when the model dimension m in-
creases. Remarkably, the test NLLs of EC stay stably at an almost constant
(high) mean value and (low) deviation for m ! 20.

- Last but not least, the EC algorithm is about 100 times faster than EM and
10 times faster than ES. This is however not entirely fair to ES, for in the
experiments ES is forced to run 10 iterations. But still, even if we only run 2
ES-iterations, EC is faster than ES.

Modeling several POMDPs. In this set of experiments we want to compare the
performance of EC/ES-learned OOMs to that of predictive state representations
(PSRs) (Littman and Sutton, 2001) trained by methods that have recently been
developed in that field.

First we would like to point out the relationship between OOMs and PSRs. PSRs
are a class of models of discrete, stochastic input-output systems, which generalizes
from partially observable Markov decision processes (POMDPs) like OOMs gener-
alize from HMMs. PSRs have been partly inspired by OOMs but have developed a
representation format for input-output processes which is different from the format of
input-output OOMs described in (Jaeger, 1998). Developing learning algorithms and
specialized variants of PSRs is an active area of research (McCracken and Bowling,
2005; Wolfe et al., 2005; Bowling et al., 2006; Rudary and Singh, 2006; Wolfe, 2006;
Wingate and Singh, 2007). However, as shown by the empirical results of our exper-
iment, all learning algorithms available today for PSRs are statistically inefficient
(compared to OOMs learning). Therefor, it is desirable to extend the methods of
the EC and ES algorithms to PSRs and input-output OOMs, which constitutes a
current line of research in our group.

To make the comparison between PSRs and OOMs possible (note that PSRs are
models for input-output systems, while OOMs are models for output-only systems),
we use the same seven POMDPs as in (Wolfe et al., 2005) to produce training/test
datasets; and follow the experimental settings therein. More concretely (from here
on we shall use notations that are commonly used in the PSR literature),

- As is commonly done in the PSR field, the input policy is simply to choose an
action a at each time step from a uniform random distribution (over the input

17

alphabet A). So the training/test sequences have the form a1o1a2o2 . . . aNoN ,
a sequence of alternating actions ai ∈ A and observations oi ∈ O.

- For each of the POMDP domains, we train OOMs on (input-output) training
sequences of varying lengths ranging from N = 103 to N = 107 using the
EC/ES algorithm, as follows. We (naively) regard each combination (aioi) of
an action ai and its immediate observation oi as a single symbol si from the
alphabet S = A × O; and then train an OOM from the sequence s1s2 . . . sN

(the length of characteristic/indicative strings is set to be k = 2).

- The learnt models are evaluated by their average one-step prediction error E
on testing sequences of length N = 104 (the format that has been used for
assessing the main PSR algorithms):

E =
1

N

N−1
∑

i=0

1

|O|
∑

o∈O

[

P (o|hia
i+1) − P̂ (o|hia

i+1)
]2

,

where P is the correct probability (computed using underlying POMDPs)
and P̂ the model prediction for the next observation given the testing history
hi = a1o1 . . . aioi and the action ai+1. For learnt OOMs (over S = A × O) we
compute the above predicting probabilities P̂ (o|hiai+1) by

P̂ (o|hia
i+1) =

P̂ (ai+1o|hi)

P̂ (ai+1|hi)
=

P̂ (ai+1o|hi)
∑

o′∈O P̂ (ai+1o′|hi)
. (16)

Note that such a comparison is already a little unfair to OOMs learning, since here
we are using input-output systems as testing tasks while OOMs are output-only
models and only a straightforward transformation (16) is applied.

The results are given in Fig. 3, in which the average one-step prediction er-
ror E (y-axis) is shown for increasing training sequence lengths (x-axis). The
seven POMDP domains (from Fig. 3-a. to 3-g.) are named: “bridge”, “cheese”,
“maze4x3”, “network”, “paint”, “shuttle” and “tiger”. As a comparison measure,
we also presented the PSR learning performance in the figure. These PSR curves are
taken from recent publications, which include: PSR-SH (suffix history), PSR-TD
(temporal difference) and POMDP-EM are from (Wolfe et al., 2005); the “Gra-
dient” method (only those results for training sequences of length 107 are avail-
able) is from (Singh et al., 2003); PSR-ODL (online discovery and learning) is from
(McCracken and Bowling, 2005) and PSR-ADL (algorithm for discovery and learn-
ing, which is essentially a Monte Carlo method and very inefficient: the training
sequence length here is much larger than 107) is from (James and Singh, 2004).

The main conclusion that we can draw from the figure is that basically the EC
and ES algorithms both perform very well on all learning tasks when compared
with PSR learning algorithms (especially in the domains “bridge”, “maze4x3” and
“shuttle”), illustrating that OOM learning is more efficient than PSR learning. In
addition, several more detailed observations are of interest:

18

a. 103 104 105 106 10710−5

10−4

10−3

10−2

10−1

100
bridge

b. 103 104 105 106 107

10−6

10−4

10−2

cheese

c. 103 104 105 106 10710−5

10−4

10−3

10−2

10−1
maze4x3

d. 103 104 105 106 10710−4

10−3

10−2

10−1
network

e. 103 104 105 106 107

10−6

10−4

10−2

paint

f. 103 104 105 106 10710−5

10−4

10−3

10−2

10−1
shuttle

g. 103 104 105 106 107

10−6

10−4

10−2

tiger

103 104 105 106 107

10−6

10−4

10−2

100

 PSR−SH

PSR−TD

POMDP−EM

Gradient

PSR−ODL

PSR−ADL

OOM−EC

OOM−ES

Figure 3: Empirical results of the EC/ES algorithm in comparison to various PSR
learning algorithms on seven POMDP benchmark problems.

19

- Neither EC nor ES defeats the respective other in all domains (EC wins in
the “paint” and “tiger” domains, but is not match for ES in the “bridge” and
“maze4x3” domains; and they show essentially the same performance in the
other three domains). Therefore, it is fair to say that EC and ES are at the
same level when considering their statistical efficiency. However, we would
emphasize again that ES is much slower than EC in the experiment.

- The OOM learning algorithms show the “near-log-linear” relation between
the length N of training sequences and the prediction error E — which means
E ≈ αN−β (α, β > 0) — in all domains except for the “cheese” domain. This
partly demonstrates that EC/ES is (1) asymptotically correct (since E → 0
when N → ∞) and (2) statistically efficient (since the convergence of E to 0
is polynomially fast).

- In the “cheese” domain, the prediction error E does not decrease any more
when N ! 105. The (possible) reason is that the characteristic/indicative
string length k = 2 is too small to capture all relevant statistics. We therefore
increase the value of k by 1 and do the simulation again. Figure 4 shows the
empirical results, from which we see the desired property of OOM learning.

103 104 105 106 107

10−6

10−4

10−2

cheese

Figure 4: Learning results of the EC/ES algorithm in comparison to various PSR
learning algorithms on the “cheese” domain with k = 3.

5 Conclusions and Future Work

We have derived the Error Controlling (EC) learning algorithm (or rather more cor-
rectly, the EC learning algorithm optimization algorithm) for OOMs, and demon-
strated on synthetic learning tasks that

20

- compared to EM-trained HMMs, the resulting model test accuracy is higher,
the model variance is much lower and the computing time is very much lower;

- compared to ES-trained OOMs, the EC algorithm shows superior stability
(especially for higher model dimensions) with comparable test accuracy, at
faster learning times;

- EC (and ES) compare very favourably to a choice of learning algorithms that
have recently been developed in the PSR field.

Furthermore, we found indications that the EC algorithm enjoys a built-in ro-
bustness against overfitting.

In sum, we find that the EC algorithm recommends itself by a combination of (i)
computational efficiency, (ii) statistical efficiency, (iii) numerical robustness and (iv)
– tentatively – statistical robustness (in the sense of avoiding overfitting). Given
that OOMs are more expressive than HMMs (i.e. can capture processes that HMMs
can’t, and often can capture a HMM-describable process with lower-dimensional
models than HMMs (Jaeger, 2000b)), and given that HMMs are widely applied
(e.g. in speech recognition (Jelinek, 1998) or biosequence analysis (Durbin et al.,
2000)), we believe that the EC algorithm may turn out to be a door-opener for a
new generation of efficient, robust, and expressive learning algorithm for stochastic
symbol sequences. We are however aware of a number of open questions which need
to be addressed before any comprehensive judgements can be made:

- Currently, the EC algorithm is given the desired model dimension and a (fixed)
characteristic/indicative string length as parameters. This will need to be
automated. A heuristic for automatically selecting these parameters based on
purely algebraic criteria is under development.

- The EC algorithm should be generalized to become based on variable-length
subsequence counting statistics, instead of the fixed-length statistics of the cur-
rent version. This would presumably yield a further optimization of statistical
efficiency.

- We currently pursue an approach to replace the iterative “ping-pong” proce-
dure to solve the minimization (10) by a constructive one-step procedure; this
would further speed up the EC algorithm.

- We mentioned in the introduction that the ES algorithm uses a statistical
criterium to optimize the conditioning matrices C and Q, while the EC al-
gorithm uses an algebraic criterium. Interestingly, the resulting statistical
efficiency seems similiar if not identical (for the fixed-length counting statis-
tics based versions of EC and ES). Likewise, while EC functions algebraically
by pulling down a bound on parametric model error (in observable operator
matrices), it effects statistically an optimization of test performance. We cur-
rently have no mathematical understanding of the relationships between the

21

algebraic and the statistical aspects of ES vs. EC, or of the algebraic working
principle vs. the statistical effects. Further mathematical analysis is needed.
For the time being, we have to live (and can live well) with the existence of
two algorithms (ES and EC) which have by and large similar performance
characteristics (though not quite identical), but are derived from conceptually
opposite sides. The existence of this twin pair of algorithms remains for us an
intriguing challenge to understand better the connections between a statistical
vs. an algebraic analysis of the system identification problem. Eventually we
hope to arrive a theoretical unification of the two views. After all, the “heart”
of the very OOM approach is to constitute the theory of stochastic processes
as a subtheory of linear algebra. Here we want to point out that in (Jaeger,
1999) a purely algebraic characterizations of stochastic processes has already
been given; however, this treatment did not include learning aspects.

- Similiarly, further analysis is needed to understand the apparent shieldedness
of EC against overfitting.

- The algorithm should prove its usefulness on real-world application tasks (we
are starting a collaboration in biosequence analysis).

- Finally, it would be very desirable to solve a general problem of all OOM learn-
ing algorithms, the negativity problem: the matrices which are computed by
these algorithms may predict negative probabilities for certain events (which
have true probabilities close to zero). Workarounds exist (Jaeger et al., 2005)
(they have been used in the simulations reported here), but the only princi-
pled solution known today is to evade the problem altogether by considering
a “quadratic” variant of OOMs where negative probabilities are precluded by
design (Zhao and Jaeger, 2007).

Acknowledgement. The results reported in this article were achieved while the
first author worked under a grant (JA 1210/1-1&2) from the Deutsche Forschungs-
gemeinschaft (DFG). The authors would also like to thank two anonymous reviewers
for a very careful and constructive reviewing.

References

Bengio, Y. (1999). Markovian models for sequential data. Neural Computing Sur-
veys, 2:129–162.

Bourlard, H. and Bengio, S. (2002). Hidden Markov models and other finite state
automata for sequence processing. In Arbin, M. A., editor, The handbook of brain
theory and neural networks. MIT Press, 2nd edition.

22

Bowling, M., McCracken, P., James, M., Neufeld, J., and Wilkinson, D. (2006).
Learning predictive state representations using non-blind policies. In Proceedings
of the 23rd International Conference on Machine Learning (ICML), pages 129–
136.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM-algorithm. Journal of the Royal Statistical Society,
39(1):1–38.

Durbin, R., Eddy, S., Krogh, A., and Mitchinson, G. (2000). Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge University
Press.

Faigle, U. and Schönhuth, A. (2006). Quantum predictor models. Electronic Notes
in Discrete Mathematics, 25:149–155.

Faigle, U. and Schönhuth, A. (2007). Asymptotic mean stationarity of sources with
finite evolution dimension. IEEE Transactions on Information Theory, 53:2342–
2348.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science
and computational biology. Cambridge University Press.

Jaeger, H. (1998). Discrete-time, discrete-valued observable operator models: a
tutorial. GMD Report 42, GMD, Sankt Augustin.

Jaeger, H. (1999). Characterizing distributions of stochastic processes by linear
operators. GMD Report 62, German National Research Center for Information
Technology.

Jaeger, H. (2000a). Modeling and learning continuous-valued stochastic processes
with OOMs. GMD Report 102, GMD, Sankt Augustin.

Jaeger, H. (2000b). Observable operator models for discrete stochastic time series.
Neural Computation, 12(6):1371–1398.

Jaeger, H., Zhao, M., Kretzschmar, K., Oberstein, T. G., Popovici, D., and Kolling,
A. (2005). Learning observable operator models via the ES algorithm. In Haykin,
S., Principe, J., Sejnowski, T., and McWhirter, J., editors, New Directions in
Statistical Signal Processing: from Systems to Brains, chapter 20. MIT Press.

James, M. R. and Singh, S. (2004). Learning and discovery of predictive state
representations in dynamical systems with reset. In Proceedings of the 21st Inter-
national Conference on Machine Learning (ICML), pages 53–60.

Jelinek, F. (1998). Statistical methods for speech recognition. MIT Press.

23

Kretzschmar, K. (2003). Learning symbol sequences with observable operator mod-
els. GMD Report 161, Fraunhofer Institute AIS.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings
of 2nd Berkeley Symposium, pages 481–492. Berkeley: University of California
Press.

Littman, M. L. and Sutton, R. S. (2001). Predictive representation of state. In
Advances in Neural Information Processing Systems, volume 14, pages 1555–1561.

McCracken, P. and Bowling, M. (2005). Online discovery and learning of predictive
state representations. In Advances in Neural Information Processing Systems,
volume 18, pages 875–882.

Pesin, Y. B. (1977). Characteristic Lyapunov exponents and smooth ergodic theory.
Russ. Math. Surveys, 32(4):55–114.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rudary, M. and Singh, S. (2006). Predictive linear-Gaussian models of controlled
stochastic dynamical systems. In Proceedings of the 23rd International Conference
on Machine Learning (ICML), pages 777–784.

Schönhuth, A. (2006). Diskretwertige stochastische Vektorräume (in German). PhD
thesis, Faculty of Mathematics and Natural Sciences, University Köln.

Singh, S., Littman, M. L., Jong, N. K., Pardoe, D., and Stone, P. (2003). Learning
predictive state representations. In Proceedings of the 20th International Confer-
ence on Machine Learning (ICML), pages 712–719.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3):249–
260.

Wingate, D. and Singh, S. (2007). On discovery and learning of models with predic-
tive state representations of state for agents with continuous actions and observa-
tions. In Procedings of the 6th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

Wolfe, B. (2006). Predictive state representations with options. In Proceedings of the
23rd International Conference on Machine Learning (ICML), pages 1025–1032.

Wolfe, B., James, M. R., and Singh, S. P. (2005). Learning predictive state repre-
sentations in dynamical systems without reset. In Proceedings of the 22nd Inter-
national Conference on Machine Learning (ICML), pages 985–992.

Zhao, M.-J. and Jaeger, H. (2007). Norm observable operator models. Technical
Report 8, Jacobs University Bremen.

24

