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Abstract 
I n  this paper, we present a neural network algo- 

rithm for self-organization of feature detectors in t ime  
sequences (SOFT) based on  the mathematical concept 
of transient attractors. It evaluates local phase space 
volume contraction as an indicator for  good short- 
term predictability. SOFT supports category forma- 
tion and evelet detection in multidimensional time se- 
quences by linking together neural function approzima- 
tion and principal component analysis. Possible exten- 
tions of the algorithm including iteration and vector 
quantization procedures for further data analysis are 
discussed. 

1 The concept of transient attractors 
What enables biological systems to recognize dis- 

crete events in a continuous stream of sensory input 
data? How can they learn to detect and categorize ele- 
mentary feature patterns in continuous time sequences 
without explicit knowledge of such re-recognizable en- 
tities? How can psychologists and ethologists identlfy 
elementary behaviors when observing continuous mo- 
tion patterns produced by humans, animals or robots? 
All these problems imply a high-dimensional continu- 
ous dynamics which gives rise to a sequence of discrete 
nameable and re-recognizable regularities. It is of ob- 
vious importance for many fields of science including 
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biomedical research, economics, cognitive science, psy- 
chology, computer vision, automatic speech recogni- 
tion, robotics etc. to develop mathematical models of 
such identifiable everits and corresponding algorithms 
which enable us to extract them from empirical time 
sequence data - in other words, techniques for trans- 
forming non-symbolic time series into discrete symbol 
sequences. 

In this paper, we present a neural network al- 
gorithm for self-organization of feature detectors in 
time sequences based on the mathematical concept of 
transient attractors. The key idea is to identify re- 
recognizable regularities in time sequences by good 
short-term predictability implying local contraction 
of phase space volume. In contrast to former ap- 
proaches based on the analysis of raw data, we em- 
ploy neural network models, i.e. parametric represen- 
tations of data sets in order to cope with the sparse 
ness of time sequence trajectories in empirical high- 
dimensional phaseportra&. At the same time, we 
avoid the Computational burden involved by a com- 
plete search of the data set for investigating the neigh- 
borhood of each trajectory point. SOFT combines 
neural function approximation, principal component 
analysis, and vector quantization within a combined 
computational procedure. 
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Figure 1: The SOFT algorithm: intuitions. a) contraction of phase space volume in regions of converging 
trajectories. b) the SOFT principle: The empirical trajectory point x ( t d )  is ”blurred” by superimposed noise. 
The resulting source distribution forms the input of a neural network function approximator predicting a target 
distribution in the neighborhood of the empirical trajectory point y* ( t p ) .  Transient attractors are identified by 
comparative evaluation of source and target distribution employing principal component analysis and calculation 
of local Liapunov numbers, see text. 

How can we detect ”nameable regularities” in time 
sequences? Two different families of algorithms exist 
for this task. The first approach relies on partation- 
ing the phase space of an observed system into suit- 
able cells, which can be labelled by symbols. As the 
system trajectory passes through these cells, a series 
of symbols is derived in a natural way. This kind of 
approach is standard in many fields, like in ergodic 
theory, in the analysis of the dynamics of recurrent 
neural networks [4], or the theory of qualitative rea- 
soning in artificial intelligence, e.g. [lo]. The second 
approach is based on attractors which are identified 
with re-recognizable elementary events. This perspec- 
tive is popular in some strands of brain research (e.g. 
[16]) or connectionism (e.g. [13]). A survey on both 
schools can be found in [8]. 

The two approaches have complementary merits. 
Attractors are inherently stable. A drawback of at- 
tractors is that, strictly speaking, a dynamical system 
cannot leave an attractor state. Therefore, additonal 
mechanisms have to be included into formal models 
in order to account for the fact that a sequence of 
”attractor events” is produced by the system. Several 
such additional mechanisms have been explored in the 
literature. We refer to [7] and [9] for a review of this 
topic. Partition cells, conversely, lack any aspect of 
stability, but naturally give rise to sequences of sym- 
bolic units: simply collect the sequence of partition 
cells passed by the system trajectory. 

This situation calls for an effort to combine both 
kinds of approaches into a unified mathematical con- 
struct of ”regularities” or ”events” which preserves the 

complementary merits of each of the original concepts 
discussed in the literature (see e.g. [SI). This paper is 
based on the construct of transient attractors [7], [9] 
which realizes such a combination. 

The basic intuitive motivation of this concept can 
be summarized as follows: A first step towards ”under- 
standing” continuous, possibly high-dimensional, and 
possibly noisy time sequences is to look for some kind 
of ”regularities” in the data. The idea of ”regularity” 
is imprecise and has many facets. One of them is short- 
term predictability. Naively, short-term predictability 
means the following. As a human observes an empiri- 
cal process (e.g. the behavior of an ant watched by an 
ethologist or some spiking neurons investigated by a 
neurobiologist), he will soon become aware that cer- 
tain activity patterns occur repeatedly (e.g. the ant 
drops a pup at places where other pups lie, or some 
neuron A generates a spike burst whenever another 
neuron B stops firing). Repeated observations, in 
turn, enable the observer to make short-term predic- 
tions (e.g. the ant will drop the pup in the next instant 
since it approaches a heap of other pups; or neuron A 
will immediately begin to fire since the firing rate of 
B is dropping). In fact, it can be argued that short- 
term predictability is necessary for re-recognizability, 
i.e. for the very constitution of nameability. 

The central idea within the concept of transient 
attractors is to use short-term predictability as the 
defining criterion for the identification of nameable 
regularities. A natural way for obtaining a precise 
concept of short-term predictability is to identify it 
with local contraction of phase space volume. This 
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corresponds to the standard view in information the- 
ory and ergodic theory (e.g. [ll]). To get a graphical 
impression of local phase space contraction, assume 
that the empirical time series is plotted in a phase di- 
agram (Fig. la). Then look for local regions where 
trajectories ”converge”. In such regions, called ”tran- 
sient attractors” , the phase space becomes contracted 
in the sense that if the process is known to be in a 
volume element A at time t ,  then it can be claimed to 
be in a smaller volume element B at time t +At .  This 
is a reduction of information-theoretic uncertainty, or 
”good predictability”. 

The intuition described so far can be cast into a 
precise mathematical definition of transient attractors. 
For a rigorous mathematical formalization of this con- 
cept and a detailed discussion of problems and pitfalls, 
we refer to the work of Jaeger [7], [9]. 

2 The SOFT algorithm 

a sequence of computational procedures: 
In order to identify transient attractors, we propose 

(i) Consider a K-dimensional time sequence 2 = 
{ z ( t ) } ,  ~ ( t )  E I R K ,  K E IN. At any given time 
t E (1, . . . , T } ,  a D-dimensional feature vector 
x ( t )  E IRD,  D E IN and another F-dimensional 
feature vector y*( t )  E R*, F E IN may be ex- 
tracted from 2 within problem-specific prepro- 
cessing procedures. x ( t )  and y * ( t )  describe em- 
pirical trajectories in phase spaces with dimen- 
sions D and F ,  respectively. For example, x(t) 
may contain information extracted from a win- 
dow covering several adjacent frames of 2, in 
analogy to the input structure used in time-delay 
neural networks. The simplest case would be 
D = F, x ( t )  = y*( t )  for all t E (1 ,..., T }  (as, 
for instance, shown in Fig. 1). 

(ii) Now a neural network function approximator is 
trained to represent a pre- or postdiction map- 
ping 

f*  : RD RF, X ( t d )  I-) Y*(tf), 

where t f  = t d  + T with t d ,  tf E (1,. . . ,T} and a 
given T E 22 as a problem-specific pre- or post- 
diction interval. 
We do not explicitly specify the neural net- 
work architecture of the function approxima- 
tor: for example, implementational alternatives 
could be multi-layer-perceptrons trained by the 
error-back-propagation algorithm [12] or gener- 
alized radial-basis-functions-networks (see e.g. 
151, 121, 1141). 

(iii) In the followin,g, g ( x ; , u , X , B )  denotes a B- 
dimensional Gaussian distribution of vectors x 
with mean ,u and covariance matrix X, where 
x,p E RB, E E I R B x B ,  B E IN, i.e. 

g(x;  P, I=, B )  := (1) 
(2r)S,2(det~)1,“exP(-~(x 1 - P) t -1 (x - PI>- 

Each data vector ~ ( t d )  of the trajectory in (i) is 
”blurred” by superimposed Gaussian noise, i.e. 
data vectors x”i(td) are generated in the neigh- 
borhood of x ( t d )  according to a source distribu- 
tion 

P(X’(td)) = g(X’(td);X(td), E x ,  D) (2) 

where, for simplicity, we restrict to a D- 
dimensional uniivariate Gaussian probability 
density, i.e. 

with 6 > 0 representing the scale of resolution 
for transient attractors to be detected and 1~ 
the D-dimensional identity. This source distri- 
bution is mapped &to a target distribution by 
the neural network function approximator repre- 
senting f(X”(td)) = y ” ( t f )  (Fig. lb). For small 
S, f can be considered locally linear employing 
Taylor series expansion. As Gaussian distribu- 
tions remain Gaussian under linear transforma- 
tions of the random variable (for proof see e.g. 
[3]), the target distribution of the y ” ( t f )  is ap- 
proximately Gaussian: 

Ex = 6% 

P ( Y ” ( t f ) )  = S(Y”(tf); Y( t f> ,  ZY, F), (3) 

where E=, in general, is no diagonal matrix. 

(iv) Primapal component analysis (PCA) of the tar- 
get distribution reveals eigenvectors ui and 
eigenvalues €1, i E { 1, . . . , F }  of the covariance 
matrix I=, according to Ey = UX,’Ut with 
U == (ul,. . . ,1117) eigenvectors of Xy, and X y f  = 
diag(e:, . . . , E $ )  representing the variances along 
the principal components of the target distribu- 
tion. 

(v) Now we could easily define a kind of ”volume 
measure” for the encountered distributions: If 
we take V, = 6” as the ”volume” of the D- 
dimensional univariate Gaussian source distri- 
bution and V, I= nEl q as the ”volume” of the 
target distribution, we could define the contrac- 
tion index c T ( t f )  = Vy/Vx as an indicator for 
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trajectory "convergence". The volume measure 
of the target distribution of the y " ( t f )  is not 
affected by the PCA in step (iv), as it is invari- 
ant under the resulting unitary transformation 

However, there may be situations in which con- 
vergence of empirical trajectories will not occur 
in all phase space dimensions, but will be re- 
stricted to certain subspace manifolds, whereas 
trajectories in other directions are not involved 
or even diverge (see Fig. lb). In these situations, 
we may have to  take direction-specificity of tra- 
jectory convergence into account. For this pur- 
pose, we propose a measure motivated by stabil- 
ity theory of dynamical systems: If we order the 
principal components ~ i ,  i E { 1, . . . , F }  of the 
target distribution from largest to smallest and 
let d2 denote the variance of the source distribu- 
tion (see (iii)), we can calculate F numbers 

y"'(tp) = UtY"(tf). 

X i  := ln(T). Ei 
(4) 

We call them local Liapunov numbers (LLNs). 
By calculating LLNs, we can investigate local 
phase space contraction by comparative evalu- 
ation of source and target distributions. Al- 
though our concept of LLNs is obviously mo- 
tivated by a close analogy to the definition of 
Liapunov numbers in dynamical systems theory 
(see e.g. [6]), we want to emphasize three impor- 
tant differences: 

a) LLNs do not represent a property of the 
whole trajectory, as we are not interested in 
the behavior of a given phase space volume 
as time approaches infinity. Rather do we 
focus on the local evolution of trajectories 
between finite times t d  and t j  separated by 
a given pre- or postdiction interval r. This 
refers to the evanescent character of tran- 
sient attractors defined by local two-point 
predictability. 

b) LLNs are not restricted to the temporal 
evolution of trajectories in one given phase 
space. They are more general in a spe- 
cific sense: Source and target distributions 
may be defined in different phase spaces ac- 
cording to  possibly different procedures of 
feature extraction (see (i)). They are only 
linked together by the prediction mapping 
f of the neural network function approxi- 
mator. 

c) For the analysis of stability properties in 
dynamical systems theory, one is usually in- 
terested in the computation of the largest 
Liapunov numbers. In our context, how- 
ever, we do not investigate long-term stabil- 
ity of a dynamical system, but focus our at- 
tention towards the smallest LLNs, as they 
represent local phase space contraction ac- 
cording to the definition of transient attrac- 
tors. 

By computing the LLNs A,, we can evaluate the- 
oretical predictability (T-predictability) by an- 
alyzing local temporal phase space contraction 
with respect to direction-specific trajectory evo- 
lution. As a quantitative measure, we can ob- 
tain a contraction index cT( tr )  by calculating 
an appropriate function of the Xi's. For exam- 
ple, cT( tr )  := miniE{l,...,F) & would be a simple 
choice. 

(vi) The predicted value f ( x ( t d ) )  = y ( t f )  may dif- 
fer from the real trajectory point f * ( x ( t d ) )  = 
y*(tp) due to noise or to inevitable inaccura- 
cies based on limited prediction quality of the 
neural network function approximator. For any 
pair ( x ( t d ) , y * ( t f ) )  of trajectory points, a de- 
cision has to be made whether y*(tp) belongs 
to a predicted target distribution. As a possi- 
ble quantitative measure cP(tp)  for this prac- 
tical predictability (P-predictability), we pro- 
pose a monotonuously decreasing function of the 
likelihood L ( t f )  of y * ( t f )  with respect to the 
parametrized target distribution, Le. 

L(tf) = g(y*(tp);  Y(tf  1, % F )  ( 5 )  

which can be calculated on the basis of steps 
(iii) and (iv) without additional computational 
expense. 

(vii) Coupling the aspects of T- and P-predictability 
by an appropriate heuristic combination of 
cT(tp) and cP(tp), we can obtain a quantitative 
measure c(tp) for the actual local predictability 
at any given time t f .  We can identify trajec- 
tory points with a low c(tp> as indicators for the 
presence of a transient attractor. 

3 Extentions and points of discussion 
How many data points ~ " ( t d )  should be used in 

step (iii)? At first glance, the complexity of the al- 
gorithm is O ( F 2 )  in this context, for there are 
free parameters that determine the target distribution. 
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However, as we are only interested in the eigenvalues 
Ei for the calculation of the LLNs, one might think of 
strategies for complexity reduction to O(F) .  

The steps (i) - (vii) cover the complete algorithmic 
framework of SOFT. However, additional data analy- 
sis steps may be performed in order to further investi- 
gate the set of trajectory points obtained in step (vii). 
Among several possible alternatives, one could think 
of an unsupervised clustering procedure of the vector 
pairs ( x ( t d ) ,  y* ( t p ) )  with a low predictability measure 
c(tp).  The resulting codebook vector positions could 
be characterized by symbolic labels. They would rep- 
resent feature detectors for re-recognizable regularities 
extracted from the empirical time sequence data. 

In addition, one might think of iterating the whole 
procedure of steps (i) - (vii). For this purpose, one 
could perfom a weighted training of the neural net- 
work predictor by adjustment of the learning rate 
with respect to the predictability measure c( tp)  ob- 
tained in the preceding iteration step. For this class 
of algorithms see e.g. [I]. This could focus the neu- 
ral network predictor resources in order to increase 
P-predictability in phase space regions in which tran- 
sient attractors may be expected, thus enabling a bet- 
ter investigation of T-predictability for their detec- 
tion. By choosing an appropriate heuristic annealing 
scheme for the relevance of c( tp)  in the neural net- 
work function approximator training procedure, the 
overall effect could lead to ”shrinking islands of good 
predictability” in the phase space, as the iteration pro- 
ceeds. These could be labelled by symbols as pointed 
out above. 

Although these additional data analysis procedures 
may be useful, we want to emphasize that they are not 
an essential part of our algorithm and may be chosen 
according to the specific structure of the data set or to 
the scope of an observer’s attention. Instead, we want 
to stress the key idea of the SOFT approach pointed 
out in steps (i) - (vii): the comparative evaluation of 
source and target distributions induced by ”blurring” 
the input of a neural network function approximator. 

Additional details, implementational issues, com- 
plexity considerations, and simulation results will be 
discussed elsewhere [15] including a critical discussion 
on differences and interconnections to other fields of 
research related to time sequence analysis and neural 
networks (see also [14]). 

4 Concluding remarks 
The SOFT algorithm presented in this paper cou- 

ples classical domains of neural network research with 
respect to the problem of self-organized category for- 
mation from empirical time sequence data without 

presumptive knowledge of re-recognizable regularities: 
function approximation, PCA, and - as a possible 
extention - vector quantization. A wide scope of al- 
gorithmic alternatives and biological motivations has 
been discussed in the neural network literature for 
each of these domains. We do not explicitly specify the 
implementational details of each of these components. 
Instead, we focus on the problem, how these compo- 
nents can interact in a constructive manner within the 
mathematical framework provided by the concept of 
transient attractors. We hope that SOFT may offer a 
useful contribution to the field of neural network time 
sequence analysis. 
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