MOLTAP : A Modal Logic Tableau Prover Users guide

Twan van Laarhoven

10th April 2008

1 Web interface

1.1 Entering a formula

Enter a formula here, and press ENTER

By default the prover web interface shows a single line textbox where a formula can be entered. See the syntax reference for a description of the syntax to use. Press **Enter** to evaluate the formula.

When a single line does not suffice, the input field can be expanded by clicking the downward pointing arrow on the right.

1.2 True formulas

When a formula is valid in all worlds MOLTAP will show a green box.

1.3 False formulas

For formulas that are not valid in all worlds MOLTAP will show a red box with a counter model. In this model the formula is false. When the mouse is moved over a subformula the program will indicate in which worlds this subformula is true (by a green circle) and in which worlds it is false (by a red struck circle).

2 Command line program

MOLTAP also comes with a command line version. The syntax is exactly the same as for the web interface. This program supports three modes of operation

- 1. Read input from a file or stdin.
- 2. Read input from the command line.
- 3. A simple interactive mode.

In each case one or more formulas are evaluated (proven/disproven). The program writes true or false to the output, and if the formula is false generates a counter model. The command line program supports the following arguments

Short form	Long form	Description
FILE		Run the program on the given input file.
-?	help	Show help page.
-i	interactive	Interactive mode.
-f FORMULA	formula=FORMULA	Give a formula directly on the command line.
-o FILE	model-name=FILE	Filename for generated model images, the default is
		"model.png". The extension determines the generated im-
		age type.

When reading input from the command line the end of file character must be used to indicate the end of the formula, use 2 on windows and D on linux.

In interactive mode each line is considered to be a formula, unless there are remaining parentheses to be closed. Use :? to show the help page and :q to quit.

2.1 Example session

```
$ moltap
x | x
^Ζ
true
$ moltap -f "p -> K1 p"
false
$ view model.png
$ moltap -i
> K1,2 p -> (
   К1 р & К2 р
. .
. .
    )
true
> :q
Goodbye
```

3 Syntax reference

3.1 Propositional formulas

There are three ways to write logical connectors

- 1. Using ASCII syntax, for example p & q.
- 2. Using Unicode symbols, for example $\mathtt{p}~\wedge~\mathtt{q}.$
- 3. Using natural language, for example ${\tt p}$ and ${\tt q}.$

Input syntax			Description
ASCII	Unicode	Text	
p,q,cat,bigVar123			Propositional variables consists of alphanumeric
			symbols, starting with a lower case letter.
(φ)			Parentheses can be used for grouping.
	\top, \bot	true, false	The true/false proposition.
$\sim \varphi$	$\neg \varphi$	not φ	Logical negation, $\neg \varphi$ is true if and only if φ is false.
$arphi$ & ψ	$\varphi \wedge \psi$	$arphi$ and ψ	Logical conjunction
$\varphi \mid \psi$	$\varphi \lor \psi$	$arphi$ or ψ	Logical disjunction
$\varphi \rightarrow \psi$	$\varphi \rightarrow \psi$	$arphi$ implies ψ	Logical implication
$\varphi \prec \psi$	$\varphi \leftarrow \psi$		Implication written the other way around.
$\varphi \iff \psi,$	$\varphi \leftrightarrow \psi$		Logical equivalence
$\varphi = \psi$			
<i>φ</i> <-/->	$\varphi \not\leftrightarrow \psi,$		Logical inequivalence
$\psi, \varphi \not= \psi$	$\varphi \neq \psi$		

3.2 Modal formulas

Modal formulas are formulas about agents. Agent names can be arbitrary strings of alphanumeric symbols. Examples of valid agent names are

- 1, 2
- Alice, Bob
- MY_COMPUTER
- α, β

MOLTAP supports both the epistemic style (K/M) and modal style (\Box/\diamondsuit) of writing operators.

Input syntax		Description
Epistemic	Modal	
K_1 φ , K1 φ	[]1 φ , \Box 1 φ	Agent 1 knows that φ , φ is necessary for agent 1.
K{1,2} φ	[]{1,2} φ	Agents 1 and 2 both knows that φ . This is the same as
		K1 φ & K2 φ .
Kφ	[] φ	Every agent knows φ .
K* φ , K*{1,2}	[]* <i>\varphi</i>	It is common knowledge that φ . Every agent (in a set)
φ		knows that φ , and they know that everyone knows, and
		they know that everyone knows that everyone knows, etc.
M_1 φ , M1 φ	$<>1 \varphi, \diamond 1 \varphi$	Agent 1 holds φ for possible, φ is possible for agent 1.

3.3 Advanced features

Input syntax	Description	
let x = φ ; ψ	Create a local declaration. Inside ψ all occurrences of x will be replaced	
	by φ . Declarations are only allowed at the top level.	
system S; ψ	Change the axiom system. By default system S5 $(=KT45)$ is used. The	
	name S is either a combination of KDT45 or S4 or S5.	
# comment	Comments begin with a # sign and run until the end of the line.	

The possible axioms stand for:

- K = the basic axiom system, this is always used.
- D = seriality, each world has a successor, $\diamond_i \top$.
- T = all relations are reflexive, $\Box_i \varphi \to \varphi$.
- 4 = all relations are transitive, $\Box_i \varphi \rightarrow \Box_i \Box_i \varphi$.
- 5 = all relations are euclidean, $\diamondsuit_i \varphi \to \Box_i \diamondsuit_i \varphi$.

3.4 Precedence and associativity

- 1. not and modal operators bind the strongest.
- 2. Followed by and,
- 3. then ${\tt or}$
- 4. and finally implication and equivalence. Implication associates to the right.
- 5. Programming features like let bind even weaker.

So for example K1 p $\land \sim q \lor r \rightarrow s \rightarrow t$ is parsed as (((K_1 p) \land (\neg q)) \lor r) \rightarrow (s \rightarrow t).