MOLTAP : A Modal Logic Tableau Prover
Users guide

Twan van Laarhoven

10th April 2008

1 Web interface

1.1 Entering a formula

[Enter a formula here, and press ENTER]'L'"-Muke the input field larger

By default the prover web interface shows a single line textbox where a formula can be entered. See
the syntax reference for a description of the syntax to use. Press Enter to evaluate the formula.

When a single line does not suffice, the input field can be expanded by clicking the downward
pointing arrow on the right.

1.2 True formulas

When a formula is valid in all worlds MOLTAP will show a green box.

TRUE The entered formula is valid

1.3 False formulas

For formulas that are not valid in all worlds MOLTAP will show a red box with a counter model.
In this model the formula is false. When the mouse is moved over a subformula the program will
indicate in which worlds this subformula is true (by a green circle) and in which worlds it is false
(by a red struck circle).

X W

FALSE Move the mouse over a
subformula to highlight
worlds where that formula 1
is true or false.

2 Command line program

MOLTAP also comes with a command line version. The syntax is exactly the same as for the web
interface. This program supports three modes of operation

1. Read input from a file or stdin.
2. Read input from the command line.
3. A simple interactive mode.

In each case one or more formulas are evaluated (proven/disproven). The program writes true or
false to the output, and if the formula is false generates a counter model. The command line
program supports the following arguments

’ Short form ‘ Long form ‘ Description

FILE Run the program on the given input file.

-? —--help Show help page.

-i --interactive Interactive mode.

-f FORMULA | --formula=FORMULA | Give a formula directly on the command line.

-o FILE --model-name=FILE | Filename for generated model images, the default is
“model.png”. The extension determines the generated im-
age type.

When reading input from the command line the end of file character must be used to indicate the
end of the formula, use “Z on windows and ~D on linux.

In interactive mode each line is considered to be a formula, unless there are remaining parentheses
to be closed. Use :7 to show the help page and :q to quit.

2.1 Example session

$ moltap

x | x

~Z

true

$ moltap -f "p -> K1 p"
false

$ view model.png

$ moltap -i

> Ki1,2 p > (
Kl p&K2p
)

true

> :q

Goodbye

3 Syntax reference

3.1 Propositional formulas

There are three ways to write logical connectors

1. Using ASCII syntax, for example p & q.
2. Using Unicode symbols, for example p A q.
3. Using natural language, for example p and q.

Input syntax Description
ASCII \ Unicode \ Text
p, 9, cat, bigVar123 Propositional variables consists of alphanumeric
symbols, starting with a lower case letter.
() Parentheses can be used for grouping.
T, L true, false The true/false proposition.
~p - not ¢ Logical negation, - is true if and only if ¢ is false.
& Y o N Y @ and 1 Logical conjunction
o | o VY @ or Y Logical disjunction
p > Y p — P ¢ implies ¢ | Logical implication
p <= Y © — P Implication written the other way around.
p <=> 1, Q P Logical equivalence
=9
© <=/-> © ¥, Logical inequivalence
Yo /=Y |9 #Y

3.2 Modal formulas

Modal formulas are formulas about agents. Agent names can be arbitrary strings of alphanumeric
symbols. Examples of valid agent names are

o 1.2

e ALICE, BoB

e MY_COMPUTER

e, f
MOLTAP supports both the epistemic style (K/M) and modal style (O/<) of writing operators.

Input syntax Description

Epistemic \ Modal

K1 o, K1 ¢ [11 ¢, 01 ¢ Agent 1 knows that ¢, ¢ is necessary for agent 1.

K{1,2} ¢ [0{1,2} ¢ Agents 1 and 2 both knows that . This is the same as
K1 ¢ & K2 o.

K ¢) Every agent knows .

Kx ¢, K#{1,2} | [I* ¢ It is common knowledge that ¢. Every agent (in a set)

%) knows that ¢, and they know that everyone knows, and
they know that everyone knows that everyone knows, etc.

M1 o, M1 <>1 o, O1 Agent 1 holds ¢ for possible, ¢ is possible for agent 1.

3.3 Advanced features

’ Input syntax \ Description ‘
let x = ¢; @ Create a local declaration. Inside v all occurrences of x will be replaced
by ¢. Declarations are only allowed at the top level.
system S; © Change the axiom system. By default system S5 (=KT45) is used. The
name S is either a combination of KDT45 or S4 or S5.
comment Comments begin with a # sign and run until the end of the line.

The possible axioms stand for:
e K = the basic axiom system, this is always used.
D = seriality, each world has a successor, <; T.

[]

o T = all relations are reflexive, O, — ¢.

e 4 = all relations are transitive, O;p — O;0;¢p.
[]

5 = all relations are euclidean, $; — 0,;0;¢p.

3.4 Precedence and associativity

not and modal operators bind the strongest.

Followed by and,

then or

and finally implication and equivalence. Implication associates to the right.
Programming features like let bind even weaker.

GU o=

So for example K1 p A ~q V r — s — t is parsed as (((K.1 p) A (-@)) V r) — (s —
t).

