
The Short User’s Guide to OOPS

Elske van der Vaart Gert van Valkenhoef

February 25, 2008

1 Introduction

OOPS is an Object Oriented Prover for S5(n), which can automatically prove
or disprove formulas of epistemic logic, using the S5(n) axioms. It can be run
from the commandline, and will correctly return true or false in response
to an S5(n) input formula.

OOPS was developed as a final project for the course Multi-Agent Systems
at the University of Groningen, in May 2007. The resulting report, OOPS:
An Automated Proof Tool for S5(n), details OOPS’ technical specifications,
as well as its underlying proof method.1

This paper, by contrast, presents a Short User’s Guide to OOPS, to in-
troduce new users to its operation. Section 2 documents how to install and
run OOPS, while Section 3 describes its input options. Finally, Section 4
demonstrates a brief example of OOPS at work.

2 Installing and Running OOPS

OOPS is distributed as oops.jar1, and will work for users who have the Sun
Java Runtime Environment (JRE)2 installed, version 1.5 or higher. OOPS
can then be run by typing the following command, where <formula> is the
epistemic expression to be evaluated:

$ java -jar oops.jar ’<formula>’

If this command is not run from the folder where oops.jar is located, the
oops.jar argument should be preceded by a correct path specification, such
as ∼/oops/oops.jar. OOPS should then return true or false as appropri-
ate, or an error message in response to an incorrectly formatted formula.

1At time of writing, available from http://www.ai.rug.nl/∼valkenhoef/oops.
2Available from http://java.sun.com.

1

3 Inputting Formulas to OOPS

OOPS should be able to handle any S5(n) formula as input, provided certain
formatting restrictions are upheld. First, every logical operator has an OOPS
equivalent, to facilitate easy access by computer keyboard. These are shown
in Table 3.1.

Table 3.1 Logical Operators in OOPS

Logical Operator OOPS Symbol
¬ ∼
∧ &
∨ |
→ >
↔ =
Ki # i
Mi % i

OOPS also expects propositions and agents to be of a specific form. Propo-
sitions may be represented by any combination of letters and numbers, but
the first symbol must be a lowercase letter. Agents i must be denoted by a
single natural number, which may take any reasonable value from 0 upwards.

Operator precedences are specified in Table 3.2, but may be circum-
vented using parentheses. As an illustration: # i p & q would be evaluated
as (Kip) ∧ q, while # i (p & q) would be interpreted as Ki(p ∧ q). Three
example runs of OOPS are presented in Example 3.1.

Table 3.2 OOPS Input Details

Precedence Logical Operator(s)
1 ¬, Ki, Mi

2 ∧
3 ∨
4 →, ↔

Example 3.1 Example Runs of OOPS.

A run demonstrating a test of ¬M1(¬a ∧ a):
$ java -jar oops.jar ‘∼% 1(∼a & a)’

true

A run demonstrating a test of K1K2(¬propNr1 ∧ propNr2):
$ java -jar oops.jar ‘# 1 # 2(∼propNr1 & propNr2)’

false

2

A run demonstrating a test of KAlice(P → Q):
$ java -jar oops.jar ‘# Alice (P > Q)’

nl.rug.ai.mas.oops.TableauErrorException: Could not parse formula

4 A Detailed Example of OOPS at Work

One possible application of OOPS is to model small logic games. Consider
an extremely simplified version of Cluedo, which goes as follows3. In total,
there are three cards of different colors, and two players are each given one.
The third card is placed face down on the table.

Object of the game is to establish the color of the face down card, which can
be done by asking the other player a question. Let’s say that the cards are
red, yellow and black, and that this is common knowledge. Then, if player
1 has the red card, she can ask player 2 if he has the yellow card.

Should player 2 say “yes”, then player 1 knows that the black card must
be face down on the table, as she herself holds the red card; should player
2 say “no”, then player 1 knows that the yellow card must be face down on
the table, as player 2 must hold the black card.

Although this game is not particularly challenging - it should always be
over after the first round - it makes for an interesting demonstration of
OOPS. Given the right background knowledge, OOPS can derive what each of
the players knows about the current game state.

First, the relevant propositions must be defined. Let r1 mean that ‘the
red card is held by player 1’, r2 that ‘the red card is held by player 2’, and
rt that ‘the red card is face down on the table’. Then let y1, y2 and yt, and
b1, b2 and bt, mean the same for the yellow and black cards, respectively.

Then, there are four pieces of information that the players may consider
self-evident, but that OOPS must be explicitly told. A first important fact is
that (1) every card is somewhere. This means that either the red card is in
player 1’s hand or it is in player 2’s hand or it is face down on the table.

This, of course, applies to the yellow and black cards as well. In OOPS,
‘every card is somewhere’ can be modelled as follows:

(rt | r1 | r2) & (yt | y1 | y2) & (bt | b1 | b2)

Second, (2) every card is in only one place. If the red card is on the table,
then in cannot be in player 1’s hand, nor can it be in player 2’s hand. This
holds for all other positions and colors as well. In OOPS, ‘every card is in
only one place’ can be modelled as follows:

3This Cluedo derivative was first formulated by Hans van Ditmarsch, for use with the
Logics Workbench (http://www.lwb.unibe.ch), a different automatic proof tool.

3

(rt > ∼r1 & ∼r2) & (r1 > ∼r2 & ∼rt) & (r2 > ∼r1 & ∼rt) &
(yt > ∼y1 & ∼y2) & (y1 > ∼y2 & ∼yt) & (y2 > ∼y1 & ∼yt) &
(bt > ∼b1 & ∼b2) & (b1 > ∼b2 & ∼bt) & (b2 > ∼b1 & ∼bt)

By joining these four facts with conjunctions, OOPS can be supplied with
the same background knowledge that the players have, after which it can
deduce what they do and don’t know. Let’s assume that player 1’s card is
red, but that she has not yet asked the other player about his card.

Then, OOPS will correctly derive that she does not yet know what color
the card on the table is, or, in other words, that K1 r1→ (K1 yt ∨ K1 bt) is
false. Although she knows that her own card is red, she does not yet know
whether the face down card is yellow or black. In OOPS:

$ java -jar oops.jar ‘# 1(
((rt | r1 | r2) & (yt | y1 | y2) & (bt | b1 | b2)) &
((rt > ∼r1 & ∼r2) & (r1 > ∼r2 & ∼rt) & (r2 > ∼r1 & ∼rt) &
(yt > ∼y1 & ∼y2) & (y1 > ∼y2 & ∼yt) & (y2 > ∼y1 & ∼yt) &
(bt > ∼b1 & ∼b2) & (b1 > ∼b2 & ∼bt) & (b2 > ∼b1 & ∼bt)) &
((rt | yt | bt) & (r1 | y1 | b1) & (r2 | y2 | b2)) &
((rt > ∼yt & ∼bt) & (r1 > ∼y1 & ∼b1) & (r2 > ∼y2 & ∼b2) &
(yt > ∼rt & ∼bt) & (y1 > ∼r1 & ∼b1) & (y2 > ∼r2 & ∼b2) &
(bt > ∼yt & ∼rt) & (b1 > ∼y1 & ∼r1) & (b2 > ∼y2 & ∼r2))) >
(# 1 r1 > (# 1 yt | # 1 bt))’

false

Note that it is important to inform OOPS that player 1 has all the background
knowledge previously specified, or OOPS will draw the wrong conclusions. As
another example, it can, for instance, confirm that player 1 does know that
the card face down on the table is either yellow or black. In OOPS:

4

$ java -jar oops.jar ‘# 1(
((rt | r1 | r2) & (yt | y1 | y2) & (bt | b1 | b2)) &
((rt > ∼r1 & ∼r2) & (r1 > ∼r2 & ∼rt) & (r2 > ∼r1 & ∼rt) &
(yt > ∼y1 & ∼y2) & (y1 > ∼y2 & ∼yt) & (y2 > ∼y1 & ∼yt) &
(bt > ∼b1 & ∼b2) & (b1 > ∼b2 & ∼bt) & (b2 > ∼b1 & ∼bt)) &
((rt | yt | bt) & (r1 | y1 | b1) & (r2 | y2 | b2)) &
((rt > ∼yt & ∼bt) & (r1 > ∼y1 & ∼b1) & (r2 > ∼y2 & ∼b2) &
(yt > ∼rt & ∼bt) & (y1 > ∼r1 & ∼b1) & (y2 > ∼r2 & ∼b2) &
(bt > ∼yt & ∼rt) & (b1 > ∼y1 & ∼r1) & (b2 > ∼y2 & ∼r2))) >
(# 1 r1 > # 1 (yt | bt))’

true

Of course, there are many other formulas that OOPS can similarly prove in
this situation, but these two examples should suffice to convey the general
idea. Although a complex derivation may take a few minutes to complete,
OOPS should be able to provide the correct answer eventually.

5

