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Markov Models

e Observable states:
1,2,...,N
e Observed sequence:
a1 92, - - 54ty -~ -5 4T
e First order Markov assumption:
Plg=Jlgt-1=t,qp0=k,...) = Plg = jlgi-1 = 1)
e Stationarity:

P(g: = jlg—1 = 1) = P(qy1 = Jlqr1-1 = 1)
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Markov Models

e State transition matrix A :

app a2 -+ ai; ot Q1N

Q1 Q2 -+ Q5 - G2N
A=

a;p Qi 0 Qi ot Q4N

ayy an2 -+ aN; - ANN

where
ai; = Plg = jlg—1 = 1) 1<4,5,<N

e Constraints on a;; :
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Markov Models: Example

e States:
1. Rainy (R)
2. Cloudy (C)

3. Sunny (5)

e State transition probability matrix:

0.4 0.3 0.3
A=10.2 0.6 0.2

0.1 0.1 0.8

e Compute the probability of
observing SSRRSCS given that today is S.
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Markov Models: Example

Basic conditional probability rule:

P(A, B) = P(A|B)P(B)

The Markov chain rule:

P(QhQ%---;QT)

= Plar|qi, ¢, - -, qr-1)P(q1, @2, - - -, qr—1)

= Plarlgr—1)P(a1, -, qr-1)

= Plarlgr—1)Plgr-ilar—2)P(q1, g2, - - -, qr—2)
(

= Plarlgr1)P(gr-1lgr—2) -+~ Plg|q)P(q)
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Markov Models: Example

¢ Observation sequence O :

O=(S,8,S,R,R,S,C,S)

¢ Using the chain rule we get:

P(O|model)

= P(S,S,5,R,R,S,C, S|model)

= P(S)P(S|S)P(S|S)P(R|S)P(R|R) x
P(S|R)P(C|S)P(S|C)

= (1)(0.8)%(0.1)(0.4)(0.3)(0.1)(0.2)

— 1.536 x 107*

e The prior probability =, = P(q; = 1)
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Markov Models: Example

¢ What is the probability that the sequence re-

mains in state ¢ for exactly d time units?

pz(d) — P(ql :ian :7:7°°°7Qd:7:7qd—|-1 7&7’7)
= mi(a;) (1 — ay)
e Exponential Markov chain duration density.

¢ What is the expected value of the duration d in

state 27
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Markov Models: Example

e Avg. number of consecutive sunny days =

1 1

= :5
1—&33 1—-0.8

e Avg. number of consecutive cloudy days = 2.5

e Avg. number of consecutive rainy days = 1.67
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Hidden Markov Models

e States are not observable
e Observations are probabilistic functions of state

e State transitions are still probabilistic

~
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Urn and Ball Model

e NV urns containing colored balls
e M distinct colors of balls

e Each urn has a (possibly) different distribution

of colors
e Sequence generation algorithm:
1. Pick initial urn according to some random

process.

2. Randomly pick a ball from the urn and then

replace it

3. Select another urn according a random selec-

tion process associated with the urn

4. Repeat steps 2 and 3
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The Trellis

STATES
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\
1 2 t-1 t t+1 t+2 T-1 T
TIME
0, 0, 0,, 0, 0., 0., O, 0,

OBSERVATION
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Elements of Hidden Markov
Models

¢ N — the number of hidden states

o () — set of states Q@ ={1,2,..., N}

e M/ — the number of symbols

o V — set of symbols V ={1,2,..., M}

e A — the state-transition probability matrix.
aij = Plg =jlgg =) 1<4,5,<N

e B — Observation probability distribution:

e m — the 1nitial state distribution:

e \ — the entire model A\ = (A, B, 7)
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Three Basic Problems

1. Given observation O = (0y,09,...,0r) and model
A= (A, B,7), efficiently compute P(O|\).
e Hidden states complicate the evaluation
e Given two models \; and )\, this can be used

to choose the better one.

2. Given observation O = (01,0, ...,07) and model A

find the optimal state sequence ¢ = (q1,¢, ..., qr).

e Optimality criterion has to be decided (e.g.

maximum likelihood)

o “Explanation” for the data.

3. Given O = (04, 09,...,07), estimate model parame-

ters A = (A, B, n) that maximize P(O|\).
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Solution to Problem 1

¢ Problem: Compute P(0;,09,...,07|})
e Algorithm:

— Let ¢ =(q1,¢,-..,q9r) be a state sequence.

— Assume the observations are independent:
T
P(O|q,)\) = 1:[1 P(0t|qta)‘)
- b(ﬂ(ol)qu(OQ) e bQT(OT)

— Probability of a particular state sequence is:
P(q|A) = Tg,Gq,40Qg005 * * * Cgr_1qp
~ Also, P(0,q]) = P(O]g, \|P(ql))
— Enumerate paths and sum probabilities:
P(OIN) = £ P(Olg, \1P(gl)

e N state sequences and O(T) calculations.

Complexity: O(TN') calculations.
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Forward Procedure: Intuition

STATES

aNk
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2
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Forward Algorithm

¢ Define forward variable o4(7) as:
at(i) — P(017 02y ...50t, 4t = 7’|)\)

e o4(7) is the probability of observing the partial
sequence (01,0, ...,0;) such that the state ¢ is .
¢ Induction:
1. Initialization: «(i) = m;b;(0;)

2. Induction:

crlf) = [z (i)

3. Termination:

P(OI) = ¥ arli)

4

e Complexity: O(N*T).

~
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Example

Consider the following coin-tossing experiment:

State 1| State 2 | State 3
P(H) 0.5 0.75 0.25
P(T) 0.5 0.25 0.75

— state-transition probabilities equal to 1/3

— initial state probabilities equal to 1/3

1. You observe O = (H,H,H,H,T,H, T, T,T,T). What

state sequence, ¢, is most likely? What is the

joint probability, P(O, g|)\), of the observation se-

quence and the state sequence?

2. What is the probability that the observation se-

quence came entirely of state 17

~
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4 N

3. Consider the observation sequence

O=(H,T,T,HT,H HT,T,H).
How would your answers to parts 1 and 2 change?

4. If the state transition probabilities were:

0.9 0.45 0.45
A'=1005 0.1 045,

0.05 0.45 0.1

how would the new model \' change your answers

to parts 1-37
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Backward Algorithm

STATES

R N W b
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~
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Backward Algorithm

¢ Define backward variable (i) as:
ﬁt(z) — P(Ot—l—la Ot42y - 0T|qt — 7:7 )‘)

e 0,(¢) is the probability of observing the partial
sequence (0,,1,0;.2...,07) such that the state ¢ is
1.

¢ Induction:

1. Initialization: Gp(i) =1
2. Induction:
. N .
Bi(1) = '21 a;jbj(0111)Br41(7),
]:
1 <i<N,

t=T-1,...,1
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Solution to Problem 2

e Choose the most likely path

¢ Find the path (¢, q,...,qr) that maximizes the
likelihood:

P(q17q27 . °7qT|07 )‘)

e Solution by Dynamic Programming

e Define:

6:(1) = max  P(q1,q2y---,qt = 1,01,09,...,0(A)

q1,92,---,4t—1

e 6,(7) is the highest prob. path ending in state :

e By induction we have:

br41(7) = max|éi(7)aij] - bj(0141)
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Viterbi Algorithm

STATES

R N W b

A
K
7
//
/a,
1 2 t-1 t t+1  t+2 T-1 T
TIME
0, 0, 0, 0, 0., 0., 0., 0,

OBSERVATION
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Viterbi Algorithm

e Initialization:

51(’&) = 7Tibl'(01), 1 S ) S N

(i) = 0
e Recursion:
(7) = s [ (8)a b o0
$ily) = arg max [6-1(1)a;j]

2<t<T,1<j<N

e Termination:

P* = max [67(7)]

1<<N

gr = arg max [67(i)]

e Path (state sequence) backtracking:

g =VYilg,,), t=T-1,T-2,...

~
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Solution to Problem 3

e Estimate A = (A, B, ) to maximize P(O|\)

e No analytic method because of complexity — it-

erative solution.

¢ Baum-Welch Algorithm:

1. Let initial model be .

2. Compute new )\ based on )\; and observation

0.
3. If log P(O|\) — log P(O|X\g) < DELT A stop.

4. Else set \;j +— )\ and goto step 2.
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Baum-Welch: Preliminaries

e Define £(i,7) as the probability of being in state

¢ at time ¢t and in state ; at time ¢t + 1.

o oy(i)agbi(oi11)Bi4a(7)
6(173) - P(OP\)
ai(2)a;;bj(0141)Bi41(7)
EiNzl Eszl Oét(’i)a@'jbj(otﬂ)ﬁtﬂ(j)

e Define (i) as probability of being in state i at

time t, given the observation sequence.

(i) = 3 &l g)

7=1
e =/, v(i) is the expected number of times state i

1s visited.

o »/51&(i,7) is the expected number of transitions

from state ¢ to state ;.

~
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Baum-Welch: Update Rules

e 7, = expected frequency in state ¢ at time (t = 1)

e i;; = (expected number of transition from state s
to state j)/ (expected nubmer of transitions from

state 7):
— th(’l,,j)
Qi = —
Z’Yt(’b)
¢ b;(k) = (expected number of times in state j and

observing symbol k) / (expected number of times

in state j:

7 . Zt,ot:k 'Vt(.])
bilk) = ev(7)
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Properties

e Covariance of the estimated parameters

e Convergence rates

~
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Types of HMM

e Continuous density

e Ergodic

e State duration
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Implementation Issues

e Scaling
e Initial parameters

e Multiple observation
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Comparison of HMMs

¢ What is a natural distance function?

o If p(Ai, \y) is large, does it mean that the models

are really different?

~




